

Open access • Journal Article • DOI:10.1016/J.CBPC.2009.11.007

Direct and transgenerational impact on Daphnia magna of chemicals with a known effect on DNA methylation — Source link [2]

Michiel B. Vandegehuchte, Filip Lemière, Lynn Vanhaecke, Wim Vanden Berghe ...+1 more authors

Institutions: Ghent University, University of Antwerp


Published on: 01 Apr 2010 - Comparative Biochemistry and Physiology C-toxicology & Pharmacology (Comp Biochem

Physiol C Toxicol Pharmacol)

Topics: DNA methylation, Epigenetics, Vinclozolin and Daphnia magna

Related papers:

- Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility
- Quantitative DNA-methylation in Daphnia magna and effects of multigeneration Zn exposure.
- · Occurrence of DNA methylation in Daphnia magna and influence of multigeneration Cd exposure.
- · Epigenetics and its implications for ecotoxicology.
- · Transgenerational Epigenetic Effects

Accepted Manuscript

Direct and transgenerational impact on *Daphnia magna* of chemicals with a known effect on DNA methylation

Michiel B. Vandegehuchte, Filip Lemière, Lynn Vanhaecke, Wim Vanden Berghe, Colin R. Janssen

PII: S1532-0456(09)00244-0

DOI: doi: 10.1016/j.cbpc.2009.11.007

Reference: CBC 7594

To appear in: Comparative Biochemistry and Physiology

Received date: 16 September 2009 Revised date: 18 November 2009 Accepted date: 19 November 2009

Please cite this article as: Vandegehuchte, Michiel B., Lemière, Filip, Vanhaecke, Lynn, Vanden Berghe, Wim, Janssen, Colin R., Direct and transgenerational impact on *Daphnia magna* of chemicals with a known effect on DNA methylation, *Comparative Biochemistry and Physiology* (2009), doi: 10.1016/j.cbpc.2009.11.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	CBP ms.17570 Re vise d – part C
2	
3	Direct and transgenerational impact on Daphnia magna of
4	chemicals with a known effect on DNA methylation
5	
6	Vandegehuchte, Michiel B.a, Lemière, Filipb, Vanhaecke, Lynnc,
7	Vanden Berghe, Wim ^d , Janssen, Colin R ^a
8	^a Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J.
9	Plateaustraat 22, B-9000 Ghent, Belgium, Michiel. Vandegehuchte @UGent.be and
10	Colin.Janssen@UGent.be
11	^b Nucleoside Research & Mass Spectrometry Unit, Centre for Proteome Analysis and Mass
12	Spectrometry (CeProMa), Department of Chemistry, University of Antwerp, B-2020
13	Antwerp, Belgium, filip.lemiere@ua.ac.be
14	^c Department of Veterinary Public Health and Food Safety, Ghent University,
15	Salisburylaan 133, B-9820 Merelbeke, Belgium, <u>Lynn.Vanhaecke@UGent.be</u>
16	d Laboratory for Eukaryotic Gene Expression and Signal Transduction, Department of
17	Physiology, Ghent University, K.L. Ledeganckstraat 35 - 11 HB, B-9000 Ghent, Belgium,
18	w.vandenberghe@UGent.be
19	
20	Corresponding author: Michiel B. Vandegehuchte
21	J. Plateaustraat 22, B-9000 Ghent, Belgium
22	Tel.: +32 9 264 37 07
23	Fax: +32 9 264 37 66
24	Email: Michiel.Vandegehuchte@UGent.be

25	Abstract
26	The purpose of this study is to investigate (1) the induction of epigenetic effects in the
27	crustacean Daphnia magna using DNA methylation as an epigenetic mark and (2) the
28	potential stable transfer of such an epigenetic effect to non-exposed subsequent generations
29	Daphnids were exposed to chemical substances known to affect DNA methylation in
30	mammals: vinclozolin, 5-azacytidine, 2'-deoxy-5-azacytidine, genistein and biochanin A.
31	Effects on overall DNA cytosine methylation, body length and reproduction were evaluated
32	in 21 day experiments. Using a multi-generational experimental design these endpoints
33	were also evaluated in the F ₁ and F ₂ generation of both exposed and non-exposed offspring
34	from F ₀ daphnids exposed to 5-azacytidine, genistein or vinclozolin. A reduction in DNA
35	methylation was consistently observed in daphnids exposed to vinclozolin and 5-
36	azacytidine. Only in organisms exposed to 5-azacytidine was this effect transferred to the
37	two subsequent non-exposed generations. A concurrent reduction in body length at day 7
38	was observed in these treatments. For the first time, exposure to environmental chemicals
39	was shown to affect DNA methylation in the parental generation of D. magna. We also
40	demonstrated a transgenerational alteration in an epigenetic system in D. magna, which
41	indicates the possibility of transgenerational inheritance of environment-induced epigenetic
42	changes in non-exposed subsequent generations.
43	
44	Keywords. 2'-deoxy-5-azacytidine, 5-azacytidine, biochanin A, ecotoxicology,
45	epigenetics, genistein, inheritance, vinclozolin
46	
47	1 Introduction
48	
49	Epigenetics has been defined as the inheritance of DNA activity that does not depend on
50	the naked DNA nucleotide sequence (Esteller 2008b). Three mechanisms involved in
51	epigenetic control are: DNA methylation, Polycomb and Trithorax group proteins in
52	association with histone modifications and non-coding RNA molecules (Feil 2008).
53	Numerous forms of interplay between these mechanisms have been reported (Chuang et al.
54	2007; Guil et al. 2009).
55	Exposure to environmental toxicants can induce epigenetic changes (Reamon-Buettner et

56	al. 2008). A recent review lists several environmental chemicals - such as metals,
57	peroxisome proliferators, air pollutants and endocrine-disrupting chemicals - that are
58	capable of modifying epigenetic marks (Baccarelli et al. 2009). In most cases DNA
59	methylation is affected, but also histone modifications and microRNA expression can be
60	altered by toxic stress. Different mechanisms may underlie the interaction between
61	environmental toxicants and epigenetic changes. Tributyltin and triphenyltin for example
62	have been shown to induce hypomethylation in the liver of the false kelpfish Sebastiscus
63	marmoratus (Wang et al. 2009). This was attributed to imbalances in the transmethylation
64	reaction between DNA and S-adenosylmethionine (SAM) / S-adenosylhomocysteine.
65	The inheritance of epigenetic factors can be mitotic, i.e. between cells of one organism or
66	between different organisms in case of mitotic parthenogenesis, or meiotic, i.e. between
67	different generations of sexually reproducing organisms. Although most studies on
68	transgenerational epigenetic inheritance deal with plants or mammals, it has also been
69	reported in insects (Youngson et al. 2008). Transgenerational activation of a
70	polycomb/trithorax response element and histone H4 hyperacetylation have been
71	demonstrated in Drosophila (Cavalli et al. 1998). Transgenerational transfer of
72	chromosome sets with hypomethylated DNA has been reported in the mealybug
73	Planococcus citri (Bongiorni et al. 1999; Bongiorni et al. 2009).
74	An interesting aspect of epigenetics for the field of environmental sciences is that
75	environment-induced epigenetic changes can be transferred to subsequent generations even
76	if the triggering environmental factor is removed. Mice fed with a methyl donor
77	supplemented diet during gestation resulted in a shift in fenotypes up to two generations
78	later, demonstrating a germ-line epigenetic change in a specific allele (Cropley et al. 2006).
79	Anway et al. (2005) reported that non-exposed offspring of gestating female rats transiently
80	exposed to vinclozolin and methoxychlor, exhibited reduced reproduction and altered DNA
81	methylation patterns. If wide-spread epigenetic effects of environmental exposure are
82	transferred to non-exposed future generations, this may have major consequences for the
83	way ecological risk assessments of chemicals are performed as temporary exposures to
84	contaminants may then compromise the future status of ecosystem structure and
85	functioning.
86	DNA methylation, which is the addition of a methyl group on the 5 position of DNA

87	cytosines, is one of the best studied epigenetic marks (Clark et al. 1994; Oakeley 1999;
88	Bird 2002; Watson et al. 2002). It is hypothesized that DNA methylation at CpG sites
89	represses transcriptional initiation, but not necessarily represses transcription as such (Bird
90	1995). Recent research supports this hypothesis for infrequently transcribed genes
91	(Mandrioli 2007; Suzuki et al. 2007). This implies that the presence or absence of DNA
92	methylation at transcription start sites may have important consequences for various
93	cellular processes.
94	Recently, DNA methylation in CpG sites has been detected in the waterflea Daphnia
95	magna, an important species in many aquatic ecosystems and a model organism used in
96	aquatic toxicology and environmental risk assessment (Vandegehuchte et al. 2009a). The
97	total amount of cytosine methylation in D. magna DNA is lower than in mammals and
98	plants, but was shown to differ in daphnids with different exposure histories. Although
99	local hypo- or hypermethylation could not be measured with the LC-MS based technique
100	used, it was shown that one generation exposure to a sublethal Zn concentration caused an
101	overall reduction in DNA methylation in the F ₁ offspring, which, however, was not passed
102	on to the next generation (Vandegehuchte et al. 2009b). Daphnia has an interesting life
103	cycle. It reproduces mainly through female parthenogenesis. However, certain
104	environmental triggers (e.g. light, food) induce the production of males resulting in sexual
105	reproduction (Zaffagnini 1987). In the laboratory, daphnids are maintained in their
106	parthenogenetic state, in which diploid eggs develop into adult females. Oogenesis is in this
107	case not fully meiotic nor strictly mitotic. However, no recombination occurs during
108	parthenogenesis and as such parthenogenetic offspring are genetically identical to their
109	mother (Hebert 1987). This makes Daphnia an ideal model organism for studying
110	epigenetic transgenerational changes. It has been suggested that transgenerational effects in
111	Daphnia, such as differences in the size of defensive helmets in offspring of females
112	exposed to different predator kairomone concentrations, are based on gametic epigenetic
113	inheritance (Agrawal et al. 1999; Youngson et al. 2008).
114	The aim of this study is to investigate whether DNA methylation in D. magna is affected by
115	exposure to substances with a well-known effect on DNA methylation in mammals. Second
116	it is hypothesized that such an epigenetic effect can be transferred to multiple non-exposed
117	generations of <i>D. magna</i> . Effects on global DNA methylation levels are measured, as well

118	as effects on length and reproduction of the daphnids. Two active pharmaceutical
119	compounds that are known to inhibit DNA methyltransferases (DNMTs) were examined: 5
120	azacytidine and 2'-deoxy-5-azacytidine (Piekarz et al. 2009). The isoflavones genistein and
121	biochanin A were also evaluated as they have been associated with DNA hypermethylation
122	These substances were also shown to reduce DNMT activity and directly or indirectly alter
123	DNA methylation (Fang et al. 2005; Dolinoy 2006; Dolinoy 2007). Finally the endocrine
124	disrupting fungicide vinclozolin was tested as this compound induces aberrant methylation
125	patterns after intraperitoneal injection in rats (Anway et al. 2005).
126	
127	2 Materials and Methods
128	
129	2.1 Daphnia cultures and experimental design
130	Daphnia magna Straus (clone K6) used in all our experiments was originally collected
131	from a pond in Kiel (Antwerp, Belgium) and has been successfully cultured under
132	controlled laboratory conditions for more than 10 years. The culture medium used in all
133	experiments consisted of aerated carbon filtered tap-water, enriched with selenium and
134	vitamins (Elendt et al. 1990).
135	Preliminary acute tests were performed according to OECD 202 guideline (OECD 1994). A
136	series of five concentrations was made based on concentrated stock solutions of 5-
137	azacytidine (7000 mg/L in culture medium), 5-aza-2'-deoxycytidine (2333 mg/L in culture
138	medium), Biochanin A (28426 mg/L in DMSO), Genistein (27 024 mg/L in DMSO) or
139	Vinclozolin (350 g/L in acetone). All chemicals were purchased from Sigma-Aldrich,
140	Bornem, Belgium. The actual test concentrations are given in the electronic supplementary
141	material. Solvent controls were prepared for acetone and DMSO. Three replicate glass
142	vessels were used with ten neonate daphnids in 25 mL test medium. Immobility was
143	assessed after 48 hours as the number of daphnids that remained immobile for $\geq 10 \ s$ after
144	test vessel swirling.
145	Chronic tests were performed according to OECD guideline 211 (OECD 1998).
146	Concentrated stock solutions of 5-azacytidine (50000 mg/L in DMSO), 5-aza-2'-
147	deoxycytidine (27000 mg/L in DMSO), Biochanin A (28426 mg/L in DMSO), Genistein
1/18	(27.024 mg/L in DMSO) or Vinclozolin (71980 mg/L in DMSO), which were stored at a

149	20°C, were used to make up 4 test concentrations of each substance. The actual test
150	concentrations are given in the electronic supplementary material. For this test and for the
151	multigeneration experiment, 5-azacytidine and 5-aza-2'-deoxycytidine were purchased
152	from Carbosynth, Compton, UK. To ensure minimal mortality, test concentrations were all
153	lower than the lowest concentration which caused a significant effect in the acute test.
154	Solvent controls with 0.0176% and 0.05% DMSO were also tested. Ten replicate glass
155	vessels with a single neonate daphnid in 50 mL test medium were maintained for 21 days at
156	20°C ± 1 °C under a 16h/8h light/dark cycle. Media were renewed three times per week
157	during which the number of living offspring were counted and discarded. Daphnids were
158	fed daily with an algae mix consisting of Pseudokirchneriella subcapitata and
159	Chlamydomonas reinhardtii in a 3/1 cell number ratio. The amount fed increased during the
160	test: $250 \mu\text{g/day}$ in the first week, $500 \mu\text{g/day}$ in the second week and $750 \mu\text{g/day}$ in the
161	third week. The length of each daphnid from the top of the head to the base of the spine was
162	measured on day 7 and day 21 by analyzing a microscopic image with UTHSCSA Image
163	Tool 3.0 (San Antonio, TX, USA).
164	A multigeneration experiment was performed with daphnids exposed to 5-azacytidine,
165	genistein and vinclozolin. Based on the results of the chronic test, concentrations were
166	selected which were shown to have an effect on DNA methylation or on reproduction, but a
167	limited or no effect on mortality. Nominal concentrations were 7.4 mg/L 5-azacytidine, 4.4
168	mg/L genistein and 3.6 mg/L vinclozolin. Measured concentrations in freshly prepared
169	medium were 2.9 \pm 0.4 mg/L in F ₀ , 2.3 \pm 0.3 mg/L in F ₁ for 5-azacytidine; 4.7 \pm 0.7 mg/L
170	in $F_0\text{-}F_2$ for genistein and 0.54 \pm 0.19 mg/L in $F_0,0.45\pm0.16$ mg/L in $F_1,0.18\pm0.15$ mg/L
171	in F ₂ for vinclozolin. Organisms were cultured in a semi-static manner in glass vessels,
172	using a volume of 10 mL per daphnid for the first week and 20 mL per daphnid from the
173	second week onwards (Muyssen et al. 2006). Media were renewed three times per week.
174	For each treatment, ten individual daphnids were maintained in parallel as described above.
175	The length of these daphnids was measured on day 7 and 15.
176	The culturing scheme is represented in Fig. 1. Neonates from the laboratory culture were
177	divided into four batches. One batch of thirty daphnids was transferred into standard
178	medium with 0.015% DMSO and cultured in this medium for three generations as a control
179	(F ₀ C-F ₂ C). A second batch of organisms was transferred to a medium containing 5-

180	azacytidine (A'), a third batch to medium spiked with genistein (G') and the fourth batch to
181	medium containing vinclozolin (V $^+$). Third brood F_1 neonates born from this F_0A^+ , F_0G^+ or
182	$F_0V^{\scriptscriptstyle +}$ generation were divided into two batches, of which one was transferred to the control
183	medium $(F_1A^-, F_1G^- \text{ or } F_1V^-)$. These daphnids were thus only briefly exposed to the test
184	substances during the first hours of their life cycle. The other batch was kept in the medium
185	containing 5-azacytidine (F_1A^+) , genistein (F_1G^+) or vinclozolin (F_1V^+) . F_1A^- , F_1G^- and
186	F_1V^- third brood, non-exposed offspring were further cultured in the control medium (F_2A^- ,
187	F_2G^- and F_2V^-), while offspring from F_1A^+ , F_1G^+ and F_1V^+ were cultured in the same
188	medium as their parents (F_2A^+, F_2G^+) and F_2V^+ . Organisms were fed daily with an algae
189	mix consisting of <i>P. subcapitata</i> and <i>C. reinhardtii</i> in a 3/1 cell number ratio. The amount
190	fed increased during the test: 119 μ g/org/day in the first week and 250 μ g/org/day from the
191	second week onwards.
192	
193	2.2 Chemical analysis
194	Samples from the different treatments were taken at the beginning and end of the acute test,
195	just before and after medium renewals in the chronic test and in each generation of the
196	multigeneration experiments. Samples were stored in glass tubes at -20 $^{\circ}$ C prior to analysis.
197	The (deoxy)nucleoside analogues 5-azacytidine and 5-aza-2'-deoxycytidine were analyzed,
198	after filtration of the incubation medium over a 0.45 μm filter, using LC-MS/MS with an
199	external standard series in methanol. Chromatography was carried out on a Thermo
200	Finnigan Surveyor LC system (San Jose, CA, USA) comprising a quaternary pump and an
201	autosampler, equipped with a 5 μm 2.5 x 450 mm Sphinx C_{18} column obtained from
202	Macherey-Nagel (Düren, Germany). Compounds were eluted at a flow rate of 400 $\mu L \text{/min}$
203	using a linear gradient starting with a mixture of 50% A (0.01% aqueous formic acid) and
204	50% B (acetonitrile) for 5 min. The methanol percentage was increased from 50 to $100~%$
205	during a 5 minute period. Analytes were detected with an LTQ ion trap mass spectrometer
206	(Thermo Finnigan, San Jose, CA, USA) in the MS-MS positive ion mode using a Heated
207	Electrospray Ionisation (HESI) interface at 180°C. Mass 245 ([M +H] ⁺) was isolated for 5-
208	azacytidine or mass 229 ([M +H] ⁺) for 5-aza-2'-deoxycytidine. The precursor isolation
209	width was set to 2 Da, the activation Q to 0.25, and the collision energy to 40 %.
210	The isoflavones genistein and biochanin A were extracted from the incubation media (2

211	mL) by solid phase extraction using Isolute C18 columns (500 mg). Prior to extraction,
212	chrysene (200 ng) was supplemented as an internal standard in both the samples and in the
213	biochanin A and genistein standard series. The Isolute cartridges were preconditioned with
214	4 mL methanol and 4 mL water. After passing the eluate and washing the cartridges with 4
215	mL water and 2 mL hexane, elution was performed with 4 mL methanol. Subsequently, the
216	extracts were evaporated to dryness under a stream of nitrogen and redissolved in 120 μL
217	of methanol- 0.5% formic acid (50:50). Finally the extracts were centrifuged during 10 min
218	at 2500xg and 4°C and injected into the LC-MS/MS in a volume of 30 μ L. The HPLC
219	apparatus consisted of a HP 1100 series pump, an AS3000 autosampler and HP vacuum
220	degasser (Agilent, Palo Alto, USA), equipped with a Symmetry C_{18} column (5 μ m, 150 x
221	2.1 mm, Waters, Milford, USA). For separation of the different compounds, a linear
222	gradient was used starting with a mixture of 50% A (0.5% ageous formic acid) and 50% B
223	(methanol). The methanol percentage was increased from 50 to $100\ \%$ during a 15 minute
224	period. The flow rate was set at 300 $\mu\text{L/min}.$ Between each sample the column was allowed
225	to equilibrate at initial conditions (10 minutes). Analysis was carried out using an LCQ^{DECA}
226	Ion Trap Mass Analyzer (Thermo Electron, San Jose, USA) with an electrospray ionization
227	(ESI) interface (Thermo Electron). The compounds were detected in the MS-MS positive
228	ion mode. Alternating scans were used to isolate [M +H] ⁺ ions at masses 269.30 for
229	genistein and 283.20 for biochanin A. The precursor isolation width was set to 2 Da, the
230	activation Q to 0.25, and the collision energy to 45 %.
231	Vinclozolin was extracted from the incubation medium (1 or 5 mL) by liquid /liquid
232	extraction using three sequential extraction steps with equal volumes of hexane/diethylether
233	(50:50). Prior to extraction, heptachlor was supplemented to the incubation medium (50 μL
234	of 20 mg/L) to serve as internal standard. After centrifugation of the solvent-incubation
235	medium mixture at 2500xg for 5 min, the different solvent fractions were pooled and dried
236	under a nitrogen stream at 40°C. Finally, the extract was redissolved in hexane and
237	subsequently measured by GC-MS/MS. These analyses were performed using a Trace Gas
238	Chromatograph 2000 fitted with a Polaris ion trap mass spectrometer (Thermo Fisher,
239	Austin, TX, USA) and a Carlo Erba AS2000 Autosampler (Thermo Fisher). Helium
240	(99.99% purity, Air Liquide, France) was used as carrier gas at a flow rate of 1 mL min ⁻¹
241	and perfluorotributylamine (FC43) was used as calibration gas. A sample volume of 1 µL

242	was injected (split flow 60 mL min ⁻¹ , splitless time 1 min). Chromatographic separation of
243	the analytes and internal standard was performed on a BPX5 capillary column (25 m x 0.22
244	mm ID) with a 5% phenyl-polysilphenylene-siloxane phase (0.25 μm film) (SGE
245	Analytical Science Pty. Ltd., Victoria, Australia). The temperature program started at an
246	initial temperature of 80°C. Temperature was increased to 140°C applying a ramp of 50°C
247	min ⁻¹ . Subsequently, an increase to 260°C was assessed using a ramp of 5°C min ⁻¹ , holding
248	this temperature for 3 minutes. Spectra were obtained in positive electron impact ionisation
249	(EI) mode MS-MS scan. Mass range depended on the selected precursor ion, and the
250	collision energy ranged from 1.15 to 1.30 V.
251	For all analyses data processing was performed using Xcalibur® 2.0 software (Thermo
252	Electron).
253	
254	2.3 DNA methylation analysis
255	DNA was extracted from 21 day-old daphnids at the end of the chronic test and from
256	daphnids on the first day the third brood was observed (day 14 to day 16) in the
257	multigeneration experiment. This was not possible in the $F_1A^{\scriptscriptstyle +}$ treatment, in which no
258	reproduction was observed up to day 21. Here DNA extraction of the 21 day-old daphnids
259	was performed. The MasterPure TM kit (Epicentre, Madison, WI, USA) was used following
260	the protocol for DNA extraction from tissue as provided by the manufacturer. Four to six
261	adult organisms per replicate were rinsed with deionized water, blotted dry and shock
262	frozen in liquid nitrogen prior to extraction. Hydrolysis of DNA was performed following
263	Crain (Crain 1990). A sample of 1.3 to 4.25 μg DNA was adjusted to 16.8 μL with Tris-
264	HCl (1 mM, pH 7.4). The DNA was denatured by heating at 100 °C for 3 min in a warm
265	water bath. The denatured DNA was hydrolyzed by adding 0.75 μL (1.5 units) nuclease P1
266	(Sigma-Aldrich, Bornem, Belgium) and 1/10 volume of 0.1 M NH ₄ OAc (pH 5.3). This was
267	incubated at 45°C for 2 h. Subsequently, 0.002 units phosphodiesterase I (Sigma-Aldrich,
268	Bornem, Belgium) and 1/10 volume of 1 M NH ₄ HCO ₃ at pH 7.8 were added to the sample.
269	This was incubated at 37 $^{\circ}$ C for 2 h. Phosphates were removed by adding 0.5 units alkaline
270	phosphatase (Fermentas, St. Leon-Rot, Germany) and 1/10 volume phosphatase buffer and
271	this mixture was incubated at 37 °C for 1 h, after which it was stored at -20 °C prior to
272	analysis.

273	Hydrolyzed DNA samples were analyzed for the detection of 5-methyl-2'-deoxycytidine on
274	a Waters Acquity Ultra Performance Liquid Chromatography (UPLC) system with a
275	Tandem Quadrupole (TQ) detector (Waters, Zellik, Belgium). The system was controlled
276	by MassLynx software (version 4.1, Waters). LC separation was performed on a Waters
277	Acquity UPLC HSS T3 1.8 μm column of 2.1 x 100 mm at a flow rate of 300 $\mu L/min$. A
278	binary solvent system was used: 0.1% formic acid in water and 0.1% formic acid in
279	acetonitrile. Inlet method, gradient, mass spectrometric methods and conditions, standard
280	curves and monitored transition pairs were as described before (Vandegehuchte et al.
281	2009b) For a number of samples the solvent flow was 350 μ L/min and for the samples from
282	the multigeneration experiment a different inlet method was used to optimize system
283	stability. From $t=0$ min to $t=2$ min elution remained isocratic at 300 μ L/min and 99% of
284	water, after which a gradient was created to 70.9 % aqueous at $t = 4.40$ min. This dropped
285	to 65% aqueaous at $t = 4.50$ min and was set to a washing step of 90% organic from $t = 4.51$
286	min to $t = 5.51$ min. Subsequently an equilibration step at initial conditions but with a flow
287	of 500 μ L/min followed from t = 5.52 min to t = 7.51 min, after which the flow was set
288	back to the initial 300 μ L at the end of the run at t = 7.52 min.
289	The relative 5-methyl-2'-deoxycytidine (mdC) content is expressed as a fraction of the total
290	measured dG concentration or as % [mdC]/[dG] (Song et al. 2005). Both [mdC] and [dG]
291	were quantified using an external standard series prepared with commercially available
292	mdC (US Biological, Swampscott, MA, USA) and dG (Aldrich, Bornem, Belgium).
293	It should be clear that this method measures overall cytosine methylation, implying that
294	effects on the DNA methylation at specific loci may go undetected, e.g. when
295	hypomethylation in a certain region of the genome is accompanied by hypermethylation in
296	another region.
297	
298	2.4 Statistical analysis
299	$EC_{50}s$ (Effective Concentration causing immobility in 50% of the daphnids) for the acute
300	tests were calculated with the trimmed Spearman-Karber method using the US EPA
301	software (http://www.epa.gov/nerleerd/stat2.htm) (Hamilton et al. 1977). All other statistics
302	were performed with Statistica (Statistica, Tulsa, USA) or with Excel (Microsoft,
303	Redmond, USA). Differences in reproduction (total number of juveniles per surviving

304	female adult), length or DNA methylation between treatments in the chronic and
305	multigeneration experiment were assessed using Dunnett's test based on the pooled residual
306	standard deviation, which was calculated with ANOVA. If an increase or decrease in
307	reproduction, length or DNA methylation could be expected a priori, a one-tailed Dunnett's
308	test was used. In all other cases a two-tailed Dunnett's test was performed. For DNA
309	methylation as % [mdC]/[dG], a bootstrapping method was used to incorporate the error
310	due to the uncertainty of the standard curves of mdC and dG (Vandegehuchte et al. 2009b).
311	The method (either with or without the bootstrapping) resulting in the largest standard
312	deviation was used for assessing differences between treatments. For reproduction in the
313	multigeneration experiment, F_0A^+ and F_1A^+ were treated as outliers due to the large number
314	of replicates with zero reproduction (which caused the variance in these treatments to be
315	very low). Assumptions of normality and homoscedasticity were tested with Shapiro-
316	Wilk's test and Bartlett's test, respectively. When the homoscedasticity assumption was not
317	met, a Kruskal-Wallis non parametric test was used. If differences between treatments were
318	detected with Kruskal-Wallis, treatments were compared with controls using Mann-
319	Whitney U tests. When the DNA methylation between a treatment and a control was
320	compared with Mann-Whitney U, a bootstrapping method was also used to incorporate the
321	uncertainties on the standard curves of mdC and dG. For both treatments with r replicates, a
322	random replicate was sampled r times (with replacement). For each selected replicate, a
323	random value was selected from the t distribution associated with the uncertainty of the
324	regression curves. This was repeated 2000 times. On these 2000 sets of two treatments, a
325	Mann-Whitney U test was performed, with an associated p-value. The average of these
326	2000 p-values was taken as the final p-value for this Mann-Whitney U test. In all tests, the
327	limit of significance was set at $p = 0.05$.
328	
329	3 Results
330	
331	3.1 Acute tests
332	Control immobility was 0 % in all controls, including the solvent controls. $EC_{50}s$ are
333	summarized in Table 1. For 5-aza-2'-deoxycytidine, no immobility was observed in any of
334	the concentrations tested, while for vinclozolin, only 2 out of 30 daphnids were immobile

335	after 48 h exposure to the highest concentration. The EC ₅₀ s are based on concentrations
336	measured at the beginning of the test. The concentrations generally decreased during the
337	48h tests. At the end of the test, the concentrations of 5-azacytidine, 5-aza-2'-deoxycytidine
338	and vinclozolin were reduced to the following fractions of the initial concentrations: 6 to 77
339	%, 29% and 1 to 15%, respectively (see electronic supplementary material). The isoflavone
340	concentrations remained rather constant throughout the test. From nominal concentration of
341	≥ 3.6 mg/L (measured concentration 0.182 \pm 0.099 mg/L) vinclozolin, small non-dissolved
342	particles could be observed in the test medium. This is in accordance with the water
343	solubility of 3.5 mg/L vinclozolin at 20 °C (Vallero et al. 2003).
344	
345	3.2 Chronic experiments
346	Differences between treatments will only be discussed when they are statistically
347	significant ($p < 0.05$).
348	LOECs are expressed as average measured concentrations in freshly prepared medium
349	(Table 2). The concentration of some compounds decreased considerably between two
350	medium renewals. 5-azacytidine and 5-aza-2'-deoxycytidine were not detectable after three
351	days, while after two days on average 22% and 49% (respectively) of the original
352	concentration was present in the medium. For biochanin A and genistein, there was no
353	consistent trend. Vinclozolin concentrations decreased to approximately 0.4 to 1.5% of the
354	initial concentration after three days.
355	Two quality controls (QCs) for DNA methylation were measured in triplicate, resulting in
356	relative standard deviations (RSDs) of 2.5% and 7.4% for mdC and 1.3% and 1.6% for dG.
357	Relative Errors (REs) were -0.1% for mdC for both QCs and 5.2 and 0.3% for dG.
358	No difference was detected in reproduction, length or DNA methylation between controls
359	with 0, 0.0176 and 0.05% DMSO that were started with the same batch of daphnids. These
360	controls were pooled for the calculation of the pooled residual standard deviation with
361	ANOVA for the experiments with biochanin A, genistein and vinclozolin.
362	For all test substances, an effect on at least one of the endpoints (reproduction, length and
363	overall DNA methylation) could be observed. Vinclozolin did not elicit an effect on
364	reproduction at the tested concentrations. 5-aza-2'-deoxycytidine did not induce an effect
365	on body length at any of the tested concentrations, while biochanin A, 5-aza-2'-

366	deoxycytidine and genistein did not affect overall DNA cytosine methylation.
367	The initial two highest concentrations of the 5-azacytidine test caused 100% mortality after
368	two days. Therefore, two lower 5-azacytidine concentrations and a new control were
369	introduced into the design. Reproduction was determined as the number of living juvenile
370	daphnids per surviving female adult. In the 5-azacytidine experiment, a large number of
371	aborted broods was observed at the three highest concentrations.
372	
373	3.3 Multigeneration experiment
374	As observed also in the chronic experiment, the 5-azacytidine concentration decreased
375	between medium renewals, with no detectable concentration after three days and on
376	average 29% of the initial concentration after two days. The genistein concentration of 4.7
377	± 0.7 mg/L was very similar to the highest concentration in the chronic experiment and
378	remained stable throughout the multigeneration experiment. Vinclozolin concentrations
379	measured in the fresh test media of the multigeneration experiment decreased with time
380	from 0.54 \pm 0.19 mg/L in F ₀ to 0.45 \pm 0.16 mg/L in F ₁ and 0.18 \pm 0.15 mg/L in F ₂ . The
381	vinclozolin concentration decreased between two renewals. After three days, approximately
382	0.1% to 1.1% of the initial vinclozolin concentration in freshly prepared medium was
383	detected.
384	The highest 5-azacytidine concentration of the chronic test, for which a reduction in overall
385	DNA methylation was observed, yielded a reproduction of only 1.5 juveniles per surviving
386	female. A reproduction as low as this is not suitable for a multigeneration experiment.
387	Therefore the second highest concentration was chosen for the A ⁺ exposures. The highest
388	genistein concentration of the chronic experiment was selected for the G+ exposures, to
389	confirm the absence of an effect on overall DNA methylation. For vinclozolin, the highest
390	concentration of the chronic test, in which a reduction in overall DNA methylation was
391	observed, was chosen as exposure concentration in the multigeneration experiment.
392	Reproduction was affected in the F ₀ daphnids exposed to 5-azacytidine and genistein (Fig.
393	2). This effect was not passed on to the F_1G^- offspring. The F_1A^- treatment was accidentally
394	stopped at day 14, at which time no third brood was present yet. However, reproduction at
395	day 14 was significantly lower in F_1A^- compared to F_1C (Mann-Whitney U test, $p = 0.029$).
396	A clear effect on reproduction was also observed in F_1A^+ , in which no reproduction was

397	observed up to the end of the test (day 21). In the F ₂ generation, none of the treatments
398	exhibited a significantly lower reproduction than the control. No mortality was observed in
399	the controls of the three generations.
400	On day 7, reductions in the length of the daphnids was noted in all exposed treatments
401	except in F_1V^+ (Fig. 3). Of the non-exposed F_1 and F_2 treatments, only A^- exhibited a
402	reduction in length.
403	Overall DNA methylation expressed as %[mdC]/[dG] ranged from 0.11% to 0.40%. The
404	two quality controls for DNA methylation showed that the RSDs were 6.9% and 0.7% for
405	mdC and 2.7% and 0.001% for dG. REs were 2.8% and -6.7% for mdC and -0.4% and
406	5.4% for dG. The relative proportion of 5mdC in DNA was reduced in F_0A^+ and F_0V^+ , but
407	not reduced nor increased in F_0G^+ (Fig. 4). The reduction in F_0A^+ was also observed in its
408	$F_1A^{\scriptscriptstyle -}$ and $F_2A^{\scriptscriptstyle -}$ offspring. In the $F_1A^{\scriptscriptstyle +}$ treatment, only one replicate could be measured due to
409	high mortality and low biomass of the organisms. The overall DNA cytosine methylation
410	level was only 57% of that in the control, but no statistical significance could be attributed
411	to this. The reduction in methylation observed in $F_0V^{\scriptscriptstyle +}$ was also present in the $F_1V^{\scriptscriptstyle +}$
412	offspring (exposed), but not in the F_1V^- (non-exposed) offspring. In the subsequent
413	generation however, the F ₂ V organisms exhibited a smaller amount of global DNA
414	methylation than the F ₂ C.
415	
416	4 Discussion
417	
418	4.1 Acute tests
419	From the acute test results, it is clear that 2'-deoxy-5-azacytidine (21 mg/L) and vinclozolin
420	(1.685 mg/L) had no effect on the immobility of the daphnids at the tested concentrations.
421	This is somewhat unexpected because the material safety data sheet of vinclozolin (Sigma)
422	reports a (nominal) 48 h EC ₅₀ for <i>D. magna</i> of 3.65 mg/L. However, our results are in
423	agreement with those of Haeba et al. (2008), who found no acute effect of vinclozolin up to
424	its water solubility. The noted decrease in concentration of the (deoxy)nucleoside analogues
425	and vinclozolin during the exposure, which was also observed in the subsequent chronic
426	and multigeneration experiments, was not unexpected. Indeed, 5-azacytidine, 2'-deoxy-5-
427	azacytidine and vinclozolin are not stable in aqueous environments and hydrolyze to

428	several by-products (Lin et al. 1981; Szeto et al. 1989; Zhao et al. 2004). However, it was
429	not the purpose of this study to determine exact effective concentrations of these
430	substances. Instead the main goal of this study was to investigate whether the substances or
431	their degradation products could elicit possible transgenerational epigenetic effects (and
432	this based on measured substance concentrations).
433	
434	4.2 Chronic experiments
435	Based on the results of the acute tests, a range of concentrations was chosen for the chronic
436	experiment aimed at establishing a sublethal concentration which has an effect on DNA
437	methylation and reproduction or growth. This concentration could subsequently be used in
438	the multigeneration experiment. For all five compounds, an effect on length or reproduction
439	was noted in at least one of the tested concentrations.
440	No effect on overall DNA methylation was observed in the chronic experiments with
441	biochanin A, genistein and 2'-deoxy-5-azacytidine. The potential inhibition of DNMT
442	activity by biochanin A and 2'-deoxy-5-azacytidine, as described by Fang et al.(2005) and
443	Piekarz et al. (2009) respectively, did not result in an overall decrease in DNA methylation
444	in exposed Daphnia. Genistein has been shown to inhibit DNMT activity, resulting in
445	reduced methylation in the methylated promoter regions of three genes in a human
446	esophagous carcinoma cell line (Fang et al. 2005). On the other hand, genistein induced
447	hypermethylation in CpG islands and restored hypomethylated loci in mice (Day et al.
448	2002; Dolinoy 2007). Our results suggest that in D. magna, genistein either did not affect
449	DNA methylation mechanisms at all, or induced hypomethylation and hypermethylation at
450	different loci, resulting in an unchanged overall DNA methylation compared to the control.
451	In the highest genistein concentration, which was selected for the multigeneration
452	experiment, reproduction was reduced. A negative effect on reproduction has also been
453	described in mice, where administration of genistein via drinking water resulted in
454	decreased oocyte maturation and in vitro fertilization, as well as early embryonic
455	developmental injury (Chan 2009).
456	Exposure to the nucleoside analog 5-azacytidine caused a concentration dependent effect
457	on reproduction, with a high number of aborted broods in the highest treatment. This
458	compound is known to cause preimplantation loss and reduced fertility when administered

1 59	to male rats before mating (Doerksen et al. 1996). The demethylating effect, which was
160	detected in D. magna exposed to the highest concentration, was expected based on the
161	known interaction of 5-azacytidine with DNMTs (Ghoshal et al. 2002).
162	The absence of an effect on reproduction of vinclozolin at the highest tested concentration
1 63	of 0.43 mg/L corroborates the results of Haeba et al. (2008) who reported no effects on
164	reproduction at a nominal concentration of 1 mg/L. However, whereas a small but
165	significant decrease in body length was observed in daphnids exposed to 0.43 mg/L
166	vinclozolin in the current study, no such effect was noted by those authors. Vinclozolin
167	exposure induced both hypermethylation and hypomethylation events at 25 regions in the
168	rat genome (Anway et al. 2005). Inawaka et al. (2009), however, could not confirm the
169	vinclozolin-induced DNA methylation changes in one of those regions within the
17 0	lysophospholipase gene. In D. magna, we observed a reduction in overall DNA methylation
171	upon exposure to 0.43 mg/L vinclozolin, indicating that vinclozolin or its degradation
172	products do interact with DNA methylation.
17 3	Global DNA hypomethylation, as observed here in vinclozolin and 5-azacytidine exposed
174	daphnids, has been associated with cell proliferation and with hypomethylation of
175	transposable elements which can alter gene expression (Schulz 2006; Huang et al. 2008).
176	This observation has also been reported in rat, mouse and human cells or tissues after
177	exposure to various environmental chemicals (Baccarelli et al. 2009)
178	
179	4.3 Multigeneration experiment
180	First, the results of the F ₀ generation are compared with the results of the chronic
1 81	experiment. Effects on length, reproduction and DNA methylation in exposed F_0 daphnids
182	generally corroborate the effects observed in the chronic experiment. In F_0A^+ , however, the
183	reduced length at day 7 and the reduction in DNA methylation were not observed at the
184	corresponding nominal concentration in the chronic test. It may be noted that the control
185	length of 2.61 ± 0.08 mm at day 7 in the multigeneration experiment is lower than that of
186	2.73 ± 0.12 in the chronic 5-azacytidine experiment. The batch of smaller daphnids with
187	which the multigeneration experiment was initiated appears to be more sensitive to 5-
188	azacytidine exposure.
189	The following paragraph discusses the effects in daphnids exposed during consecutive

490	generations. Increased effects on reproduction (reduced number of produced eggs) in
491	different generations under continuous exposure to environmental stress have been reported
492	for D. magna (Alonzo et al. 2008). Similar continuing phenotypic effects were observed in
493	our study for reproduction during azacytidine exposure and for length during azacytidine
494	and genistein exposure. Global DNA hypomethylation in both F_0A^+ and F_1A^+ indicates a
495	possible link with the reduced length and reproduction. In porcine fetal fibroblasts, growth
496	reduction combined with lower DNA methylation was observed after treatment with 5-
497	azacytidine (Mohana Kumar et al. 2006). No connection between overall DNA methylation
498	status, which was not altered, and length reduction in genistein exposed daphnids can be
499	made. The length reduction in the F_0V^+ daphnids was not observed in the F_1V^+ daphnids,
500	but returned in the F_2V^{\dagger} daphnids. The overall DNA-methylation in F_1V^{\dagger} on the contrary
501	remained smaller than that of the control organisms, while it was not significantly different
502	from the control in F_2V^+ , suggesting that the length reduction in the V^+ treatments is not
503	directly linked to the reduced DNA methylation.
504	When evaluating the effects in non-exposed offspring produced by exposed F_0 daphnids, a
505	reduction in length and reproduction was noted in the F_1A^- daphnids, who were only
506	exposed to 5-azacytidine during the first hours of their life cycle. This coincided with a
507	similar decrease in DNA methylation compared to the control as in F ₀ . The reduced DNA
508	methylation in the non-exposed F ₂ A ⁻ daphnids demonstrates, for the first time in <i>Daphnia</i> ,
509	a transgenerational alteration in an epigenetic system. The reproduction in $F_2A^{\scriptscriptstyle \text{-}}$ returned to
510	a level not significantly differing from the control. However, body length at day 7 remained
511	reduced. Although we cannot demonstrate any direct relationship with the epigenome, these
512	observations suggest the possibility of an epigenetic transgenerational effect on juvenile
513	growth in <i>D. magna</i> . Transgenerational transfer of 5-azacytidine to F_2A^- is highly unlikely
514	because of its short half-lives of 1.82 ± 1.51 h in plasma and approximately 4 h in neutral to
515	alkaline solutions. It can be demonstrated that metabolites of 5-azacytidine do not inhibit
516	DNMTs (Zhao et al. 2004; Chabner et al. 2006; Esteller 2008a).
517	The absence of any effect on body length, reproduction/mortality or overall DNA
518	methylation in $F_1G^{\scriptscriptstyle -}$ and $F_1V^{\scriptscriptstyle -}$ reveals that the observed effects in the genistein and
519	vinclozolin exposed F ₀ treatments are not transgenerationally heritable to non-exposed
520	offspring. There is no obvious explanation for the reduction in overall DNA methylation in

521	F_2V^- . If this would be an epigenetic effect induced by the F_0V^+ vinclozolin exposure, a
522	similar reduction in DNA methylation should have been observed in F_2V^+ .
523	It should be noted that with the methylation assessment method used in this study, no
524	information could be obtained on the location and hence the possible function of the
525	methylated cytosines in D. magna DNA from different treatments. The D. magna genome
526	is currently being sequenced at Indiana University's Center for Genomics and
527	Bioinformatics and next-generation sequencing also opens new possibilities with regard to
528	genome wide DNA methylation analysis. Future research should therefore focus on the
529	specificity of the epigenetic effects on DNA methylation caused by exposure to
530	environmental chemicals and the molecular pathways involved. This may elucidate the
531	possible epigenetic mechanism behind the juvenile growth reduction in the offspring of 5-
532	azacytidine exposed daphnids.
533	
534	5 Conclusions
535	
536	For the first time, direct effects of exposure to chemicals on overall DNA methylation in
537	Daphnia have been described. Exposure to elevated concentrations of the fungicide
538	vinclozolin and the nucleoside analog 5-azacytidine (in combination with their degradation
539	products in aqueous media) resulted in a decrease in overall DNA-methylation. This effect
540	on DNA methylation was not observed after exposure to lower concentrations of these
541	substances. The isoflavones genistein and biochanin A and the deoxynucleoside analog 2'-
542	deoxy-5-azacytidine did not induce an effect on overall D. magna DNA methylation at
543	exposure concentrations for which effects on reproduction were observed. 5-azacytidine
544	was the only compound for which the effect of reduced DNA methylation was stably
545	transferred to two subsequent non-exposed generations. The demonstration of a
546	transgenerational alteration in an epigenetic system in D. magna indicates the possibility of
547	transgenerational inheritance of environment-induced epigenetic changes in non-exposed
548	subsequent generations.
549	
550	Acknowledgements
551	The authors want to thank Emmy Pequeur for technical assistance. This study has been

- 552 financially supported by the Ghent University Special Research Fund (GOA project No.
- 553 01G010D8) and by the Flemish Research Foundation (FWO-Vlaanderen, project No.
- 554 3G022909 09).

555556

References

557

- Agrawal, A.A., Laforsch, C., Tollrian, R., 1999. Transgenerational induction of defences in animals and plants. Nature 401, 60-63.
- Alonzo, F., Gilbin, R., Zeman, F.A., Garnier-Laplace, J., 2008. Increased effects of internal alpha
 irradiation in Daphnia magna after chronic exposure over three successive generations.
 Aquat. Toxicol. 87, 146-156.
- Anway, M.D., Cupp, A.S., Uzumcu, M., Skinner, M.K., 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466-1469.
- Baccarelli, A., Bollati, V., 2009. Epigenetics and environmental chemicals. Curr. Opin. Pediatr. 21, 243-251.
- Bird, A., 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6-21.
- Bird, A.P., 1995. Gene number, noise reduction and biological complexity. Trends Genet. 11, 94-569 100.
- Bongiorni, S., Cintio, O., Prantera, G., 1999. The relationship between DNA methylation and chromosome imprinting in the coccid Planococcus citri. Genetics 151, 1471-1478.
- Bongiorni, S., Pugnali, M., Volpi, S., Bizzaro, D., Singh, P.B., Prantera, G., 2009. Epigenetic marks for chromosome imprinting during spermatogenesis in coccids. Chromosoma 118, 501-512.
- Cavalli, G., Paro, R., 1998. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93, 505-518.
- Chabner, B.A., Longo, D.L., 2006. Cancer chemotherapy and biotherapy: principles and practice.
 Lippincott Williams & Wilkins, Philadelphia, PA.
- 578 Chan, W.-H., 2009. Impact of genistein on maturation of mouse oocytes, fertilization, and fetal development. Reprod. Toxicol. 28, 52-58.
- 580 Chuang, J.C., Jones, P.A., 2007. Epigenetics and microRNAs. Pediatr. Res. 61, 24R-29R.
- Clark, S.J., Harrison, J., Paul, C.L., Frommer, M., 1994. High-sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990-2997.
- Crain, P., 1990. Preparation and enzymatic hydrolysis of DNA and RNA for mass spectrometry.
 Meth. Enzymol. 193, 782-790.
- 585 Cropley, J.E., Suter, C.M., Beckman, K.B., Martin, D.I.K., 2006. Germ-line epigenetic modification 586 of the murine A(vy) allele by nutritional supplementation. Proc. Natl. Acad. Sci. USA 103, 587 17308-17312.
- Day, J.K., Bauer, A.M., desBordes, C., Zhuang, Y., Kim, B.E., Newton, L.G., Nehra, V., Forsee,
 K.M., MacDonald, R.S., Besch-Williford, C., Huang, T.H.M., Lubahn, D.B., 2002. Genistein
 alters methylation patterns in mice. J. Nutr. 132, 2419S-2423S.
- Doerksen, T., Trasler, J.M., 1996. Developmental exposure of male germ cells to 5-azacytidine

- results in abnormal preimplantation development in rats. Biol. Reprod. 55, 1155-1162.
- 593 Dolinoy, D., 2007. Maternal nutrient supplementation counteracts bisphenol A-induced DNA 594 hypomethylation in early development. Proc. Natl. Acad. Sci. USA 104, 13056-13061.
- Dolinoy, D.C., Weidman, Jennifer R., Waterland, Robert A., Jirtle, R.L., 2006. Maternal genistein
 alters coat color and protects avy mouse offspring from obesty by modifying the fetal
 epigenome. Environ. Health Perspect. 114, 567-572.
- Elendt, B.-P., Bias, W.-R., 1990. Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing. Effects of the optimization of culture conditions on life history parameters of D. magna. Water Res. 24, 1157-1167.
- Esteller, M., 2008a. Epigenetics in Biology and Medicine. CRC Press, Boca Raton, FL.
- Esteller, M., 2008b. Epigenetics in evolution and disease. Lancet 372, S90-S96.
- Fang, M.Z., Chen, D., Sun, Y., Jin, Z., Christman, J.K., Yang, C.S., 2005. Reversal of
 hypermethylation and reactivation of p16INK4a, RARβ, and MGMT genes by genistein and
 other isoflavones from soy. Clin Cancer Res 11, 7033-7041.
- Feil, R., 2008. Epigenetics, an emerging discipline with broad implications. C. R. Biol. 311, 837-607 843.
- Ghoshal, K., Datta, J., Majumder, S., Bai, S., Dong, X., Parthun, M., Jacob, S.T., 2002. Inhibitors of
 histone deacetylase and DNA methyltransferase synergistically activate the methylated
 metallothionein I promoter by activating the transcription factor MTF-1 and forming an open
 chromatin structure. Mol. Cell. Biol. 22, 8302-8319.
- Guil, S., Esteller, M., 2009. DNA methylomes, histone codes, miRNAs: Tying it all together. Int. J.
 Biochem. Cell Biol. 451, 87-95.
- Haeba, M., Hilscherová, K., Mazurová, E., Bláha, L., 2008. Selected endocrine disrupting
 compounds (Vinclozolin, Flutamide, Ketoconazole and Dicofol): Effects on survival,
- occurrence of males, growth, molting and reproduction of Daphnia magna. Environ Sci Pollut Res Int 15, 222-227.
- Hamilton, M.A., Russo, R.C., Thurston, R.V., 1977. Trimmed Spearman-Karber method for
 estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11, 714 719.
- Hebert, P.D.N., 1987. Genetics of *Daphnia*. In: Peters, R.H., de Bernardi, R. (Eds.), *Daphnia*, vol.
 45. Memorie dell'Istituto Italiano di Idrobiologia, Pallanza, pp. 245-284
- Huang, D., Zhang, Y., Qi, Y., Chen, C., Ji, W., 2008. Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicol. Lett. 179, 43-47.
- Inawaka, K., Kawabe, M., Takahashi, S., Doi, Y., Tomigahara, Y., Tarui, H., Abe, J., Kawamura, S., Shirai, T., 2009. Maternal exposure to anti-androgenic compounds, vinclozolin, flutamide and procymidone, has no effects on spermatogenesis and DNA methylation in male rats of subsequent generations. Toxicol. Appl. Pharmacol. 237, 178-187.
- Lin, K.-T., Momparler, R.L., Rivard, G.E., 1981. High-performance liquid chromtographic analysis of chemical stability of 5-aza-2'-deoxycytidine. J. Pharm. Sci. 70, 1228-1232.
- Mandrioli, M., 2007. A new synthesis in epigenetics: towards a unified function of DNA

- methylation from invertebrates to vertebrates. Cell. Mol. Life Sci. 64, 2522-2524.
- Mohana Kumar, B., Jin, H.F., Kim, J.G., Song, H.J., Hong, Y., Balasubramanian, S., Choe, S.Y.,
- Rho, G.J., 2006. DNA methylation levels in porcine fetal fibroblasts induced by an inhibitor of methylation, 5-azacytidine. Cell Tissue Res. 325, 445-454.
- Muyssen, B.T.A., De Schamphelaere, K.A.C., Janssen, C.R., 2006. Mechanisms of chronic waterborne Zn toxicity in Daphnia magna. Aquat. Toxicol. 77, 393-401.
- Oakeley, E.J., 1999. DNA methylation analysis: a review of current methodologies. Pharmacol. Ther. 84, 389-400.
- OECD, 1994. Guidelines for testing of chemicals, Daphnia sp., Acute Immobilisation Test and
 Reproduction Test. OECD, Paris.
- OECD, 1998. Guidelines for testing of chemicals, Daphnia magna reproduction test. OECD, Paris.
- Piekarz, R.L., Bates, S.E., 2009. Epigenetic modifiers: Basic understanding and clinical development. Clin. Cancer Res. 15, 3918-3926.
- Reamon-Buettner, S.M., Mutschler, V., Borlak, J., 2008. The next innovation cycle in toxicogenomics: Environmental epigenetics. Mutat. Res./Rev. Mutat. Res. 659, 158-165.
- 648 Schulz, W.A., 2006. L1 retrotransposons in human cancers. J Biomed Biotechnol 2006, 83672
- Song, L.G., James, S.R., Kazim, L., Karpf, A.R., 2005. Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal. Chem. 77, 504-510.
- Stephan, C.E., 1977. Methods for calculating an LC50. In: Mayer, F.L., Hamelink, J.L. (Eds.),
 Aquatic Toxicology and Hazard Evaluation, vol. ASTM STP 634. American Society for
 Testing and Materials, Philadelphia, PA, pp. 65-84
- Suzuki, M.M., Kerr, A.R.W., De Sousa, D., Bird, A., 2007. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res. 17, 625-631.
- Szeto, S.Y., Burlinson, N.E., Rahe, J.E., Oloffs, P.C., 1989. Kinetics of hydrolysis of the
 dicarboximide fungicide Vinclozolin. J. Agric. Food Chem. 37, 523-529.
- Vallero, D.A., Pierce, J.J., 2003. Engineering the risks of hazardous wastes. Butterworth-Heinemann, Oxford, UK.
- Vandegehuchte, M.B., Kyndt, T., Vanholme, B., Haegeman, A., Gheysen, G., Janssen, C.R., 2009a.
 Occurrence of DNA methylation in Daphnia magna and influence of multigeneration Cd

exposure. Environ. Int. 35, 700-706.

- Vandegehuchte, M.B., Lemière, F., Janssen, C.R., 2009b. Quantitative DNA-methylation in Daphnia magna and effects of multigeneration Zn exposure. Comp Biochem Physiol C: Toxicol Pharmacol 150, 343-348.
- Wang, Y., Wang, C., Zhang, J., Chen, Y., Zuo, Z., 2009. DNA Hypomethylation induced by
 tributyltin, triphenyltin, and a mixture of these in Sebastiscus marmoratus liver. Aquat.
 Toxicol. 95, 93-98.
- Watson, R.E., Goodman, J.I., 2002. Epigenetics and DNA methylation come of age in toxicology.
 Toxicol. Sci. 67, 11-16.
- Youngson, N., Whitelaw, E., 2008. Transgenerational epigenetic effects. Annu. Rev. Genomics
 Hum. Genet. 9, 233-257.

674	Zaffagnini, F., 1987. Reproduction in <i>Daphnia</i> . In: Peters, R.H., de Bernardi, R. (Eds.), <i>Daphnia</i> ,
675	vol. 45. Memorie dell'Istituto Italiano di Idrobiologia, Pallanza, pp. 245-284
676	Zhao, M., Rudek, M.A., He, P., Hartke, C., Gore, S., Carducci, M.A., Baker, S.D., 2004.
677 678	Quantification of 5-azacytidine in plasma by electrospray tandem mass spectrometry coupled with high-performance liquid chromatography. J. Chromatogr. B 813, 81-88.
679	with high-performance fiquid chromatography. J. Chromatogr. B 613, 61-66.
680	Figure captions
681	Fig. 1 Overview of the experimental culture setup for the multigeneration
682	experiment. F_0 , F_1 , F_2 : generations. White rectangles represent control medium.
683	G re y re c tangles represent medium with Vinc lozo lin (0.54 \pm 0.19 mg/Lin F0, 0.45 \pm
684	$0.16~mg/Lin~F_1,0.18\pm0.15~mg/Lin~F_2),Genistein~(4.7\pm0.7~mg/Lin~F_0-F_2$) or 5
685	a za c ytid ine $(2.9 \pm 0.4 \text{ mg/Lin } F_0, 2.3 \pm 0.3 \text{ mg/Lin } F_1)$. Arrows represent offspring.
686	
687	Fig. 2 Mean reproduction in the multigeneration experiment depicted as the
688	number of living juve nile offspring per surviving female at the day of a third brood
689	in the control treatment: day 16 for Fo, day 15 for F1 and KO Error bars indicate
690	standard deviations. : signific antly different from the control in the same
691	generation (Mann-Whitney \searrow) test or Dunnett test, p = 0.0004 and 0.022 for F_0A^+ and
692	$F_0G^+,respectively);\qquad :reproductionatday14,significantlydifferentfromcontrol$
693	re p ro d uc tio n at day 14 (Mann-Whitne y U te st, $p = 0.029$, se e te xt).
694	
695	Fig. 3 Mean length (mm) at day 7 and 15 for the different treatments of the
696	multigeneration experiment. Error bars indica 🔾 standard deviations. :
697	significantly different from the control in the same generation (Mann-Whitney U test
698	or Dunne tt te st, $p < 0.05$).
699	
700	Fig. 4 Mean overall DNA cyto sine methylation expressed as $\%$ [mdC]/[dG] at the
701	day of the third brood in the different treatments of the multigeneration
702	experimer Q. Error bars indicate standard deviations. : significantly different from
703	the control in the same generation (Dunnett test or Mann-Whitney U test, p < 0.05).
704	: Only one replicate could be measured due to high mortality; no reproduction
705	took place and DNA samples were taken at day 21.

22

Table 1 - EC50 (concentration causing 50% immobility) in the acute tests with D. magna exposed to 5-azacytidine, 5-aza-2'-deoxycytidine, biochanin A, geniste in and vinc lozo lin, based on measured concentrations at the beginning of the test.

	EC 50 ± standard	re m a rks
	deviation(mg/L)	Q
5-a za c ytid ine	310 ± 11 ¹	95 % confidence interval: 180-534 mg/L
5-a za -2' -d e o xyc ytid ine	$> 20.8 \pm 0.5$	0% immobility at this concentration
b io c ha nin A	8.50 ± 0.89^2	>95 % confidence interval: $6.59-14.67$
		mg/L
g e niste in	$> 6.93^3$	33% im mobility at this concentration
vinc lo zo lin	> 1.7 ± 1.0	6.7 % immobility at this concentration

¹ Estimated with the trimmed Speaman-Karber method (Hamilton et al. 1977)

² Estimated with the binomial method (Stephan 1977)

³ This value is an underestimation of the real concentration found by extrapolating a polynomial standard curve

Table 2 – Io we stobserved effect concentrations (IOECs) for reproduction, length and overall DNA methylation (based one one-tailed Dunnett testor Kruskal-Wallis test with Mann-Whitney Utest, p < 0.05) as well as relative reproduction, length and DNA methylation at the IOEC as a percentage of the control (ctrl) for the chronic tests with D. magna exposed to 5-azacytidine, 5-aza-2'-deoxycytidine, biochanin A, geniste in and vinclozolin. IOECs are given as average measured concentrations (± standard deviation) in freshly prepared medium.

	Reproduction (nrof juve nile s			Length (mm)			DNA c yto sine methyla tion (%		
	persurviving female)						[mdC]/[dG])		
	LOEC (mg/L)	%	C trl	LOEC	% o f	C trl	LOEC	% o f	C trl
		o f	re p ro d u	(mg/L)	c trl	le ng t	(mg/L)	c trl	methy-
		c trl	c -tio n			h			la tio n
5-a za c ytid ine	16 ± 2	46	81	27.8 ± 3.4^{a}	91	2.73^{a}	27.8 ± 3.4	30	0.26
5-a za -2' -	4.8 ± 0.5	45	81	> 12.8 ±	-	2.73a,	$> 12.8 \pm 0.5$	-	0.26
deoxycytidin				$0.5^{a,b}$		$3.61^{\rm b}$			
e									
b io c ha nin A	4.9 ± 0.9	73	76	0.11 ±	73	$3.70^{\rm b}$	$> 4.9 \pm 0.9$	-	0.20
			4	0.04^{b}					
g e niste in	3.4 ± 1.5	56	76	1.8 ±	93a,b	2.84a,	$> 3.4 \pm 1.5$	129	0.20
				$0.4^{a,b}$		$3.70^{\rm b}$			
vinc lo zo lin	$> 0.43 \pm 0.09$	-	76	0.43 ±	91 ^b	$3.70^{\rm b}$	0.43 ± 0.09	69	0.20
				$0.09^{\rm b}$					

^a Length at day 21

b Length at day 7

Figure 1

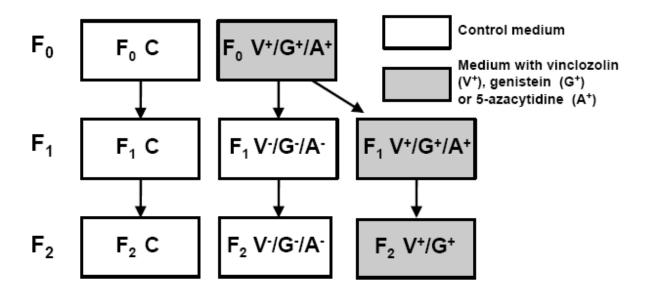


Figure 2



Figure 3

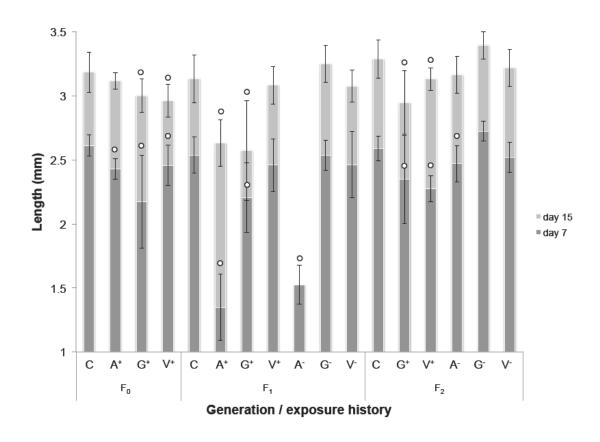
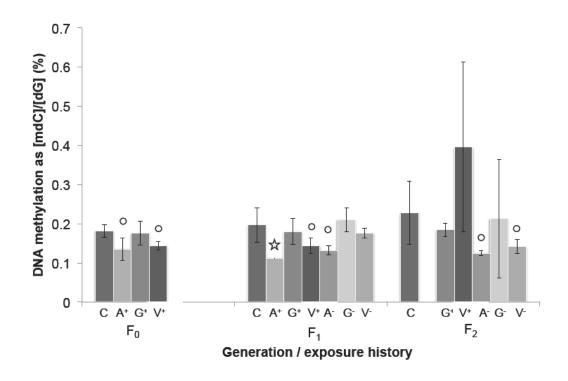



Figure 4

