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We define the direct and reverse secret-key capacities of a memoryless quantum channel as the optimal

rates that entanglement-based quantum-key-distribution protocols can reach by using a single forward

classical communication (direct reconciliation) or a single feedback classical communication (reverse

reconciliation). In particular, the reverse secret-key capacity can be positive for antidegradable channels,

where no forward strategy is known to be secure. This property is explicitly shown in the continuous

variable framework by considering arbitrary one-mode Gaussian channels.
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Since the birth of quantum information [1], both the

notions of quantum entanglement and memoryless quan-

tum channel have been fundamental in many theoretical

investigations. This consideration is particularly true in the

field of quantum cryptography. On the one hand, entangle-

ment distribution is a basic process in the formulation of

quantum-key-distribution (QKD) protocols [2]. On the

other hand, memoryless quantum channels can be seen as

the effect of collective attacks, recognized as predominant

in quantum cryptography after the recent achievements of

Ref. [3]. In this Letter, we consider a generic QKD protocol

where two honest parties (Alice and Bob) extract a secret

key from the remote correlations that are generated by one

of the parties (Alice) after the distribution of a generic

entangled state over a memoryless quantum channel. Such

a task can be assisted by one-way classical communica-

tions (CCs) which can be forward, i.e., from Alice to Bob,

or feedback, i.e., from Bob to Alice. Even if the scenario

can seem symmetric, it is actually much harder to study the

feedback-assisted protocols and optimize the correspond-

ing secret-key rates. The reason relies on the fact that Alice

can actively exploit the information already received from

Bob for conditioning the subsequent inputs to the quantum

channel. In this Letter we simplify this problem by restrict-

ing the feedback to a single (and therefore final) CC from

Bob. Although we make this restriction on the feedback

strategy, the security performance is still remarkable.

Under suitable conditions, the corresponding QKD proto-

cols are in fact able to outperform all the known QKD

protocols which are based on forward CCs.

In general, we identify the notions of direct and reverse

reconciliation [4] with the ones of assistance by a single

forward and a single feedback CC, respectively. Then, by

optimizing over corresponding protocols, we define the

direct and reverse secret-key capacities of a quantum

channel. In direct reconciliation, the optimization over a

single forward CC is not restrictive at all. In fact, the direct

secret-key capacity represents an equivalent entanglement-

based formulation of the (forward) secret-key capacity of

Ref. [5]. In reverse reconciliation, even if the feedback

strategy is limited, the security performance is in any case

outstanding. In fact, the reverse secret-key capacity can be

positive even if the quantum channel is antidegradable [6];

i.e., an eavesdropper is able to reconstruct completely the

output state of the receiver (and no forward protocol is

known to be secure). This property is explicitly shown in

the most important scenario for the continuous variable

QKD: the one-mode Gaussian channel. In order to estab-

lish this result in its full generality, we resort to the recent

canonical classification of the one-mode Gaussian chan-

nels [7] (see also Refs. [8,9]). By assuming an arbitrary

one-mode Gaussian channel, we then exploit a general

lower bound for the reverse secret-key capacity. This

bound corresponds to the additive capacity of Ref. [10],

which is connected to the entanglement distillation by

feedback CCs. For one-mode Gaussian channels, this ad-

ditive capacity assumes an analytical formula which is

exceptionally simple. Most importantly, it enables us to

prove the positivity of the reverse secret-key capacity over

a wide range of parameters where the channel is antide-

gradable. In a final investigation, we also prove that tighter

bounds can be derived by exploiting noise effects in the

key-distribution process.

Let us consider an arbitrary quantum channel, i.e., a

completely positive trace-preserving (CPT) mapN , trans-

forming the input state �A0 of a sender (Alice) into the

output state �B of a receiver (Bob). As depicted in Fig. 1,

such a channel can always be represented by an isometric

FIG. 1. Quantum channel N and its dilation.
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embedding UN :H A0 ! H B �H E followed by a trace

over the environment E which we identify with the eaves-

dropper (Eve). By definition, the original channel N is

called degradable if there exists a CPT map D such that

�E ¼ Dð�BÞ, where �E is the output state of Eve. By

contrast, N is called antidegradable if there exists a

CPT map ~D such that �B ¼ ~Dð�EÞ. A further dilation of

the quantum channel is provided by the purification of the

input �A0 ¼ TrA� with � :¼ j�ih�jAA0 , involving the in-

troduction of a supplementary system A at Alice’s side.

Notice that the three output systems A, B, and E are

globally described by a pure state � ¼ j�ih�jABE, which
is given by � ¼ ðIA �UN Þð�Þ. A key-distribution proto-

col can be introduced by extending the scenario of Fig. 1 to

n (entangled) uses of the channel and by adding measure-

ments to Alice’s and Bob’s sides. Restricting the honest

users to a single one-way CC, we have a one-way key-

distribution protocol which can be direct, if Alice assists

Bob, or reverse, if Bob assists Alice.

Let us begin with the direct protocol. In the first step of

this protocol, Alice distributes a pure entangled state

�n :¼ j�ih�jAnA0n sending the A0 part through the memo-

ryless quantum channel N �n ¼ N � � � � �N (see

Fig. 2). As a consequence, we have a pure state �n ¼

ðIA � ÛN Þ�nð�nÞ, shared by the output systems of Alice

(An), Bob (Bn), and Eve (En). On her local systems An,

Alice performs a quantum measurement MA. This is gen-

erally described by a positive operator-valued measure

(POVM) fÂxg with outcomes x. As a result, she gets an

output random variable X ¼ fx; pðxÞg where the values x

have probability distribution pðxÞ ¼ Trð�nÂxÞ. After the
measurement, Alice processes X via a classical channel

X ! ðSA; LÞ, which yields a key variable SA ¼ fs; pðsÞg
and an assisting variable L ¼ fl; pðlÞg. The assisting vari-

able L contains all the information necessary to Bob for

performing error correction and privacy amplification. The

value l of L is then broadcast by Alice through a public

channel. Using this information, Bob performs a condi-

tional POVM MBjL ¼ fB̂ðlÞ
s g on his systems Bn, and re-

trieves an estimation of Alice’s key S0A up to an error

probability pðSA � S0AÞ � " [11].

In the limit of n ! þ1, Alice and Bob are able to rule

out Eve completely and share exactly the same uniform

key SA corresponding to HðSAÞ :¼ nR secret bits. The

highest secret-key rate R which is achievable by direct

protocols over a quantum channel N is called the direct

secret-key capacity KcðN Þ of the channel. This quantity

is characterized by the formula [12,13]

KcðN Þ ¼ lim
n!1

1

n
max
�n;MA
X!T

½IðX:BnjTÞ � IðX:EnjTÞ�;

where the maximum is over all the pure states �n, Alice’s

POVMs MA, and all the classical channels pðtjxÞ:X ! T
generating the conditioning dummy variable T. In this

formula, IðX:BnjTÞ and IðX:EnjTÞ are the conditional

Holevo information of Bob and Eve [14]. In direct recon-

ciliation, one can show [13] that the conditioning by T can

actually be avoided in the previous formula, and that

KcðN Þ is the entanglement-based version of the secret-

key capacity KðN Þ of Ref. [5]. From Ref. [5] it is known

that KðN Þ � EðN Þ ¼ QðN Þ, where EðN Þ is the

entanglement-generation capacity of N and QðN Þ its

unassisted quantum capacity [15].

A key-distribution protocol in reverse reconciliation,

i.e., a reverse protocol, consists of interchanging Alice

and Bob in terms of the assisting CC while keeping

Alice as dispenser of the quantum state �n. As we have

already mentioned, this is a particular case of a more

general feedback-assisted protocol, where Alice distributes

the entangled state �n in n different rounds, each one

conditioned by previous CCs received from Bob. In the

first step of a reverse protocol, Alice distributes �n gen-

erating �n as before (see Fig. 3). But now the first mea-

surement is done by Bob, who detects his systems Bn via a

POVM MB, generating an output variable Y ¼ fy; pðyÞg.
Again, this variable is processed into a key variable SB and

an assisting variable M, which is broadcast by Bob. Using

this information, Alice subjects her local systems An to a

conditional POVM MAjM, retrieving an estimation of

Bob’s key S0B up to a small error probability. The reverse

secret-key capacity KbðN Þ of a quantum channel N is

defined as the highest secret-key rate which is achievable

by reverse protocols over N . For this capacity we can

prove the upper bound [12,13]

KbðN Þ � lim
n!1

1

n
max
�n;MB
Y!T

½IðY:AnjTÞ � IðY:EnjTÞ�;

where the maximum is now over Bob’s POVMs MB and

involves the processing of Bob’s variable Y.
In order to find achievable lower bounds for this ca-

pacity, let us restrict the process of key distribution to the

one of key distillation. A one-way key-distillation protocol

over a channel N (in direct or reverse reconciliation) is

defined as a one-way key-distribution protocol where the

input state is separable over different uses of the channel,

i.e., �n ¼ ��n. Maximizing over these protocols, we can

FIG. 2. Key-distribution protocol in direct reconciliation. FIG. 3. Key-distribution protocol in reverse reconciliation.

PRL 102, 050503 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

6 FEBRUARY 2009

050503-2



define the direct and reverse key-distillation capacities of a

quantum channel, which we denote by K�
c
ðN Þ and

K�
b
ðN Þ. These capacities clearly satisfy K�

c
ðN Þ �

KcðN Þ and K�
b
ðN Þ � KbðN Þ. Using the results of

Ref. [16], we can easily prove the formulas [12,13]

K�
c
ðN Þ ¼ lim

n!1

1

n
max
�;MA
X!T

½IðX:BnjTÞ � IðX:EnjTÞ�;

K�
b
ðN Þ ¼ lim

n!1

1

n
max
�;MB
Y!T

½IðY:AnjTÞ � IðY:EnjTÞ�;

where now the maximization is over the single copy of the

state�, i.e., over��n. Exploiting the relation with the key

distillation, we can prove an important lower bound for

KbðN Þ. In fact, we have [13]

KbðN Þ � K�
b
ðN Þ � Eð1Þ

R ðN Þ ¼ ERðN Þ; (1)

where ERðN Þ is the additive capacity of Ref. [10]. In

particular, the single-letter version of this capacity is

given by the formula Eð1Þ
R ðN Þ: ¼ maxj�iIðAhBÞ, where

IðAhBÞ: ¼ Hð�AÞ �Hð�ABÞ is the reverse coherent infor-

mation computed over Alice and Bob’s output state �AB ¼
ðIA �N Þð�Þ. Remarkably, ERðN Þ has a very different

behavior with respect to the quantum capacity QðN Þ. In
particular, for an antidegradable channel, we can have

ERðN Þ> 0 which implies KbðN Þ> 0. In the following

this is explicitly shown for a generic Gaussian channel

affecting a single bosonic mode.

Recall that a bosonic mode is a quantum system de-

scribed by a pair of quadrature operators, q̂ and p̂, with
½q̂; p̂� ¼ 2i. Then, a Gaussian channel G acting on this

system is a CPT map which preserves the Gaussian statis-

tics of its states. Using the compact formulation of Ref. [8],

everyG can be associated with three symplectic invariants:

transmission �, rank r, and temperature �n. These invariants
completely characterize the unique canonical form [7]

Cð�; r; �nÞ which is unitarily equivalent to G (see Fig. 4).

For a generic one-mode Gaussian channel G with trans-

mission � � 1, we compute [13]

ERðGÞ ¼ max

�

0; log

�

�

�

�

�

�

�

�

1

1� �

�

�

�

�

�

�

�

�

�gð �nÞ

�

; (2)

where gðxÞ :¼ ðxþ 1Þ logðxþ 1Þ � x logx. This expres-

sion must be compared with

Qð1;gÞðGÞ ¼ max

�

0; log

�

�

�

�

�

�

�

�

�

1� �

�

�

�

�

�

�

�

�

�gð �nÞ

�

; (3)

which is the quantum capacity QðGÞ restricted to a single

use of the channel and pure Gaussian states [17]. It is

known that QðGÞ ¼ Qð1;gÞðGÞ for a degradable channel

[18], while QðGÞ ¼ 0 for an antidegradable channel. In

order to analyze and compare the previous quantities, we

introduce the scaled thermal noise ": ¼ 2 �nj1� �j. For
every � � 1, we then consider the minimal noises, "Q

and "R, above which we have Qð1;gÞðGÞ ¼ 0 and ERðGÞ ¼
0, respectively. The corresponding threshold curves "Q ¼

"Qð�Þ and "R ¼ "Rð�Þ are shown in Fig. 5. For � � 1=2,

the one-mode Gaussian channel is known to be antidegrad-

able [7], and therefore, we have QðGÞ ¼ 0. In this case, no
forward protocol is known to be secure; i.e., it is not known

if KðGÞ ¼ KcðGÞ � 0. However, for 0< � � 1=2 and

" < "Rð�Þ, we have a wide region of antidegradability

where ERðGÞ> 0 and, therefore, KbðGÞ> 0. In other

words, even if Eve can reconstruct Bob’s state, Alice and

FIG. 4. Canonical decomposition. In the center of the figure

(Eve), we show the decomposition of a one-mode Gaussian

channel G into a canonical form Cð�; r; �nÞ up to a pair of

unitaries Û and Û0. Noisy reverse protocol. The reverse protocol

with the rate of Eq. (4) is achieved by applying two inverse

unitaries Û�1 and Û0�1 (not shown in the figure), restricting the

quantum distribution to a two-mode squeezed vacuum state� ¼
j�ih�j, and providing Alice and Bob with homodyne detectors

(see boxes in the figure). In particular, Bob’s homodyne detector

is placed after one of the two output ports of a balanced beam

splitter mixing the signal with the vacuum (the output of the

other port is discarded).
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FIG. 5. Scaled thermal noise " versus transmission � � 1. The
thin solid curve "Q ¼ "Qð�Þ refers to Qð1;gÞðGÞ, while the thick

solid curve "R ¼ "Rð�Þ refers to ERðGÞ. Above (below) these

curves the corresponding capacities are zero (positive). Notice

that ERðGÞ is positive in the region 0< � � 1=2 and " < "Rð�Þ,
where the channel is antidegradable. The dashed curve "b ¼
"bð�Þ corresponds to Rb ¼ 0, where Rb is the rate given in

Eq. (4).
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Bob are still able to extract a secret key using a reverse

protocol. This result is a remarkable feature of the reverse

reconciliation, which is here stated in its full generality by

considering arbitrary one-mode Gaussian channels.

As a final investigation, we prove an effective separation

between Kb and ER, i.e., the existence of tighter lower

bounds for Kb. In particular, we show a reverse key-

distillation protocol whose rate Rb can outperform

ERðGÞ, so that we have K�
b
ðGÞ � ERðGÞ and, therefore,

KbðGÞ � ERðGÞ. This protocol exploits a noisy decoding

measurement as in Ref. [19] and works as follows. For

every G, Alice and Bob can in principle apply two input-

output unitaries that put G in canonical form. Assuming

this reduction, Alice distributes n copies of a two-mode

squeezed vacuum state j�ih�jwith variance� [20]. At the

output of the channel, Bob’s measurement setup consists of

a balanced beam splitter followed by a random homodyne

detection of q̂ or p̂, as shown in Fig. 4. The corresponding

outcomes are classically processed to provide the two

variables SB and M. Then, Bob broadcasts the value of

the assisting variable M, containing also the correct se-

quence of q̂ and p̂ detections. As a consequence, Alice

performs the same sequence of homodyne detections on

her systems An and then applies error correction and

privacy amplification to get her estimation of the key S0B.
In the limits for n ! þ1 and � ! þ1 (and for � � 1),
the honest users achieve the secret-key rate

Rb ¼ max

�

0;
1

2
log

�

j1� �j
þ g

� ffiffiffiffiffiffi

w

4�

r

�
1

2

�

� gð �nÞ

�

; (4)

where � :¼ ðj1� �j þ wÞ=ð1þ j1� �jwÞ and w :¼ 2 �nþ
1. Let us denote by "b ¼ "bð�Þ the security threshold

corresponding to Rb ¼ 0. As shown in Fig. 5, there is a

whole region for 0< �< 2 and "R < "< "b, whereRb >
ERðGÞ ¼ 0. As a consequence, we generally have

K�
b
ðGÞ � ERðGÞ and, therefore, KbðGÞ � ERðGÞ. Notice

that when G is just a canonical form, the previous protocol

can be implemented in practice, without the help of any

quantum memory. Alice and Bob can in fact perform their

detections step-by-step and then keep only the data mea-

sured in the same basis (q̂ or p̂). In this case the rate Rb of

Eq. (4) refers to the sifted key after the basis reconciliation.

In conclusion, we have introduced the notions of direct

and reverse secret-key capacities of a quantum channel,

specifying these notions for key-distillation too. In particu-

lar, the reverse capacitiesKb andK�
b
extend the concept of

reverse reconciliation to a completely general scenario,

where this procedure must be intended as a classical assis-

tance by means of a single feedback CC. Such reverse

capacities are lower bounded by an additive quantity ER,

which is connected with entanglement distillation and has

been explicitly computed for one-mode Gaussian channels.

For these channels, we have shown that the property of

antidegradability does not necessarily preclude the possi-

bility to extract a secret key. This is proven in full general-

ity without any restriction on the Gaussian model. In other

words, we have not restricted the one-mode Gaussian

channel to any specific description like, e.g., a beam split-

ter with a thermal input. In this general scenario, we have

also shown an explicit protocol which proves an effective

separation betweenKb and ER. In future works, our results

can be exploited for exploring the ultimate cryptographic

properties of arbitrary quantum channels.
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