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In this paper, the problem of controlling systems with failures and faults is introduced,
and an overview of recent work on direct adaptive control for compensation of uncertain
actuator failures is presented. Actuator failures may be characterized by some unknown
system inputs being stuck at some unknown (fixed or varying) values at unknown time
instants, that cannot be influenced by the control signals. The key task of adaptive com-
pensation is to design the control signals in such a manner that the remaining actuators
can automatically and seamlessly take over for the failed ones, and achieve desired stability
and asymptotic tracking. A certain degree of redundancy is necessary to accomplish failure
compensation. The objective of adaptive control design is to effectively use the available
actuation redundancy to handle failures without the knowledge of the failure patterns,
parameters, and time of occurrence. This is a challenging problem because failures intro-
duce large uncertainties in the dynamic structure of the system, in addition to parametric
uncertainties and unknown disturbances. The paper addresses some theoretical issues in
adaptive actuator failure compensation: actuator failure modeling, redundant actuation re-
quirements, plant-model matching, error system dynamics, adaptation laws, and stability,
tracking, and performance analysis. Adaptive control designs can be shown to effectively
handle uncertain actuator failures without explicit failure detection. Some open technical
challenges and research problems in this important research area are discussed.

I. Introduction

Actuator failures can cause control system performance deterioration and even lead to instability and
catastrophic accidents (for example, United Flight 232, Sioux City, 1989: hydraulics/multiple actuator
failures; USAir Flight 427, Pittsburgh, 1994: rudder failure; Alaska Flight 261, Pt. Mugu, 2000: stabilizer
failure). Most of the safety problems posed by such failures still remain unsolved from the control theoretic
as well as implementation points of view, because of the large structural uncertainties introduced by failures.
Therefore it is important to investigate flight control system design techniques for enhanced survivability
and reliability, with autonomous retention of stability and maneuverability when abnormal conditions occur.

Adaptive control methodology provides adaptation mechanisms that adjust a controller for a system
subjected to parametric, structural, and environmental uncertainties to achieve both stability and tracking
performance. Flight conditions, payload variation, and component aging cause parametric uncertainties,
while component failures and damage lead to structural uncertainties. External disturbances (such as weather
conditions and wind gusts) represent typical environmental uncertainties. The field of adaptive control has
seen many important advances and remarkable successes in both theory and applications and continues to
develop rapidly with the emergence of new challenging problems and their encouraging solutions. The ability
to handle large, uncertain, and rapid structural as well as parametric changes caused by system failures or
damage, is critical for resilient aircraft flight control.

Failures and damage in aircraft can be uncertain in that it is not known when, how many components
have failed, which components have failed, the (quantitative) extent of the failures; or what type of damage
has occurred, its magnitude, as well as its effect on the system dynamics. Compared to other approaches, the
direct adaptive control approach has the key advantage that it can provide theoretically provable asymptotic
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tracking in addition to stability, in the presence of large parameter variation and uncertainties. Furthermore,
direct adaptive control designs do not require explicit failure detection and can directly adapt to failure
uncertainties. Direct adaptation of feedback controller parameters, based on the difference between the
desired and actual response, can be designed to be faster and more efficient in handling parametric and
structural uncertainties caused by aircraft failures and damage. Direct adaptive control systems can make
effective use of the available actuation redundancy for failure compensation. When failures or damage occur,
desired stability and tracking performance (maneuverability) can still be achieved with adaptive cooperation
of the remaining (non-failed) actuators to provide failure compensation and dynamic control.

Several approaches have been proposed in the literature for control of systems with failures. One ap-
proach to adaptive control consists of multiple model, switching and tuning schemes1–3 . Another class of
adaptive control designs is based on direct adaptive control approach (4–6 and the authors’ work7–11 ) for
unknown systems with unknown actuator failures characterized by inputs stuck at some fixed or varying val-
ues not influenced by control action. Fault detection and diagnosis methods12–21 have also been proposed.
Reconfigurable flight control designs using neural networks22–26 have been developed for aircraft systems
with failures. Results on control of systems with failures also include those using: fault tolerant control
designs27–30 ; identification of multiplicative faults based on parameter estimation techniques31–34 ; function
approximations for control and adaptive law design35 ; residual generation techniques for fault detection and
diagnosis21,36–41 ; and other design and analysis techniques.42–45 In addition, direct adaptive reconfigurable
control of a tailless fighter aircraft was presented and successfully flight-tested,26 and an adaptive controller
for failure compensation in uncertain systems was presented.46

Despite recent progress, there are still open issues and challenges in adaptive control of systems with
large, abrupt, and uncertain dynamics changes and failures. One important open research problem is how to
design adaptive failure compensation control schemes that can analytically and provably ensure stability and
asymptotic tracking properties in the presence of uncertain failures, for multivariable and nonlinear dynamic
systems.

The purpose of this paper is to present a unified summary of the authors’ recent work on developing direct
adaptive control techniques for compensation of uncertain actuator failures and address some key technical
issues: actuator failure modeling, redundant actuation requirement, plant-model matching, error system
dynamics, adaptation laws, as well as stability, tracking, and performance analysis. Some open technical
challenges and research problems are also discussed. The focus of the paper is on presenting theoretical results
including the conceptual formulation, mathematical framework, and adaptive laws. Section II presents a
formulation of the basic problems of direct adaptive control for systems with uncertain actuator failures. In
Section III, a design method and related issues in adaptive compensation of actuator failures using state
feedback for state tracking (SFST) are presented. Section IV presents adaptive compensation of actuator
failures using state feedback for output tracking (SFOT). In Section V, adaptive compensation of actuator
failures using output feedback for output tracking (OFOT) is addressed. Although the focus of the paper
is mainly on linear systems, brief remarks and references regarding extensions to nonlinear systems are
included.

II. Basic Problem Formulation

To formulate the actuator failure compensation problem, consider a dynamic system (plant)

ẋ(t) = f(x(t), u(t), t), y(t) = h(x(t), t), (1)

where x(t) ∈ Rn, y(t) ∈ RM , are the state and output vectors and u(t) = [u1, . . . , um]T ∈ Rm is the input
vector whose components (actuators) may fail during system operation. One type of practical actuator
failure is modeled as

uj(t) = ūj , t ≥ tj , j ∈ {j1, j2, . . . , jp} ⊂ {1, 2, . . . ,m} (2)

where the failure pattern {j1, j2, . . . , jp}, the failure value ūj , and the failure time of occurrence tj are all
unknown. For example, an aircraft control surface (such as the rudder or an aileron) may be locked at some
unknown fixed value due to hydraulics failure. A more general failure model11 can be represented as

uj(t) = ūj +
lj∑

k=1

d̄jkωjk(t) + δj(t), t ≥ tj , j ∈ {j1, j2, . . . , jp}, (3)
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for some unknown constants ūj , d̄jk ∈ R and bounded disturbance δj(t) ∈ R, and known signals ωjk(t) ∈ R
(which may also depend on the system state x(t): ωjk(t) = ωjk(x(t), t)), j = 1, 2, . . . ,m, k = 1, 2, . . . , lj .
This failure model can approximate a large class of practically meaningful failures in control applications.

Let v(t) = [v1, v2, . . . , vm]T ∈ Rm be the applied (commanded) control input vector. In the presence of
actuator failures as in (2) or (3), the actual input vector u to the system can be described as

u(t) = v(t) + σ(ū− v(t)), (4)

where ū = [ū1, ū2, . . . , ūm]T , σ = diag{σ1,σ2, . . . ,σm}, with σi = 1 if the ith actuator fails, i.e., ui = ūi,
or σi = 0 otherwise. That is, σ is a diagonal matrix whose entries are piecewise step- or zero functions of
time. Some components of the applied input signal v(t) = [v1(t), v2(t), . . . , vm(t)]T , that is, those vi(t) with
σi = 1, cannot affect the system dynamics. The actuator failures are uncertain in value, pattern and time
of occurrence.

The control signal v(t) should be synthesized so as to ensure the system stability and asymptotic tracking
performance regardless of whether (or which) actuators have failed, or the failure values. That is, v(t) should
be capable of compensating for the failures automatically.

The actuator failures are assumed to occur instantaneously, i.e., σi are piecewise constant functions
of time. Since there are 2m possible combinations of actuator states (each actuator is either normal or
failed), there are 2m − 1 possible forms of failure patterns, and at any point in time, the failure pattern is
represented by the matrix σ = diag{σ1,σ2, . . . ,σm} (including the no-failure case but excluding the all-failure
case). However, for a specific application, not all failure patterns are expected to occur, and it is of interest
to consider the compensation problem for failures whose patterns belong to a non-empty subset Σ of m×m
diagonal matrices with “0” or “1” as entries, that is, a desired controller should be able to accommodate
all failure patterns within Σ (which also contains the no-failure case). For some applications, it may be of
interest to consider the failure compensation problem for up to some q (1 ≤ q ≤ m− 1) actuator failures. In

this case, there are totally
∑q

i=0(
m

i
) possible failure patterns, including the no-failure case.

The control objective is to design adaptive feedback control schemes to achieve system stability and
asymptotic state or output tracking in the presence of actuator failures whose patterns σ belong to a failure
pattern set Σ. The key task of adaptive actuator failure compensation control is to adaptively adjust the
remaining controls (unfailed actuators) to achieve the desired system performance, without the knowledge of
the system and failure parameters.

The relevant adaptive control problems can be classified into three groups:

(i) state feedback design for state tracking (SFST),
(ii) state feedback design for output tracking (SFOT), and
(iii) output feedback design for output tracking (OFOT).

State feedback designs use simpler controller structures as compared with output feedback designs, while
state tracking needs stronger conditions on the system as compared with output tracking. Clarification of
such design conditions is important for specifying guidelines for designing control systems for adaptive failure
compensation.

Redundancy. Component redundancy has been widely employed in the design of modern control
systems such as aircraft flight control systems, flexible space structures, and other performance-critical
systems. Redundancy is necessary for failure compensation, and brings new challenges for control design,
especially, when the failure pattern is unknown. For example, a nominal system may have 5 actuators and
up to 4 of them may fail during system operation. Without knowing which actuators have failed, control
input signals have to be designed for all 5 actuators such that the remaining actuators can still control the
system. An ideal adaptive controller should be able to handle all possible failure patterns and values.

Failure uncertainties. Component failures introduce large system uncertainties. For example, when
some actuators fail, the system structure from the active inputs (unfailed actuators) to the output experiences
significant changes, as do the system parameters. Furthermore, failures cause additional disturbances in the
system which influence the system’s behavior. Compensation of such disturbances can be a challenging
problem (i.e., certain matching conditions have to be established). In this sense, failures do not merely cause
system parameter or gain changes, but they lead to system uncertainties that cannot be treated by standard
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adaptive control designs. In addition to stabilization (signal boundedness), asymptotic tracking/regulation
is also needed in the presence of failures, particularly in aircraft flight control applications.

The technical goal is to achieve both closed-loop stabilization and asymptotic tracking for systems in the
presence of uncertain structural and parametric uncertainties caused by failures and damage with unknown
values and patterns, in addition to other system and dynamics uncertainties. As stated previously, three
types of adaptive control problems for failure compensation with increasing complexity are considered, i.e.,
SFST, SFOT, and OFOT. Recent results are presented in a unified framework, and key challenges in this
research are discussed. The research is initially focused on linear time-invariant systems (plants) described
by

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (5)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ RM×n with M < m, x(t) ∈ Rn, y(t) ∈ RM , and u(t) ∈ Rm whose
components may fail as described by (2) or (3). Some extensions of the results to nonlinear system of the
form (1) are also briefly discussed.

III. Adaptive State Feedback Design for State Tracking

For the state feedback state tracking (SFST) problem, we consider the plant

ẋ(t) = Ax(t) + Bu(t), x(t) ∈ Rn, u(t) ∈ Rm, (6)

The control objective is to design an adaptive state feedback control signal v(t) ∈ Rm to be applied to all m
actuators so that the closed-loop signal boundedness and asymptotic tracking are ensured despite uncertain
actuator failures, i.e., limt→∞(x(t)− xm(t)) = 0, where xm(t) is a given desired reference state trajectory.

In the presence of actuator failures, in view of (4), the system (6) can be rewritten as

ẋ(t) = Ax(t) + B(Im − σ)v(t) + Bσū, (7)

where Im is the m ×m identity matrix. The objective is to synthesize the signal v(t) which achieves the
control objectives despite unknown failures σ ∈ Σ and accompanying disturbances ū.

III.A. Adaptive Control Design

The plant parameters A and B are usually not known accurately. The objective of SFST adaptive control
is to track the state trajectory of a reference model that embodies the desired closed-loop behavior. The
choice of the reference model system for xm(t) depends on certain structure conditions on A and B, and so
does the design of the parameter adaptation laws. The reference model system is represented by

ẋm(t) = Amxm(t) + Bmr(t), (8)

where r(t) ∈ Rm is a bounded reference input signal, Am ∈ Rn×n is stable, and Bm ∈ Rn×m, and the
following assumptions are made:

(A.1): (A,B) is controllable, and rank[B(Im − σ)] = rank[B], ∀σ ∈ Σ at any point in time.

(A.2): Am = A+BK for some m×n gain matrix K; and B(Im−σ)κσ = Bm for some nonsingular
gain matrix κσ = κ(σ) ∈ Rm×m, for each σ ∈ Σ, at any point in time.

Note that only the existence of such K and κσ is assumed, and their values are not needed. The rank
condition in Assumption (A.1) implies that adequate actuator redundancy exists, and Assumption (A.2)
implies that some structural conditions on A, B, Am and Bm are needed.

Consider the adaptive control law

v(t) = K̂(t)x(t) + κ̂(t)r(t) + θ̂(t), (9)

where K̂ = [K̂1, K̂2, . . . , K̂m]T ∈ Rm×n, κ̂ = [κ̂1, κ̂2, . . . , κ̂m]T ∈ Rm×m, and θ̂ = [θ̂1, θ̂2, . . . , θ̂m]T ∈ Rm, are
the estimates of the unknown parameters Kσ ∈ Rm×n, κσ ∈ Rm×m and θσ ∈ Rm, which exist because of
assumptions (A.1) and (A.2), and satisfy

B(Im − σ)Kσ = BK, B(Im − σ)κσ = Bm, B(Im − σ)θσ = −Bσū. (10)
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With this controller structure, for an actuator failure pattern σ ∈ Σ, the error equation can be derived as

ė(t) = Ame(t) + B(Im − σ)
(
(K̂(t)−Kσ)x(t) + (κ̂(t)− κσ)r(t) + (θ̂(t)− θσ)

)

= Ame(t) + Bmκ−1
σ

(
(K̂(t)−Kσ)x(t) + (κ̂(t)− κσ)r(t) + (θ̂(t)− θσ)

)
. (11)

where e(t) = x(t)− xm(t).
This type of error model is familiar in the literature,47 and can be used to develop an adaptive scheme

for updating the parameter estimates K̂(t), κ̂(t) and θ̂(t) in the feedback controller (9), under the condition
that there is a known m ×m matrix S such that κσS = (κσS)T > 0 for each σ ∈ Σ (see pp. 372–374 of
Ref. [47])—such a condition is a standard condition for multivariable SFST model reference adaptive control
(MRAC), even in the absence of actuator failures. The adaptation laws are given by

˙̂
K(t) = −ST BT

mPe(t)xT (t) (12)
˙̂κ(t) = −ST BT

mPe(t)rT (t) (13)
˙̂
θ(t) = −ST BT

mPe(t) (14)

where P = PT > 0 is the solution of the Lyapunov equation: AT
mP + PAm = −Q for a chosen matrix

Q = QT > 0.

III.A.1. Stability Analysis

This adaptive control scheme has the following desired properties:

Theorem 1 [8] The control law (9), updated from (12)–(14) and applied to the system (6) subject to the
actuator failures (2), ensures that all closed-loop system signals are bounded and limt→∞(x(t)− xm(t)) = 0.

The proof can be obtained by using a piecewise continuous Lyapunov function given by

V = eT Pe + tr[K̃T M−1
σ K̃] + tr[κ̃T M−1

σ κ̃] + tr[θ̃T M−1
σ θ̃], (15)

where tr[·] is the trace of a matrix, Mσ = κσS, K̃(t) = K̂(t)−Kσ, κ̃(t) = κ̂(t)−κσ and θ̃(t) = θ̂(t)−θσ, with
Kσ, κσ, θσ and Mσ being piecewise constant (and unknown) parameters, so that V is a piecewise continuous
function. It can be verified that V̇ = −eT (t)Qe(t) for t ∈ (Tk, Tk+1), from which it can be shown that all
closed-loop system signals are bounded and limt→∞(x(t)− xm(t)) = 0.

III.B. Discussion

There are several key technical issues in direct adaptive control of systems with uncertain actuator failures
such as failure uncertainties, design conditions and stable adaptation, which are discussed next.

Failure uncertainties. Actuator failures cause system uncertainties even if the system parameters A and
B were known. Such uncertainties are characterized by the uncertain parameters Kσ ∈ Rm×n, κσ ∈ Rm×m

and θσ ∈ Rm defined in the above subsections. The variations of such parameters can be large, and the
adaptive control scheme must be designed to accommodate them. Actuator failure uncertainties and system
parameter uncertainties together pose a challenging control problem, requiring rather restrictive design
conditions for state tracking. In the presence of uncertain actuator failures, the design conditions include:
one for failure compensation and one for plant-model matching, leading to those given in Assumptions (A.1)
and (A.2); especially, the plant-model structural matching conditions for each failure pattern σ ∈ Σ.

• The condition that B(Im − σ)κσ = Bm for some nonsingular gain matrix κσ = κ(σ) for each σ ∈ Σ,
imposes certain constraints on the plant actuation matrix B and the reference model system actuation
matrix Bm. Such constraint can be necessary for certain applications. One such case is when an

adaptive control scheme has to be able to effectively compensate for all
∑q

i=0(
m

i
) possible failure

patterns corresponding to up to q = m− 1 failures out of m actuators. In Ref. [11], it was shown that
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the design conditions require the columns bi of B = [b1, b2, . . . , bm] to be parallel to each other and
also to the columns of Bm. Under this condition, it can be verified that B(Im−σ)κσ = Bm is satisfied
for some nonsingular gain matrix κσ for each σ ∈ Σ, and that the desired S matrix for the adaptive
laws (22)–(24) can be chosen to be diagonal.
As an example, consider the case of m = 3. The design conditions for up to 2 failures of the total
m = 3 actuators require that B = [b1, b2, b3] = [a1b, a2b, a3b] for some non-zero vector b ∈ Rn and
some scalars ai (= 0, i = 1, 2, 3, and Bm = [k1b1, k2b2, k3b3] for some scalars ki (= 0, i = 1, 2, 3. For
the no-failure pattern, that is, σ = 0, we have κσ = diag{k1, k2, k3}, so that Bκσ = Bm. The desired
gain matrix S for κσS = (κσS)T > 0 is S = diag{s1, s2, s3} = diag{sign[k1]γ1, sign[k2]γ2, sign[k3]γ3},
for any γi > 0, i = 1, 2, 3. Then, for the failure of the first actuator u1, we have σ = diag{1, 0, 0}, and

κσ =




α a1k1s1

a2s2
0

a1k1
a2

k2 0
0 0 k3



, which lead to B(Im−σ)κσ = Bm and κσS = (κσS)T , where α is such that

αs1 > 0 and αs1s2k2 > s2
1a2

1k2
1

a2
2

so that κσS > 0. For the failures of u1 and u2, we have σ = diag{1, 1, 0},

and κσ =




α1 0 a1k1s1

a3s3

0 α2
s2a2k2
a3s3

a1k1
a3

a2k2
a3

k3



, which lead to B(Im − σ)κσ = Bm and κσS = (κσS)T for the

chosen S, where α1 and α2 are such that α1s1 > 0, α2s2 > 0, and det(κσS) > 0 so that κσS > 0. The
existence of the desired κσ for each σ ∈ Σ (which also contains diag{0, 1, 0}, diag{0, 0, 1}, diag{0, 1, 1},
diag{1, 0, 1}) can be similarly verified, for a fixed chosen S = diag{sign[k1]γ1, sign[k2]γ2, sign[k3]γ3}.
(The signs of ki are usually known from the physics of the problem).

• The conditions that Am = A+B(Im−σ)Kσ and Bκσ = Bm (for some Kσ and κσ) in Assumption (A.2)
are also needed for a standard (no failure- σ = 0) SFST MRAC scheme. These conditions, suggest that
the SFST adaptive control design has significant limitations for many applications, including aircraft
flight control, in which the matching condition Am = A + B(Im − σ)Kσ may be difficult to satisfy
for realistic situations when A and B are unknown and may change over time. This is an open issue
in the state tracking problem. However, it should be noted that, for systems that are in a canonical
form (such as the Companion form), these conditions can always be satisfied if sufficient actuator
redundancy exists.

• Another type of actuator failure uncertainty is reduced effectiveness, which can occur due to struc-
tural damage (e.g., loss of a part of a control surface or engine malfunction) or icing. This can be
represented as:

u = Ξv

where Ξ is a diagonal matrix and Ξi,i ∈ (0, 1], which are unknown and uncertain. If reduced actuator
effectiveness and actuator failures are simultaneously present, the system input is given by

u = Ξ(Im − σ)v + σū

which results in

ẋ = Ax + BΞ(Im − σ)v + Bσū

= Ax + B(Im − σ)Ξv + Bσū

Assuming that Ξ is piecewise constant, all the analysis and results for the SFST case (with the control
law given by Eq. (9)) carry over with the parameters Kσ, κσ, θσ, (and their estimates) simply replaced
by ΞKσ, Ξκσ etc.
Although Ξi,i ∈ (0, 1] represents reduced effectiveness, the analyses are also valid for Ξi,i ∈ (0,∞),
which implies that the gain margin of the SFST adaptive control law is (0,∞).

Extension to nonlinear dynamic systems. Extension of the above results to nonlinear systems of
the form: ẋ(t) = f(x(t), u(t), t), y(t) = h(x(t), t), needs to address two main issues: (i) specification of a
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controller structure with complete parametrization of the system uncertainties caused by uncertain actuator
failures, and (ii) development of an adaptive scheme for stable adaptation of the controller parameters. One
feasible adaptive control scheme is based on the feedback linearization method,48 using SFST, and has been
reported in Chapter 9 of Ref. [11]. This continues to be an area of further research.

Adaptive SFST design needs rather stringent matching conditions. However, it is usually not necessary
to track the entire state vector, and it is sufficient to track only M (< n) outputs. The next two sections
address output tracking, using state feedback or output feedback.

IV. Adaptive State Feedback Design for Output Tracking

For the state feedback output tracking (SFOT) adaptive control problem, consider the plant (5):

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) (16)

where A ∈ Rn×n, B = [b1, b2, . . . , bm] ∈ Rn×m, C ∈ RM×n with M < m, x(t) ∈ Rn, y(t) ∈ RM , and
u(t) ∈ Rm. Some components of u may fail as described by (2) or (3). The control objective is to design an
adaptive state feedback control signal v(t) ∈ Rm to be applied to all m actuators subject to uncertain failures,
to ensure closed-loop signal boundedness and asymptotic output tracking (i.e., limt→∞(y(t) − ym(t)) = 0,
where ym(t) is a given desired reference output trajectory) despite uncertain actuator failures.

The reference model system for generating ym(t) has the form

ẋm(t) = Amxm(t) + Bmr(t), ym(t) = Cmxm(t) (17)

where Am ∈ Rnr×nr is stable and known, Bm ∈ Rnr×mr and Cm ∈ RM×nr are both known, xm(t) ∈ Rnr is
the reference system state vector, and r(t) ∈ Rmr (1 ≤ mr ≤ m) is a bounded reference input signal. The
signal xm(t) is not explicitly relevant for control design because the tracking of the entire state vector is not
the objective. This relaxes the restrictive matching conditions in Assumption (A.2). An input-output form
reference model system is by

ym(t) = Wm(s)[r](t) (18)

for some stable M ×mr transfer matrix Wm(s) to be specified.
For output tracking, the state feedback control structure is the same as (9):

v(t) = K̂(t)x(t) + κ̂(t)r(t) + θ̂(t), (19)

where K̂ = [K̂1, K̂2, . . . , K̂m]T ∈ Rm×n, κ̂ = [κ̂1, κ̂2, . . . , κ̂m]T ∈ Rm×mr , and θ̂ = [θ̂1, θ̂2, . . . , θ̂m]T ∈ Rm are
parameters to be updated from some adaptive laws.

For effective compensation of actuator failures, it is important to obtain a complete parametrization
of the system with parameter and failure uncertainties. For system parametrization, a nominal controller
needs to be defined, that is, the parameters Kσ, κσ and θσ required to achieve output tracking need to
be characterized. These parameters are subsequently to be estimated by K̂(t), κ̂(t) and θ̂(t). The desired
output matching is expressed as: y(t) = ym(t)+ε0(t) for some exponentially decaying initial condition-related
signal ε0(t), and to achieve closed-loop signal boundedness for all σ ∈ Σ. In the SFOT case, system signal
boundedness is related to internal stability, which depends on a certain minimum phase condition. Unlike
the adaptive control problem without actuator failures wherein the plant (usually) remains minimum-phase
despite parameter variations, some actuator failures may cause the plant zeros to migrate into the right-half
plane. A desired controller parametrization should be able to ensure both system stability and plant-model
output matching for any failure pattern σ ∈ Σ.

In this section, the plant-model matching issue is first addressed for the case where M = 1 and mr = 1;
that is, the reference model system is a single-input single-output system ym(t) = Wm(s)[r](t) with a
scalar reference input r(t) and a stable transfer function Wm(s). (This notation is used to indicate a
signal passed through a transfer function). Adaptive control schemes are then developed for the system
ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) ∈ R (for M = 1). The actuator failures are always assumed to be
unknown.

The cases when M > 1 (multi-output tracking) or/and mr > 1 (multiple reference inputs) are still under
investigation.
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IV.A. Plant-Model Matching

To study the plant-model matching under failure conditions, consider the nominal controller

v(t) = Kx(t) + κr(t) + θ, (20)

where K = [K1,K2, . . . ,Km]T ∈ Rm×n, κ = [κ1,κ2, . . . ,κm]T ∈ Rm×mr , and θ = [θ1, θ2, . . . , θm]T ∈ Rm

are some nominal parameters. Recall that for a failure pattern σ ∈ Σ, we have u = v + σ(ū − v). Suppose
there are p failed actuators associated with σ at time t, that is, uj = ūj , j = j1, j2, . . . , jp, for some
j1, j2, . . . , jp ∈ {1, 2, . . . ,m}. Then the closed-loop system is given by

ẋ(t) = (A + BK)x(t) + Bκr(t) + Bθ + Bσ(ū− v(t))

= (A +
∑

i %=j1,...,jp

biK
T
i )x(t) +

∑

i %=j1,...,jp

biκ
T
i r +

∑

i %=j1,...,jp

biθi +
∑

j=j1,...,jp

bj ūj

y(t) = Cx(t). (21)

For the case of mr = 1 under consideration, we have κT
i = κi as scalars, i = 1, 2, . . . ,m. For this system to

match the desired closed-loop system y(t) = Wm(s)[r](t), K, κ and θ need to be chosen to make

C(sIn −A−
∑

i %=j1,...,jp

biK
T
i )−1

∑

i %=j1,...,jp

biκ
T
i = Wm(s) (22)

C(sIn −A−
∑

i %=j1,...,jp

biK
T
i )−1(

∑

i %=j1,...,jp

biθi +
∑

j=j1,...,jp

bj ūj) = 0. (23)

The necessary and sufficient conditions for the existence of the parameters Ki, κi and θi, i (= j1, . . . , jp, to
satisfy the above equalities were given in Ref. [49]. (The parameters depend on the failure pattern σ and
values ūj). A sufficient condition for the existence of stable plant-model matching is that (C, A, bi) has all
its zeros stable and the same relative degree as that of Wm(s) = 1

Pm(s) (where Pm(s) is a stable polynomial)
for i = 1, 2, . . . ,m. This is also a necessary condition for the plant-model matching subject to all failure
patterns resulting from up to m − 1 actuator failures. Furthermore, since the parameters Kj , κj and θj ,
j = j1, . . . , jp (corresponding to failed actuators) do not have any effect on the closed-loop system, they can
be arbitrarily set to zero:

Kj = 0, κj = 0, θj = 0, j = j1, . . . , jp. (24)

Although the matching parameters K, κ and θ depend on the failure conditions (patterns and values)
(that is, K = Kσ, κ = κσ and θ = θσ), they are not unique even for a given failure pattern σ, due to
redundant actuation which leads to an overparametrized controller structure. For closed-loop stability, all
the system pole-zero cancellations (for achieving y(t) = Wm(s)[r](t)) must be stable. Hence it is an important
to specify the design conditions that ensure stable pole-zero cancellations. The system actuation redundancy
(that is, the availability of unfailed actuators in u = [u1, u2, . . . , um]T ), while necessary for providing failure
compensation, also introduces the technical challenge of avoiding possible unstable pole-zero cancellations
due to the overparametrized controller structure.

IV.B. Adaptive Control with Actuation Redundancy

The adaptive version of the nominal controller (20) has the form (9): v(t) = K̂(t)x(t) + κ̂(t)r(t) + θ̂(t), for
which the controller parameters K̂, κ̂ and θ̂ need to satisfy two key conditions:

1. it should lead to an appropriately parametrized error system in terms of the tracking error e(t) =
y(t)− ym(t) and the parameter errors K̃(t) = K̂(t)−K, κ̃(t) = κ̂(t)− κ and θ̃(t) = θ̂(t)− θ, and

2. it should not violate the design conditions of a stable model reference adaptive control scheme, in
particular, the minimum phase condition

The first condition can be satisfied with the above parameters K = Kσ, κ = κσ and θ = θσ, while the
second condition is not automatically satisfied even if the adaptation laws for the controller parameters
K̂, κ̂ and θ̂ have desirable properties, i.e., bounded parameter estimates, L2 parameter variations, and L2
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estimation errors (This aspect is different from the state feedback state tracking case, where a stricter plant-
model matching condition (A.2) is needed). In the output tracking case where the plant-model matching
condition is much less restrictive, some additional actuation coordination is needed in order to ensure closed-
loop stability. Actuation coordination may be achieved either through certain reconstruction of the controller
parameters K̂, κ̂ and θ̂ generated from adaptive update laws, or through some prespecified actuation scheme.
Such a reconstruction of the controller parameters can be done either by using parameter projection to
ensure that the estimates K̂, κ̂ and θ̂ stay in certain desired regions to meet the design conditions (this has
been a well-established technique), or by modifying some of the parameters to meet a certain optimization
condition. This technique is currently under development, and its goal is to relax the need for knowledge of
the parameter regions for controller parameter projection.

The following subsections present the idea of using a proportional actuation scheme for adaptively con-
trolling a set of redundant actuators needed for failure compensation.

Two different situations with actuator redundancy are considered. In the first situation, all actuators
have similar physical characteristics; for example, they are segments of a multiple-segment rudder or elevator
of an aircraft, or nearly identical heating devices for an oven used in semiconductor manufacturing. In the
second situation, the actuators are divided into several groups and the actuators within each group have
similar physical characteristics; for example, a group of four engines and a group of three rudder segments
in the case of a large transport aircraft.

A logical design approach for actuation in the first situation is that all actuators are assigned equal
control signals, or proportional control signals, that is,

Equal Actuation scheme: v1(t) = v2(t) = · · · = vm(t) (25)

or
Proportional actuation scheme: vi(t) = αiv0(t), i = 1, 2, . . . ,m (26)

for some pre-chosen constants αi > 0, i = 1, 2, . . . ,m, where v0(t) ∈ R is a scalar state feedback control input
to be designed. The equal actuation scheme is appropriate when all actuators are identical, whereas the
proportional actuation scheme may be more appropriate when the actuators are similar but have different
levels of control authority.

A design approach for the the second situation (grouped actuators) is to assign equal or proportional
control signals to all actuators within the same group . The control signals for different groups should
be designed based on a multivariable control scheme that takes into account the interactions between the
outputs and the inputs from different actuator groups. (For example, Refs. [7, 8, 11]).

With a chosen equal-actuation scheme (25) or proportional actuation scheme (26) for a given application,
the control task is to design a single feedback control signal v0(t), without knowing which of the m actuators
ui(t), i = 1, 2, . . . ,m, have failed (that is, it is not known whether ui(t) = vi(t) or ui(t) = ūi), such that
the plant output y(t) can track a given reference model output ym(t) asymptotically, despite uncertainties
in the plant parameters and actuator failure parameters ūi. The reference output ym(t) is generated from
the reference model system given in the input-output form:

ym(t) = Wm(s)[r](t), Wm(s) =
1

Pm(s)
, ym(t) ∈ R, r(t) ∈ R, (27)

where Pm(s) is a stable polynomial of degree n∗, that is, the relative degree of Wm(s) is n∗. (The notation
ym(t) = Wm(s)[r](t) is used to indicate filtering of a signal r(t) by a transfer function Wm(s)).

IV.C. Adaptive Control Design

Recall that the SFST case needed rather restrictive matching conditions. In contrast, for output tracking,
the reference model system is chosen only using the knowledge of the relative degree of the plant (A, B, C).
The actuator failures are assumed to be unknown. The SFOT controller structure is chosen based on the
proportional actuation scheme:

vi(t) = αiv0(t), i = 1, 2, . . . ,m

v0(t) = K̂T
0 x(t) + κ̂0r(t) + θ̂0, (28)
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where K̂0 ∈ Rn, κ̂ ∈ R and θ̂0 ∈ R (for r(t) ∈ R) are the estimates of some nominal parameters K0 ∈ Rn,
κ0 ∈ R and θ0 ∈ R (note that the term θ̂0 can be expanded to handle the general failure model (3)).

Suppose there are p failed actuators associated with σ at time t, that is, uj = ūj , j = j1, j2, . . . , jp. Then,
with the controller (40), the resulting closed-loop system is

ẋ(t) = (A +
∑

i %=j1,...,jp

αibiK
T
0 )x(t) +

∑

i %=j1,...,jp

αibiκ0r(t)

+
∑

i %=j1,...,jp

αibiθ0 +
∑

j=j1,...,jp

bj ūj +
∑

i %=j1,...,jp

αibi(K̃T
0 x(t) + κ̃0r(t) + θ̃0)

y(t) = Cx(t), (29)

where K̃0 = K̂0 −K0, κ̃0 = κ̂0 − κ0 and θ̃0 = θ̂0 − θ0. (The subscript σ is dropped for convenience).
For this proportional-actuation state feedback output tracking control scheme, the design conditions are

(A.3): (C, A, B(Im−σ)α) with α = [α1,α2, . . . ,αm]T is stabilizable and detectable, all its zeros
are stable and it has the same relative degree as that of Wm(s) = 1

Pm(s) , for each σ ∈ Σ; and (C,
A, bj) has the same relative degree as that of Wm(s) = 1

Pm(s) , for j = j1, j2, . . . , jp corresponding
to all the failed actuators during the system operation.

To derive the dynamics of the error system, the following technical lemma is first presented:

Lemma 1 [11] If (A, b̄i) is controllable, there exist constant K0 ∈ Rn, κ0 ∈ R and θ0j ∈ R such that

C(sIn −A− b̄iK
T
0 )−1b̄iκ0 = Wm(s) =

1
Pm(s)

(30)

1
κ0

Wm(s)θ0j + C(sIn −A− b̄iK
T
0 )−1b̄j = 0 (31)

where b̄i, b̄j ∈ Rn and Pm(s) is a monic polynomial of degree n∗, if and only if the two systems (C,A, b̄i)
and (C,A, b̄j) have the same relative degree n∗.

With ym(t) = Wm(s)[r](t), applying this lemma to the system (29) with b̄i =
∑

i %=j1,...,jp
αibi and b̄j = bj

for j = j1, j2, . . . , jp respectively, it can be seen that there exist K0 ∈ Rn, κ0 ∈ R (κ0CAn∗−1b̄i = 1) and
θ0j ∈ R (which are piecewise constant between changes in the failure pattern σ) such that

y(t) = ym(t) + Wm(s)
[

1
κ0

(
K̃T

0 x + κ̃0r + θ̃0

)]
(t)

+Wm(s)[
1
κ0

θ0](t) + Wm(s)[
1
κ0

∑

j=j1,j2,...,jp

θ0j ūj ](t) + ε0(t) + ε1(t) (32)

where ε0(t) is related to the system initial conditions and converges to zero exponentially with time t because
the zeros of (C, A,

∑
i %=j1,...,jp

αibi) are stable and Pm(s) is stable. ε1(t) is related to the transient response
due to the effect of the piecewise constant parameter variations and also converges to zero exponentially with
time t as there are only a finite number of changes in the piecewise constant parameters K0 ∈ Rn, κ0 ∈ R
and θ0j ∈ R. The effects of ε0(t) and ε1(t) can be ignored in the analysis as they decay to zero.

With θ0 = −
∑

j=j1,j2,...,jp
θ0j ūj , from (44), we have

e(t) = y(t)− ym(t) = Wm(s)
1
κ0

[θ̃T ω](t), (33)

where θ̃(t) = θ̂(t) − θ with θ̂(t) = [K̂T
0 , κ̂0, θ̂0]T being the estimate of θ = [KT

0 ,κ0, θ0]T ,a and ω(t) =
[xT (t), r(t), 1]T (when the failure values ūj are time-varying as in (3), the term θ0 can be expanded, and so
can its estimate θ̂0 with an expanded ω(t), to accomodate the effects of varying failures).

aIn Ref. [11], the notation θ = θ(t) is used to denote the estimate of the unknown parameter vector θ∗ = [K∗T
0 , κ∗0, θ∗0 ]T .
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Introducing the auxiliary signals

ζ(t) = Wm(s)[ω](t) (34)

ξ(t) = θ̂T (t)ζ(t)−Wm(s)[θ̂T ω](t) (35)
ε(t) = e(t) + ρ̂(t)ξ(t), (36)

where ρ̂(t) is the estimate of ρ = 1
κ0

= CAn∗−1
∑

i %=j1,...,jp
αibi, we choose the adaptive laws as

˙̂
θ(t) = − sign[κ0]Γζ(t)ε(t)

1 + ζT ζ + ξ2
, Γ = ΓT > 0 (37)

˙̂ρ(t) = − γξ(t)ε(t)
1 + ζT ζ + ξ2

, γ > 0. (38)

κ0 is a scalar gain such that κ0CAn∗−1
∑

i %=j1,...,jp
αibi = 1, so that

sign[κ0] = sign[CAn∗−1
∑

i %=j1,...,jp

αibi] = sign[CAn∗−1B(Im − σ)α]

To implement this adaptive law, the following assumption is needed

(A.4): sign[CAn∗−1B(Im − σ)α] does not change and is known, for each σ ∈ Σ.

This adaptive control scheme has the following stability and output tracking properties.

Theorem 2 [11] The adaptive controller (28) with the adaptive laws (37) and (38), applied to the plant
(28) with actuator failures (2) guarantees that all closed-loop signals are bounded and the tracking error
e(t) = y(t)− ym(t) goes to zero as t→∞.

This theorem can be proved using the error equation

ε(t) = ρθ̃T (t)ζ(t) + ρ̃(t)ξ(t) + ε2(t), ρ̃ = ρ̂− ρ (39)

where ε2(t) is an exponentially decaying term, and the positive definite function

V (θ̃, ρ̃) = |ρ|θ̃T Γ−1θ̃ + γ−1ρ̃2. (40)

From the above derivation, analysis and design, we see that the parameters K0, κ0 and θ0, which are
defined through (30)–(33), are uncertain (even if the plant parameters A, B and C were known), due to the
uncertainties in the actuator failure pattern σ and parameters ūj , with j = j1, j2, . . . , jp.

IV.D. Discussion

The issues with failure uncertainties and design conditions are crucial in the SFOT case. In the presence
of actuator failure uncertainties, an adaptive controller is needed for v(t) even if the plant parameters A,
B and C were known, since the nominal controller parameters K0, κ0 and θ0 defined in (30)–(33) depend
on the failure patterns and values (and even failure time instants, as K0, κ0 and θ0 are piecewise in nature
and their values change when a new failure occurs). The design conditions, as stated in Assumptions (A.3)
and (A.4), depend not only on the set Σ of failure patterns but also on the actuation scheme chosen to
coordinate the redundant actuators and the associated minimum phase condition for the controlled system.
Such a condition is needed in order have a sufficiently large design domain required for achieving tracking
of an arbitrary output trajectory.

As in the case of SFST adaptive control, the gain margin can be shown to be (0,∞) for the SFOT case
under some additional conditions,53,54 i.e., it can accommodate reduced actuator effectiveness.

In view of the results obtained for SFST and SFOT, model reference adaptive control has evolved into
a promising adaptive control method with systematic and rigorous design and analysis tools, and has the
potential for effectively compensating for failures and damage. However, significant important open problems
remain, as summarized below.
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Open problems. For direct adaptive control in the presence of actuator failures, with state feedback
for output tracking, adaptive control schemes have been developed by the authors for the plant: ẋ(t) =
Ax(t)+Bu(t), y(t) = Cx(t), and the reference model system: ẋm(t) = Amxm(t)+Bmr(t), ym(t) = Cmxm(t),
with r(t) ∈ R, ym(t) ∈ R, y(t) ∈ R all being scalar signals, based on the proportional-actuation scheme:
vi(t) = αiv0(t), i = 1, 2, . . . ,m, with v0(t) = K̂T

0 x(t)+ κ̂0r(t)+ θ̂0 ∈ R. Other cases of state feedback-output
tracking, with r(t) ∈ Rmr for mr > 1 and/or ym(t) ∈ RM for M > 1, are still open research problems. These
open multi-input multi-output adaptive control problems are important for resilient aircraft flight control,
because of the following reasons: (i) flight control systems can require tracking of multiple outputs, (ii) state
feedback adaptive control designs are substantially simpler than output feedback control designs, (iii) the
state variables are usually available for measurement, and (iv) output tracking adaptive control designs need
significantly more relaxed plant-model matching conditions than state tracking designs.

Extension to nonlinear dynamic systems. An extension of the state feedback output tracking results
of Section IV.C to a nonlinear system: ẋ(t) = f(x(t), u(t), t), y(t) = h(x(t), t), was reported in Chapter 10
of Ref. [11] for the class of parametric-strict-feedback systems, with aircraft flight control applications.
However, continued research is necessary for addressing more general systems.

V. Adaptive Output Feedback Designs for Output Tracking

This section addresses some key technical issues in direct output feedback output tracking (OFOT) adaptive
control of dynamic systems in the presence of uncertain actuator failures. The issues addressed include plant-
model matching and adaptive output feedback control design and analysis for actuator failure compensation,
as well as extensions to nonlinear systems.

Consider the plant: ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), with A ∈ Rn×n, B = [b1, b2, . . . , bm] ∈
Rn×m, C ∈ RM×n with M < m, x(t) ∈ Rn, y(t) ∈ RM , and u(t) ∈ Rm. The control objective is to
design an adaptive output feedback control signal v(t) ∈ Rm to be applied to the actuators (represented
by u(t) ∈ Rm) which are subject to failures, to ensure closed-loop signal boundedness and asymptotic
tracking, that is, limt→∞(y(t) − ym(t)) = 0, where ym(t) is the output of a chosen reference model system
ym(t) = Wm(s)[r](t) ∈ RM with r(t) ∈ Rmr and M ≤ mr.

For output tracking, the output feedback control structure is significantly more complex than the SFOT
case:

v(t) = Θ̂T
1 (t)ω1(t) + Θ̂T

2 (t)ω2(t) + Θ̂20(t)y(t) + Θ̂3(t)r(t) + Θ̂4(t), (41)

where ν is the observability index of (C, A); the controller parameters are: Θ̂1 = [Θ̂11, . . . , Θ̂1ν−1]T with
Θ̂1j ∈ Rm×m, j = 1, . . . , ν − 1, Θ̂2 = [Θ̂21, . . . , Θ̂2ν−1]T with Θ̂2j ∈ Rm×M , j = 1, . . . , ν − 1, Θ̂20 ∈ Rm×M ,
Θ̂3 ∈ Rm×mr , and Θ̂4 ∈ Rm×1 for the failure model (2), (For the case of varying actuator failures (3),
Θ̂4 = Θ̂T

5 (t)ω5(t) for some parameter matrix Θ̂T
5 ∈ Rm×n5 and unknown vector signal ω5(t) ∈ Rn5 , with

some n5 > 0), and the known signals ω1(t) and ω2(t) are generated from

ω1(t) = F1(s)[v](t), F1(s) =
A1(s)
Λ(s)

, A1(s) = [Im, sIm, . . . , sν−1Im]T (42)

ω2(t) = F2(s)[y](t), F2(s) =
A2(s)
Λ(s)

, A2(s) = [IM , sIM , . . . , sν−1IM ]T (43)

where Λ(s) is a monic stable polynomial of degree ν− 1, and Im and IM are the m×m and M ×M identity
matrices respectively. Two cases of interest are: (i) M = mr = 1, and (ii) M = mr > 1, for which the above
mentioned key technical issues have been addressed in Ref. [11].

V.A. Plant-Model Matching

For plant-model matching, that is, with some nominal piecewise constant parameters for the controller such
that y(t) = ym(t)+ ε̄(t) for some exponetially decaying ε̄(t), the solution and design conditions can be derived
for a more general case when m ≥ mr ≥M ≥ 1. In this case, the nominal controller structure is

v(t) = v∗(t) = ΘT
1 ω1(t) + ΘT

2 ω2(t) + Θ20y(t) + Θ3r(t) + Θ4, (44)
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where Θ1, Θ2, Θ20, Θ3 and Θ4 are the unknown nominal plant-model matching parameters to be estimated
by Θ̂i from some adaptive laws for an adaptive controller (41).b

In the presence of actuator failures, the plant input is u(t) = v(t) + σ(ū − v(t)) = (Im − σ)v(t) + σū as
given in (4), so that the plant ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), can be described as

y(t) = G(s)[(Im − σ)v](t) + G(s)[σū](t), (45)

where G(s) = C(sIn −A)−1B. Then, using (45) in (44), we have

v(t) =
(
Im −ΘT

1 F1(s)−
(
ΘT

2 F2(s) + Θ20

)
G(s)(Im − σ)

)−1

·
[(

ΘT
2 F2(s) + Θ20

)
G(s)σ[ū] + Θ3r + Θ4

]
(t) (46)

y(t) = G(s)(Im − σ)
(
Im −ΘT

1 F1(s)−
(
ΘT

2 F2(s) + Θ20

)
G(s)(Im − σ)

)−1

·
[(

ΘT
2 F2(s) + Θ20

)
G(s)σ[ū] + Θ3r + Θ4

]
(t) + G(s)σ[ū](t). (47)

To make y(t) = ym(t) + ε̄(t) with ym(t) = Wm(s)[r](t) and limt→∞ ε̄(t) = 0 exponentially, it is necessary
to ensure the existence of Θ1 = Θ1σ, Θ2 = Θ2σ, Θ20 = Θ20σ, Θ3 = Θ3σ and Θ4 = Θ4σ (the subscript
σ indicates that these parameters may change as the failure pattern σ changes) to satisfy the matching
equations

G(s)(Im − σ)
(
Im −ΘT

1 F1(s)−
(
ΘT

2 F2(s) + Θ20

)
G(s)(Im − σ)

)−1
Θ3 = Wm(s) (48)

G(s)(Im − σ)
(
Im −ΘT

1 F1(s)−
(
ΘT

2 F2(s) + Θ20

)
G(s)(Im − σ)

)−1

·
[(

ΘT
2 F2(s) + Θ20

)
G(s)σ[ū] + Θ4

]
(t) + G(s)σ[ū](t) = 0. (49)

for a chosen Wm(s), for each failure pattern σ ∈ Σ, with the components ūj of ū given in (2) or (3).
Assume that for each failure pattern σ corresponding to a time interval (Tk, Tk+1), there are p = p(k)

failed actuators, and that during the system operation, the maximum number of failed actuators is p0 (that
is, p(k) ≤ p0 for all k). Then, for Wm(s) = P−1

m (s) where Pm(s) is an M ×M polynomial matrix, and Gσ(s)
is the matrix containing the m− p non-zero columns of G(s)(Im − σ), the above matching equations can be
satisfied under the following assumption:

(A.5): for each σ ∈ Σ,

1. rank[G(s)(Im − σ)] ≥M , and
2. there exists an (m− p)×M constant matrix Rσ such that for Ga(s) = Gσ(s)Rσ,

(a) rank[Ga(s)] = M ,
(b) all zeros of Ga(s) are stable, and
(c) for Ga(s) = P−1

l (s)Zla(s) and G(s)σ = P−1
l (s)Zlb(s), the transfer function matrix

Z−1
la (s)Zlb(s) is proper.

For this assumption, the condition that rank[G(s)(Im − σ)] ≥ M implies m − p ≥ m − p0 ≥ M , that
is, there should be at least M unfailed actuators during the system operation. The conditions on Ga(s) are
standard for multivariable model reference control of Gσ(s) using vσ(t) = Rσz(t) for z(t) ∈ RM generated
from a feedback control law (here, an actuator coordination condition is imposed on Rσ, especially because
Ga(s) is required to be minimum phase, and the condition (2c) that Z−1

la (s)Zlb(s) is proper means that
the relative degrees of transfer functions with respect to failed actuators should be no less than those with
unfailed actuators under the actuation scheme vσ(t) = Rσz(t)).

To establish the connection between the conditions in Assumption (A.5) and the matching equations (48)
and (49), let vσ(t) ∈ Rm−p be the vector containing the components vi(t) of v(t) corresponding to unfailed
actuators such that ui(t) = vi(t), i (= j1, j2, . . . , jp. In view of (44), vσ can be expressed as

vσ(t) = Θ̄T
1 ω1(t) + Θ̄T

2 ω2(t) + Θ̄20y(t) + Θ̄3r(t) + Θ̄4, (50)
bIn Ref. [11], Θi is used to denote the estimate of the unknown nominal parameter matrix Θ∗

i , for i = 1, 2, 20, 3, 4.
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where Θ̄T
i is the corresponding part of Θi in (44), for i = 1, 2, 20, 3, 4. Then, for Rσ ∈ R(m−p)×M , we

choose Θ̄T
i in (50) as Θ̄T

i = RσΦT
i for i = 1, 2, 20, 3, 4; in particular, for i = 1, Θ̄T

1 = RσΦT
1 such that

Θ̄T
1 ω1(t) = RσΦT

1 ω̄1(t), where ω̄1(t) = Ā1(s)
Λ(s) [z](t) with Ā1(s) = A2(s) in (43) and z(t) given by

z(t) = ΦT
1 ω̄1(t) + ΦT

2 ω2(t) + Φ20y(t) + Φ3r(t) + Φ4. (51)

To derive Θ̄T
1 ω1(t) = RσΦT

1 ω̄1(t), start by letting Θ̄T
1 ω1(t) = RσΦ̄T

1 ω1(t) for some Φ̄T
1 , then set some

corresponding columns of Φ̄T
1 to zero to make Φ̄T

1 ω1(t) = ¯̄ΦT
1

¯̄ω1(t) for ¯̄ω1(t) =
¯̄A1(s)
Λ(s) [vσ](t) with ¯̄A1(s) =

[Im−p, sIm−p, . . . , sν−1Im−p]T (recall that vσ(t) ∈ Rm−p is the non-zero part of (Im − σ)v(t)), and finally,
let vσ(t) = Rσz(t) in ¯̄ΦT

1
Ā1(s)
Λ(s) [vσ](t) to get ¯̄ΦT

1

¯̄A1(s)
Λ(s) [vσ](t) = ¯̄ΦT

1 diag{Rσ, . . . , Rσ} Ā1(s)
Λ(s) [z](t), that is, ΦT

1 =
¯̄ΦT

1 diag{Rσ, . . . , Rσ} is the desired choice, with diag{Rσ, . . . , Rσ} ∈ R(m−p)(ν−1)×M(ν−1).
Under the conditions on Ga(s) = Gσ(s)Rσ in Assumption (A.5), the existence of Φi, i = 1, 2, 20, 3, is

guaranteed by the multivariable model reference control theory47 such that

Ga(s)
(
IM − ΦT

1 F2(s)−
(
ΦT

2 F2(s) + Φ20

)
Ga(s)

)−1
Φ3 = Wm(s) = P−1

m (s), (52)

which implies that (48) can also be satisfied with some Θ1, Θ2, Θ20, Θ3. Moreover, under the condition that
Z−1

la (s)Zlb(s) is proper, the existence of Φ4 is also guaranteed such that

Ga(s)
(
IM − ΦT

1 F2(s)−
(
ΦT

2 F2(s) + Φ20

)
Ga(s)

)−1

·
[(

ΦT
2 F2(s) + Φ20

)
G(s)σ[ū] + Φ4

]
(t) + G(s)σ[ū](t) = 0 (53)

which leads to the existence of Θ4 to meet (49).

V.B. Adaptive Control Design

The existence of the controller parameters Θ1, Θ2, Θ20, Θ3 and Θ4 to meet the desired matching equations
(48) and (49) is necessary for adaptive compensation of uncertain actuator failures. It is, however, not
sufficient because of the actuation redundancy; that is, there are more than M unfailed actuators in the
system, which may not be well coordinated, leading to possible instability. To further discuss this issue,
consider a plant: ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), u(t) ∈ Rm and y(t) ∈ RM , with m > M (that
is, there is actuation redundancy). Even for the no failure case, a stable adaptive control design50 uses a
constant matrix R ∈ Rm×M to coordinate the redundant actuators: u(t) = Rz(t), leading to a new plant:
y(t) = G(s)R[z](t), where G(s) = C(sIn −A)−1B and G(s)R is now an M ×M transfer matrix which must
satisfy the design conditions of model reference adaptive control (MRAC). The question is: how should such
a matrix R be chosen without knowing the parameters of G(s)? The open issue is: a simple adaptation of
the estimate R̂ of R may lead to a non-minimum phase plant G(s)R̂, so that MRAC design is not suitable
for z(t).

In this subsection, a proportional-actuation based adaptive control scheme is presented for a multi-input
multi-output LTI plant: ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), u(t) ∈ Rm and y(t) ∈ RM , with m > M > 1,
subject to uncertain actuator failures. Consider the input-output form

y(t) = G(s)[u](t), G(s) = C(sIn −A)−1B (54)

and divide the actuators into M groups: {u11, . . . , u1n1}, {u21, . . . , u2n2}, . . . , {uM1, . . . , uMnM }, with m =
n1 + · · · + nM . Each group has actuators of the same physical characteristics (for example, an aircraft has
a group of four engines and a group of three rudder segments). Accordingly, the plant transfer matrix G(s)
is partitioned in the following order:

G(s) = [G11(s), . . . , G1n1(s), G21(s), . . . , G2n2(s), . . . , GM1(s), . . . , GMnM (s)], (55)

and, for each (ith) M -dimensional vector transfer function Gij(s), the actuator uij may fail.
For each group of actuators in ui(t) = [ui1(t), ui2(t), . . . , uini(t)]T , i = 1, 2, . . . ,M , a proportional-

actuation scheme is used:

vij(t) = αijvi0(t), i = 1, . . . ,M, j = 1, 2, . . . , ni, (56)
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for some constants αij determined by the physical characteristics of the group’s actuators. The control task
is to design the control vector signal v0(t) = [v10(t), . . . , vM0(t)]T such that the plant output y(t) tracks a
given reference output ym(t) = Wm(s)[r](t) ∈ RM for a stable M×M transfer matrix Wm(s) and a bounded
reference input r(t) ∈ RM , despite uncertain failures of actuators in each group.

For adaptive actuator failure compensation, first consider the controller structure

v0(t) = Θ̂T
1 (t)ω1(t) + Θ̂T

2 (t)ω2(t) + Θ̂20(t)y(t) + Θ̂3(t)r(t) + Θ̂4(t) (57)

where Θ̂1(t), Θ̂2(t), Θ̂20(t), Θ̂3(t) and Θ̂4(t) are the estimates of some nominal plant-model matching (for
minimum phase systems) or pole placement (for non-minimum phase systems) parameters Θ1, Θ2, Θ20, Θ3

and Θ4. In particular, the term Θ̂4(t) is for compensation of actuator failures modeled as in (2) or (3).
Suppose that at time t, there are pi failed actuators in each group, that is, uij = ūij (as described in

(2) or (3)), i = 1, . . . ,M , j = ji1, . . . , jipi , 0 ≤ pi < ni (that is, the number of failed actuators is less than
the number of actuators in each group, ensuring that there is at least one unfailed actuator in each group
to provide the desired actuation function). Then the plant y(t) = G(s)[u](t) can be described as

y(t) = Ga(s)[v0](t) + ȳ(t), (58)

where
Ga(s) = [Ga1(s), . . . , GaM (s)] = [

∑

j %=j11,...,j1p1

α1jG1j(s), . . . ,
∑

j %=jM1,...,jMpM

αMjGMj(s)] (59)

is the M ×M transfer matrix associated with the unfailed actuators, and

ȳ(t) =
∑

i=1,...,M

∑

j=ji1,...,jipi

Gij(s)[ūij ](t) (60)

represents the effect of the actuator failures on the plant output y(t).

Plant-model matching. For plant-model matching, we consider the nominal controller structure

v0(t) = ΘT
1 ω1(t) + ΘT

2 ω2(t) + Θ20y(t) + Θ3r(t) + Θ4 (61)

where ω1(t) = F (s)[v0](t), ω2 = F (s)[y](t), F (s) = A0(s)
Λ(s) , A0(s) = [IM , sIM , . . . , sν−2IM ]T , Λ(s) is a

monic stable polynomial of degree ν − 1, with the observability index ν of Ga(s). The parameters Θ1 =
[Θ11, . . . ,Θ1ν−1]T , Θ2 = [Θ21, . . . ,Θ2ν−1]T , Θ3, Θij ∈ RM×M , i = 1, 2, j = 1, . . . , ν − 1, are for plant-model
matching, and Θ4 ∈ RM is used to cancel the effect of the failed actuators ūij(t).

Lemma 2 Under Assumption (A.5), there exist parameters Θ1, Θ2, Θ20, Θ3 and Θ4, such that the controller
(61) ensures closed-loop signal boundedness and asymptotic tracking of the reference output ym(t) by the plant
output y(t), for each failure pattern σ ∈ Σ.

Proof: The desired parameters Θ1, Θ2, Θ20 and Θ3 are solutions of IM − ΘT
1 F (s) − ΘT

2 F (s)Ga(s) −
Θ20Ga(s) = Θ3W−1

m (s)Ga(s),47 for Wm(s) = P−1
m (s) with Pm(s) = ξm(s) being the left interactor matrix of

Ga(s). With this matching equation, using the expressions

Ga(s) = Za(s)P−1(s) = P−1
l (s)Zla(s); Gij(s) = P−1

l (s)Zij(s)

for some M ×M polynomial matrices Za(s), P (s), Pl(s) and Zla(s) and some M -dimensional polynomial
vectors Zij(s), and substituting for Gij(s) in Eq (60) for ȳ(t), the closed-loop system is described as

y(t) = Wm(s)[r](t) + Wm(s)Kp[
(−ΘT

1 A0(s)P (s) + Λ(s)P (s))Z−1
a (s)

Λ(s)
[ȳ] + Θ4](t)

'= Wm(s)[r](t) + fp(t), (62)

for some parameter matrix Kp. There also exists a polynomial matrix Pa(s)47 such that

Λ(s)IM −ΘT
1 A0(s) = Pa(s)Zla(s), lim

s→∞

Pa(s)Zla(s)
Λ(s)

= IM , (63)
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so that fp(t) = Wm(s)Kp[Pa(s)
Λ(s)

∑
i=1,...,M

∑
j=ji1,...,jipi

Zij(s)[ūij ] + Θ4](t). From the second equality of
(63) and the condition in Assumption (A.5) that Z−1

la (s)Zlb(s) is proper (where the columns of Zlb(s) in
G(s)σ = P−1

l (s)Zlb(s) are Zij(s), Gij(s) = P−1
l (s)Zij(s)), it can be concluded that Pa(s)

Λ(s) Zij(s) is proper.
With this result, for ūij(t) in (2) or (3), the following parametrization can be derived:

Pa(s)
Λ(s)

∑

i=1,...,M

∑

j=ji1,...,jipi

Zij(s)[ūij ](t) = −ΘT
5 ω5(t) (64)

for some parameter matrix Θ5 and vector signal ω5(t). With Θ4(t) = ΘT
5 ω5(t), this completes the proof. ∇

Adaptive control designs. The plant parameters and actuator failures are unknown, as are the the
nominal controller parameters Θ1, Θ2, Θ20, Θ3 and Θ4, which need to be adaptively estimated. Based on
the above parametrization, the following adaptive controller structure is used:

v0(t) = Θ̂T
1 (t)ω1(t) + Θ̂T

2 (t)ω2(t) + Θ̂20(t)y(t) + Θ̂3(t)r(t) + Θ̂T
5 (t)ω5(t) (65)

where Θ̂1(t), Θ̂2(t), Θ̂20(t), Θ̂3(t) and Θ̂5(t) are the estimates of Θ1, Θ2, Θ20, Θ3 and Θ5, respectively.
Then, the tracking error y(t)− ym(t) can be expressed as

y(t)− ym(t) = Wm(s)[Θ−1
3 Θ̃T ω](t), (66)

for Θ̃(t) = Θ̂(t)−Θ, with Θ = [ΘT
1 ,ΘT

2 ,Θ20,Θ3,ΘT
5 ]T and ω = [ωT

1 ,ωT
2 , yT , rT ,ωT

5 ]T .
Different schemes can be used for designing adaptive laws for updating the controller parameters (65) for

model reference based adaptive actuator failure compensation designs, including one using direct estimation
of Kp = Θ−1

3 , and other schemes using an LDU, LDS or SDU decomposition of Kp
51 to reduce the need for

prior knowledge of the high frequency gain matrix Kp. (An LDU decomposition of a matrix is of the form:
A = LDU , where D is a diagonal matrix and L and U are unit lower and upper triangular matrices, i.e.,
having unity diagonal entries. In SDU and LDS decompositions, S is a symmetric positive definite matrix).

To illustrate the first adaptive scheme, suppose: dm is the maximum degree of W−1
m (s), Ψ = Θ−1

3 = Kp,
f(s) is a stable polynomial of degree dm, and h(s) = 1

f(s) . Define the normalized estimation error as

ε(t) =
ξm(s)h(s)[y − ym](t) + Ψ̂(t)ξ(t)

m2(t)
(67)

where Ψ̂(t) is the estimate of Ψ, and ζ(t) = h(s)[ω](t), ξ(t) = Θ̂T (t)ζ(t)−h(s)[v0](t), m2(t) = 1+ζT (t)ζ(t)+
ξT (t)ξ(t). The adaptive laws updating the controller parameters are chosen as

˙̂Θ
T

(t) = −Spε(t)ζT (t),
˙̂Ψ(t) = −Γε(t)ξT (t), (68)

where Γ = ΓT > 0 and Sp being such that Γp = KT
p S−1

p = ΓT
p > 0 are adaptation gain matrices.

Stability analysis. Suppose the actuator failures occur at time instants Ti, i = 1, . . . ,m0, with m0 <
N − M + 1 since at least M of the N actuators do not fail. Then within each time interval (Ti, Ti+1),
i = 0, 1, . . . ,m0, with T0 = 0 and Tm0+1 = ∞, the actuator failure pattern does not change. Consider the
positive function

V (Θ̃, Ψ̃) = tr[Θ̃ΓpΘ̃T ] + tr[Ψ̃T Γ−1Ψ̃], (69)

which is not continuous because Θ is a piecewise constant parameter matrix, and so is Γp. It can be shown
that V̇ = −2εT (t)ε(t)m2(t) ≤ 0, t ∈ (Ti, Ti+1), i = 0, 1, . . . ,m0, so that V (Θ̃, Ψ̃, t) ∈ L∞, that is, Θ̂(t),
Ψ̂(t) ∈ L∞, which in turns implies that ε(t)m(t) ∈ L2 ∩ L∞, and from (68), that ˙̂Θ(t) ∈ L2 ∩ L∞ and
˙̂Ψ(t) ∈ L2 ∩ L∞. Based on these properties, the desired closed-loop signal boundedness and asymptotic
output tracking can be established.11
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V.C. Discussion

The controller structure and adaptive laws can be redesigned based on an LDU, LDS or SDU decomposition
of Kp, or using reduced knowledge of Kp.47 The choice of the actuation gains αij in (56) needs some
knowledge of the plant. Because of the system parameter uncertainty, the value of αij may be uncertain,
and adaptation of such gain parameters may be needed.52 This is a new unresolved issue in adaptive control.
The development of adaptive failure compensation schemes to relax the minimum phase condition is also an
important topic for future research.

Adaptive actuator failure compensation control schemes have been developed in Ref. [11] for both the
cases when M = mr = 1 (Chapter 4) and when M = mr > 1 (Chapter 5), and are also extended to a class
of single output, output-feedback nonlinear systems with actuator failures (Chapter 11).

In Ref. [11], simulation results are presented to illustrate the adaptive compensation control designs
(output feedback for output tracking, state feedback for output tracking, and state feedback for state track-
ing) for handling uncertain actuator failures. The examples included simplified linear models of Boeing 737
longitudinal dynamics (elevator/stabilizer failure); Boeing 737 lateral-directional dynamics (rudder/aileron
failure); Boeing 747 lateral-directional dynamics (rudder failure); DC-8 lateral-directional dynamics (aileron
failure); F-18 wing dynamics (aileron failure), as well as nonlinear models including twin Otter longitudinal
dynamics (elevator failure); and hypersonic aircraft longitudinal dynamics (elevator failure). The simulation
results show that satisfactory system responses are obtained and signal boundedness and asymptotic track-
ing are achieved. The transient tracking error after abrupt failures was reduced quickly to a small value by
controller adaptation.

Similar to the SFST and SFOT cases, the gain margin of the OFOT adaptive control law can be shown
to be (0,∞),53,54 i.e., it can accommodate reduced actuator effectiveness.

An important open topic in this research direction is the development of adaptive failure compensation
control for MIMO nonlinear systems (see Section VI.B for a more detailed discussion).

VI. Challenges in Applications to Aircraft Flight Control

The objective of adaptive control is to maintain system stability and maneuverability, as well as achieve
satisfactory tracking performance in spite of uncertainties, faults, failures, and damage. The direct adaptive
control approach aims to directly adjust the controller parameters based on the difference between the
actual and desired performance, without explicit detection or identification of the anomaly. In particular,
the adaptive controller should be able to accommodate all actuator failures whose patterns σ belong to a
specified failure pattern set Σ. Direct adaptation of the controller parameters is designed to handle multiple
failures without the knowledge of the system and failure parameters and patterns.

Sections II, III and IV discussed some open issues in the design and analysis of direct adaptive control
systems for applications to aircraft flight control in the presence of uncertain system actuator failures. There
are additional technical issues that need to be addressed in this important research area:

• Characterization and analysis of mathematical structure of aircraft dynamics in the presence of failures
and damage

• Accommodation of external disturbances, actuator saturation, unmodeled dynamics, and matching
condition violations

• Adaptive controller performance with pilot in the loop

• Adaptive control with simultaneous failures in actuators, sensors, and other components

• Flight dynamics characterization in abnormal flight conditions

• Adaptive control design for multivariable and nonlinear systems with failures

The key challenges associated with these issues are: comprehensive yet mathematically tractable modeling of
aircraft systems with failures and damage, and effective handling of uncertain failures and damage through
redundant actuation that employs all available control surfaces as well as engine thrusts.

Aircraft dynamics under failures and damage
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Failures and damage in aircraft components can cause significant changes in the system’s mathematical
structure. For example, asymmetric structural damage would introduce changes in the center of mass
location, moments and products of inertia, and asymmetric aerodynamic forces, resulting in strong new
couplings and nonlinear behavior that is hard to predict. Large structural and parametric uncertainties pose
new challenges for adaptive control designs for failure and damage compensation. The design of an effective
compensation scheme should be based on a suitable aircraft model that adequately represents the failures
and damage. Such models are different from the standard flight dynamics models used in the literature. A
limited discussion of an aircraft model, that permits the use of engines as actuators, is briefly presented next.

Aircraft models with differential engine thrusts. A normal aircraft flight dynamics model used in the
literature for flight control design is based on the assumption that the engine thrusts are symmetric and not
adjusted independently. However, when engine thrusts are used differentially for compensation of anomalies
such as asymmetric damage or rudder failures, this assumption is not valid, and a model with asymmetric
actuation of independently adjustable engine thrusts should be used. Ref. [7] developed a simplified air-
craft flight dynamic model that incorporates engine differentials, for the purpose of investigating integrated
adaptive propulsion and surface control effectors. From Ref. [7], the force and moment equations for a twin
engine aircraft are given by in (5):

m(u̇ + qw − rv) = X −mg sin θ + (TL + TR) cos ε,

m(v̇ + ru− pw) = Y + mg cos θ sinφ, (70)
m(ẇ + pv − qu) = Z + mg cos θ cos φ− (TL + TR) sin ε,

Ixṗ + Ixz ṙ + (Iz − Iy)qr + Ixzqp = L + l(TL − TR) sin ε,

Iy q̇ + (Ix − Iz)pr + Ixz(r2 − p2) = M, (71)
Iz ṙ + Ixz ṗ + (Iy − Ix)qp− Ixzqr = N + l(TL − TR) cos ε,

where TL and TR are the left and right engine thrusts, and other variables and parameters are standard
(the descriptions are omitted here). For a conventional aircraft model without engine differentials, TL = TR

is used in Refs. [55] and [56]. The presence of TL and TR captures the essence of the aircraft model
with independent engine thrusts which can be employed for effective compensation of asymmetric actuation
failures such as rudder failure, aileron failure or engine malfunction. A key feature of this aircraft model is
the coupling of longitudinal and lateral motion equations.

To linearize this nonlinear aircraft model, the state and control vectors of the linearized model are

x =
[
u w q θ v r p φ ψ

]T
, U =

[
δe δtl δtr δal δar δr

]T
, where δe, δal , δar and δr are

deflections of elevator, left and right ailerons, and rudder, and δtl and δtr are left and right engine throttle
deviations. A linearized aircraft model can be derived as:

ẋ =

[
A(1)

4×4 A(2)
4×5

A(3)
5×4 A(4)

5×5

]
x +

[
B(1)

4×3 B(2)
4×3

B(3)
5×3 B(4)

5×3

]
U, A(3) =





0 0 0 0
T̄u T̄w 0 0
T̄ ′u T̄ ′w 0 0
0 0 0 0
0 0 0 0




, B(3) =





0 0 0
0 T̄ ′′δtl

−T̄ ′′δtr

0 T̄ ′′′δtl
−T̄ ′′′δtr

0 0 0
0 0 0




(72)

where A(2) and B(2) are zero matrices, A(1), A(4), B(1) and B(4) are standard as in the literature, and A(3)

and B(3) represent the effect of engine thrust differentials (if the left and right engine thrusts are equal, A(3)

and B(3) become zero, as in Refs. [55] and [56]). This model, in which the two engine thrusts and two ailerons
are taken into account separately, has built-in redundancy in the system to cope with some actuator failures,
such as rudder failure or engine failure on one side. Most conventional aircraft models that assume equal
engine thrusts and equal aileron angles do not capture the dynamic coupling due to asymmetric failures,
which represents a large structural change that should be taken into account when designing a feedback
control law. Uncertainties in the failure patterns, values, and time of occurrence introduce further challenges
for aircraft flight control.

Refs. [7] and [8] presented the details of such modeling of aircraft dynamics, derived design conditions
for adaptive failure compensation, and presented adaptive controllers for aircraft regulation and tracking
control in the presence of unknown constant rudder, aileron and engine failures.
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Aircraft models with structural damage. It is important to understand the mathematical structure of
damaged aircraft dynamics. To address this problem, recently in Refs. [57] and [58], models of aircraft
systems in the presence of damage and failures have been developed for investigating effects of damage and
simultaneous failure- and damage- tolerance. These models in [58] were derived assuming that nominal flight
(with zero steady-state angular velocities) is still achievable with feedback control, after damage and failures,
which suggests that the models can be linearized at zero angular velocity for the purpose of controller design.
Models of such aircraft are much more complex (with many new dynamic couplings) than those without
damage, with augmented expressions for A(2), A(3), B(2) and B(3); that is, more elements of these matrices
become non-zero and take on unknown and uncertain values that depend on the system damage. Such models
capture the structural characterizations of aircraft dynamics in the presence of the damage and failures in a
mathematically tractable manner, and can be utilized for developing provably stable adaptive failure/damage
compensation control design schemes as well as rigorous analyses. Some of the relevant questions that need
to be answered are: What class of systems with failures and damage can be controlled by a chosen control
scheme? How can the controller architecture and structure be expanded to handle larger classes of system
failures and damage? To what extent is the linearizability assumption valid? Thus, modeling and structural
analysis of aircraft dynamics in the presence of failures and damage is an important topic of research for
resilient aircraft flight control.

Accommodation of external disturbances, actuator saturation, unmodeled dynamics, and
matching condition violations.

The actuators (control surfaces and engines) have finite response times, as well as magnitude and rate
limits, that should be taken into account by the adaptive control schemes. In addition, effects of external
disturbances such as wind gusts, sensor noise, as well as unmodeled dynamics (e.g., aeroelastic modes), need
to be considered. Another problem that needs further research (especially in the SFST adaptive control) is
quantification of how much violation of the matching conditions can be tolerated.

Adaptive controller performance with pilot in the loop
The presence of a pilot in the loop, operating in conjunction with an adaptive controller, can affect the

overall performance. Pilot dynamics have been typically represented as a linear time-invariant system with
a time-delay. Additional human factors also need to be taken into account while designing and evaluating
an adaptive control scheme.

Adaptive control with simultaneous failures in actuators, sensors, and other components
In addition to actuators, failures can also occur in other components such as sensors, processors (used in

control law implementation) and other avionics components. Sensor failures may include random unknown
biases or complete outage. Several methods have been proposed in the literature for identifying and isolating
failed sensors. These methods will need to be developed and integrated in the adaptive control architecture.
Other issues that need to be addressed involve digital implementation, i.e., effect of sampling time, finite
word length, etc.

Flight dynamics characterization in abnormal flight conditions
Under some failures and damage conditions, an aircraft can enter a highly nonlinear and unsteady

flight condition, such as spin and stall. It is important to develop mathematically tractable models of
dynamic behavior, both before and after entering such flight conditions. The adaptive control scheme should
prevent the aircraft from entering abnormal flight conditions, and should also accomplish recovery from such
conditions. In addition to modeling, this will also necessitate further research in adaptive control of nonlinear
systems.

Adaptive control of multivariable nonlinear systems
The development of reconfigurable adaptive control for resilient aircraft flight systems will require ad-

vances in the state-of-the-art in adaptive control of multivariable nonlinear systems. In the presence of
damage and failures, or in abnormal flight conditions, aircraft dynamics are nonlinear, heavily coupled, and
have multiple inputs and outputs.

There has been significant progress in adaptive control of linear multi-input multi-output (MIMO) sys-
tems.51,59–64 Adaptive control of single-input, single-output (SISO) nonlinear systems has recently seen
significant advances, for some limited classes of nonlinear systems such as pure-feedback, output-feedback

19 of 23

American Institute of Aeronautics and Astronautics



and feedback linearizable systems.48,65–67 There is an urgent need to systematically develop nonlinear adap-
tive techniques for multivariable nonlinear systems, especially, those of relevance to aircraft. As stated in
the previous paragraph, this would require a thorough understanding of aircraft flight dynamics in nonlinear
flight regimes outside the normal flight envelope, as well as development of realistic but tractable mathemat-
ical models to enable adaptive control strategies for prevention from entering an abnormal flight conditions,
and for recovery from such flight conditions. Some of the ongoing research topics on nonlinear adaptive
control include: Plant parametrization, state observer construction, a priori plant information specification,
and adaptive controller design, etc. The main issues to be resolved for nonlinear control designs are different
from those for linear systems that are based on linear controller structures, and are technically significantly
more challenging.

To see some basic ideas in multivariable adaptive control, consider the multivariable LTI plant

y(t) = Gp(s)[u](t) + dp(t), Gp(s) = G(s)(Im + µ∆m(s)) + µ∆a(s), µ ≥ 0 (73)

where Gp(s) is an M ×m transfer matrix, µ∆m(s), µ∆a(s) are the multiplicative and additive unmodeled
dynamics, and dp(t) is a bounded disturbance. An important concept for a multivariable system is its
modified left interactor ξm(s)47 which has a stable inverse (needed for model reference adaptive control)
such that the high frequency gain matrix Kp = lims→∞ ξm(s)G(s) is nonsingular.

An MRAC scheme for the plant (73) with µ = 0 and dp(t) = 0, can be designed under the conditions:
G(s) full rank with known observability index (or its upper bound), known ξm(s), stable zeros, and KpSp =
(KpSp)T > 0 for Sp known. With the knowledge of stability margins (bounds) of ∆a(s) and ∆m(s), a
robust MRAC scheme can be designed for the plant (73) with a sufficiently small µ (= 0.47 Relaxing the
knowledge of G(s) for multivariable adaptive control is an important issue, for which MRAC schemes have
been proposed for unknown Kp,51 for unknown ξm(s),68 and for unknown Kp and ξm(s).64

Such fundamental technical problems in adaptive control of multivariable nonlinear systems are wide
open research problems. For example, the characterization of system infinity zero structure (similar to the
interactor matrix ξm(s) in the linear system cases, which also defines the system relative degrees) and its use
in feedback control design are some key issues to be resolved for advanced adaptive control of multivariable
nonlinear systems. Furthermore, failure compensation using system actuator redundancy imposes additional
challenges. As an illustration, consider the plant (73) with y ∈ RM and u ∈ Rm for m > M (that is, with
more inputs than outputs). For dp = 0 and µ = 0, the available method50 to control this plant is to find a
matrix R ∈ Rm×p such that G(s)R is minimum phase so that an MRAC law for u(t) = Rv(t) can be designed
for y(t) = G(s)R[v](t). However, in the presence of actuator failures in u(t), the specification of such a matrix
R needs to fit all possible failure patterns, a challenging task due to the uncertainties in G(s). In Ref. 52,
it was demonstrated that such a problem is significant when using the rudder and ailerons to control an
aircraft’s roll and yaw motion, when the most suitable gain R is unknown due to system uncertainty. Thus
an important question is: how to adaptively choose such a gain matrix R to fit all situations related to all
possible failure patterns.

VII. Concluding Remarks

Adaptive control technology offers a promising solution to the problem of maintaining stability and
maneuverability of aircraft in the presence of anomaly. This paper presented direct model reference adaptive
control schemes for systems with actuator failures, with a focus on theoretical results, including problem
formulation, mathematical framework, closed-loop signal boundedness, and asymptotic tracking. Three
types of adaptive schemes, having increasing degree of complexity, were presented: state tracking using state
feedback, output tracking with state feedback, and output tracking with output feedback. A key feature
of the direct adaptive control approach is that explicit fault detection and diagnosis, as well as controller
reconfiguration, are not needed to ensure stability and tracking performance. Continued research will include
application to detailed linear and nonlinear simulations of transport aircraft as well as dynamically scaled
models; adaptive control in the presence of damage and failures; accommodation of unmodeled dynamics and
disturbances; simultaneous actuator, sensor, processor, and avionics failures; and adaptive control theory for
multi-input multi-output nonlinear systems. In addition, effects of actuator and rate saturation, relaxation
of matching conditions, as well as discrete-time implementation issues, need to be fully investigated.
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