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Abstract. Occludin is an integral membrane protein 

localizing at tight junctions (TJ) with four transmem- 
brane domains and a long COOH-terminal cytoplas- 

mic domain (domain E) consisting of 255 amino 

acids. Immunofluorescence and laser scan microscopy 

revealed that chick full-length occludin introduced into 

human and bovine epithelial cells was correctly deliv- 

ered to and incorporated into preexisting TJ. Further 
transfection studies with various deletion mutants 

showed that the domain E, especially its COOH- 

terminal ,~150 amino acids (domain E358/504), was 

necessary for the localization of occludin at TJ. Sec- 

ondly, domain E was expressed in Escherichia coli as 
a fusion protein with glutathione-S-transferase, and 

this fusion protein was shown to be specifically bound 

to a complex of ZO-1 (220 kD) and ZO-2 (160 kD) 
among various membrane peripheral proteins. In vitro 

binding analyses using glutathione-S-transferase fusion 

proteins of various deletion mutants of domain E nar- 

rowed down the sequence necessary for the ZO-1/ZO-2 

association into the domain E358/504. Furthermore, 

this region directly associated with the recombinant 

ZO-1 produced in E. coli. We concluded that occludin 
itself can localize at TJ and directly associate with 

ZO-1. The coincidence of the sequence necessary for 

the ZO-1 association with that for the TJ localization 

suggests that the association with underlying cyto- 
skeletons through ZO-1 is required for occludin to be 
localized at TJ. 

T 
HE establishment of compositionaUy distinct fluid 
compartments by epithelium and endothelium is cru- 
cial for the development and function of most organs. 

Tight junction (TJ),~ an element of epithelial and en- 
dothelial junctional complexes, is directly involved in this 
compartmentation by sealing cells to create the primary bar- 
rier to the diffusion of solutes through the paracellular path- 
way (Schneeberger and Lynch, 1992; Gumbiner, 1987, 
1993). TJ also functions as a boundary between the apical 
and basolateral plasma membrane domains, which differ in 
proteins, lipid composition, and physiological functions, to 
create and maintain epithelial and endothelial cell polarity 
(Rodriguez-Boulan and Nelson, 1989). Therefore, TJ has 
been attracting increasing interest among cell biologists. 
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1. Abbreviations used in this paper: GST, glutathione-S-transferase; MBP, 
maltose-binding protein; MDBK, Madin-Darby bovine kidney cells; TJ, 
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Accumulating evidence has shown that some unique pro- 
teins constitute TJ (Anderson et al., 1993; Citi, 1993). The 
first protein identified as a TJ constituent was ZO-1 with a 
molecular mass of 220 kD (Stevenson et al., 1986; Anderson 
et al., 1988). This protein is a peripheral membrane protein 
that is localized in the immediate vicinity of the plasma 
membrane of TJ in epithelial and endothelial cells (Steven- 
son et al., 1986, 1989), whereas it is colocalized with cadhe- 
rins in cells lacking TJ, such as fibroblasts and cardiac mus- 
cle cells (Itoh et al., 1991, 1993; Howarth et al., 1992; 
Tsukita et al., 1992), with some exceptions (Howarth et al., 
1994). As a ZO-l-binding protein, another peripheral pro- 
tein called ZO-2 with a molecular mass of 160 kD has been 
identified (Gumbiner et al., 1991). Unlike ZO-1, the distri- 
bution of this protein is restricted to TJ (Jesaitis and Good- 
enough, 1994). Both ZO-1 and ZO-2 reportedly show se- 
quence similarity to the product of lethal (1) discs large-1 
(dig), one of the tumor suppressor molecules in Drosophila 
(Itoh et al., 1993; Tsukita et al., 1993; Willott et al., 1993; 
Jesaitis and Goodenough, 1994). In addition to ZO-1 and 
ZO-2, two other TJ-specific peripheral membrane proteins 
have been so far identified; cingulin and the 7H6 antigen 
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(Citi et al., 1988; Zhong et al., 1993). They are distributed 
more distantly from the membrane than ZO-1 (Stevenson et 
al., 1989; Zhong et al., 1993). 

To clarify the structure and function of TJ at the molecular 
level, an integral membrane protein working at TJ should be 
identified. However, this integral membrane component re- 
mained elusive for quite some time. Most recently, using 
mAbs, we identified an integral membrane protein named 
occludin that was exclusively localized at TJ both in epi- 
thelial and endothelial cells (Furuse et al., 1993). The follow- 
ing structural characteristics of occludin molecules were 
clarified by eDNA cloning and sequencing (see Fig. 2). (a) 
In the NH2-terminal half, occludin contains four transmem- 
brane domains that segment the molecule into five domains 
(domains A-E). (b) A COOH-terminal half (domain E) con- 
sisting of '~ 250 amino acid residues resides in cytoplasm. 
(c) Charged amino acids mostly locate at domain E. (d) The 
content of tyrosine and glycine residues is very high in the 
extracellular domains (domains B and D). 

Since occludin has been identified and its eDNA has been 
obtained, the following issues on the structure of TJ require 
resolution: how the newly synthesized occludin molecules 
are delivered and localized at'13; how occludin interacts with 
TJ-specific peripheral proteins such as ZO-1 and ZO-2; and 
whether or not the TJ strand is composed solely of occludin 
molecule. While studying these issues, we identified the im- 
portance of the COOH-terminal cytoplasmic domain (do- 
main E) of occludin molecules. In this study, we showed that 
chick occludin introduced into human and bovine epithelial 
cells was correctly delivered to and localized at TJ, and that 
domain E of occludin was necessary for the localization of 
the newly synthesized oceludin at TJ. In vitro binding using 
glutathione-S-transferase (GST)-domain E fusion protein re- 
vealed that occludin directly bound to ZO-1, and that domain 
E was necessary for the occludin-ZO-1 association. Further- 
more, we narrowed down the sequences necessary for TJ lo- 
calization and ZO-1 association, and found that both se- 
quences fell within the same region in domain E. We believe 
that this type of study will lead to further understanding of 
the structure and functions of TJ at the molecular level. 

Materials and Methods 

Cells and Antibodies 

Madin-Darby bovine kidney (MDBK) cells and human intestinal epithelial 
cells (I"84) were obtained from the Japanese Cancer Research Resources 
Bank (Tokyo, Japan) and the American Type Culture Collection (Rockville, 
MD), respectively. Human esophagus fibroblast primary culture cells (PF- 
7N) were provided by Dr. T. Iwazawa (Osaka University). MDBK and PF- 
7N cells were grown in Dulbecco's modified Eagle's medium supplemented 
with 10% FCS. "['84 cells were grown in a I:I mixture of Dulbecco's 

modified Eagle's medium and Ham's F-12 medium supplemented with 

5% FCS. 
Rat anti-chicken occludin mAb (Oc-2) and mouse anti-rat ZO-I mAbs 

(1'8-754, "1'8-109) were obtained and characterized as described (Itoh et al., 
1991; Furuse et al., 1993). Rabbit anti-ZO-2 pAb (R9989) was provided 
by Dr. D. Goodenough (Harvard Medical School, Boston, MA). Mouse 

anti-c-myc mAb was purchased from Oncogene Science Inc. (Manhasset, 

NY). Rabbit anti-bovine brain spectrin pAb was purchased from Chemicon 
International, Inc. (Temecula, CA). 

Occludin Expression Constructs and Mutants 

The expression plasmid (pBATOC) of full-length occludin driven by the 
chick /3-actin promoter was constructed using two plasmids, pX1 and 

pBATEM2. To construct pXl, occludin cDNA containing the whole open 
reading frame was constructed by combining two cDNA fragments, FHI-14 
and FH2-9, at the BglII site (Furuse et al., 1993), and then it was cloned 
into the EcoRI site of pBluescript SK(-). The BglII-SalI fragment of 
pBATEM2 (E-cadherin expression vector; Nose et al., 1988) that encodes 
full-length E-cadherin was replaced with the BamHI-SalI !.6-kb fragment 
obtained from pX1 to construct pBATOC. 

An epitope tag of the partial sequence of c-myc (EQKLISEEDL) was 
linked to the COOH-terminal end of full-length or mutant occludin. For this 
purpose, we used a plasmid pCMYCB that was constructed by N. Funayama 
(National Institute for Physiological Sciences, Okazaki, Japan) as follows. 
An ollgonucleotide encoding EQKLISEEDL followed with two stop cnduns 
and its complement oligonucleotide were synthesized and annealed. The 
EcoRI-EcoRV fragment of pBluescript SK(-) was replaced with this DNA 
fragment to produce pCMYCB. 

Expression plasmids for full-length or mutant occlndin with c-myc tag 
were constructed as follows (see Fig. 2). DNA fragments encoding the en- 
tire domain E of occludin or its deletion mutants were produced by PCR 
using appropriate primers. Using pCMYCB, the oligonucleotide encoding 
c-myc tag was linked to each PCR product. A fragment between BglH (I!e- 
255) and SalI (3' noncoding region) sites in pBATOC were replaced with 
each c-myc-tagged fragment from pCMYCB. 

Proteins expressed by these constructs have an additional Glu-Ser before 
the c-myc tag. Furthermore, rnOc/dN358 and mOc/d(445-474) products 
have additional Glu-Arg-Ser and Glu-Ser at their deletion sites, respectively. 
All DNA fragments in the plasmids amplified by PCR were sequenced using 
the Taq DyeDeoxy TM Terminator cycle Sequencing Kit (Applied Biosystems, 
Inc., Foster City, CA) to insure that no errors were introduced during PCR 
amplification. 

DNA Transfections 

MDBK and PF-7N cells were transfected with DNA using Lipofectin and 
Lipofectamine, respectively (GIBCO BRL, Gaithersburg, MD). Cells cul- 
tured on coverslips were washed once with Opti-MEM (GIBCO BRL), and 
were incubated for 5 h with 1 ml of Opti-MEM containing 1/zg of plasmid 
DNAs and 10/~1 of the reagents, followed by the addition of 3 ml of normal 
medium containing FCS. Cells were then cultured until observation. 

When TM cells were transfected with DNA, the efficiency was improved 
by culturing the cells for >48 h on coverslips in Eagle's MEM containing 
50/~M Ca 2+ (LCM) in the presence of 5% FCS dialyzed against saline. 
Transfection was performed using Lipefectamine as described above in 
LCM and saline-dialyzed FCS instead of Opti-MEM and normal FCS, 
respectively. 24 h after transfection, the medium was replaced with the nor- 
mal medium. 

Immunofluorescence Microscopy and Laser 
Scan Microscopy 

Indirect immunofluorescence microscopy of transfected cells was per- 
formed as described previously (Itoh et al., 1991; Tsukita et al., 1989). 
Briefly, ,,o48 h after transfection, cells were fixed with 1% formaldehyde in 
PBS for 10 rain, followed by soaking in 0.2% Triton X-100 in PBS for 10 
rain. The second antibodies were F1TC-conjngated goat anti-rat IgG (Tago 
Inc., Burlingame, CA) for Oc-2, rhndamine-conjugated goat anti-mouse 
IgG (Chemicon International, Inc.) for T8-754, and FITC-conjugated sheep 
anti-mouse IgG (Amersham International PLC, Bucks, UK) for anti-c-myc 
mAb. Samples were examined using a fluorescence microscope, an Ax- 
iophot photomicroscope, or a laser scan microscope LSM310 (Carl Zeiss, 
Inc., Thornwood, NY). 

Generation of Fusion Proteins 

Occludin-domaln E full-length or mutant cDNAs obtained by PCR were 
introduced into pGEX vectors, pGEX-2T or pGEX-3X (Pharmacia Fine 
Chemicals, Piscataway, N J), to express fusion proteins with GST in Esche- 

richia coli (see Fig. 5). All constructs, except plasmids for GST-OcE and 
GST-OcE/dN358, have an additional Glu-Phe-Ile-Val-Thr-Asp derived from 
pGEX vectors at their COOH-terminal ends of fusion proteins. Fusion pro- 
teins expressed by a plasmid for GST-OcE/d (445-474) have another addi- 
tional Glu-Phe at its deletion site. All DNA fragments amplified by PCR 
were sequenced to insure that no errors were introduced during PCR am- 
plification. Fusion proteins were produced in E. coil (XL-1/Blne) from these 
constructs, according to the procedure described by the manufacturer. 

The fusion protein of mouse ZO-I with maltose-binding protein (MBP) 
was produced using an F22 fragment (190-1235 aa) in pMAL-CRI (New 
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England BioLabs, Beverly, MA), as described previously (Itoh et al., 
1993). 

In Vitro Binding Assay 

In vitro binding assays were performed using a column. Cultures ofE. coli 

expressing GST-fusion proteins (100 ml) were collected by brief centrifuga- 
tion and resuspended in 6 ml of solution K (140 mM KCI, 10 mM Hepes 
[pH 7.5], 1 mM MgCI2, 2 #g/rnl leupeptin, and 1 mM p-amidinophenyl 
methanesulfonyl fluoride hydroehloride [pAPMSF]). After sonication and 
centrifugation at 10,000 g for 10 min, the supernatant was applied to a 
column containing glntathione-Sepharose 4B beads (Pharrnacia Fine 
Chemicals), which was washed with 20 vol of solution K. Thereafter, the 
low salt extract of chick junctional fraction or high salt extract of MDBK 
ceils (see below) was applied onto the column. After washing with 40 vol 
of solution K, bound proteins were eluted with 50 mM Tris-HCl buffer (pH 
8.0) containing 10 mM glutathione. 0.8-ml fractions were collected. Since 
almost all the bound proteins were eluted within the first five fractions, they 
were mixed and used for SDS-PAGE and immunoblotting. 

To detect ¢-spectrin or MBP-ZO-1 fusion protein, binding assays were 
performed by means of the batch method. GST-fusion proteins of oecludin 
were incubated with glutathione beads at 40C for I h. After five washes with 
10 vol of solution K by brief centrifugation, the beads were incubated with 
the high salt extract of MDBK ceils or the extract ofE. coli containing MBP- 
ZO-I fusion protein at 4°C for 1 h. The beads were then washed five times 
with solution K, and the excess solution was removed. Bound proteins were 
released from beads with SDS-PAGE sample buffer. 

The low salt extract of chick junctional fraction was prepared as de- 
scribed previously (Furuse et al., 1993; Tsukita and Tsukita, 1989). The 
extract from '~40 chicks was used in one experiment. The low salt extract 
was freeze dried and resolved in 1 ml of solution K, followed by centrifuga- 
tion at 100,000 g for 1 h. The supernatant was used for the binding assay. 
The high salt extract of MDBK cells was prepared according to the method 
for purifying ZO-1 from mouse brain, as described (Itoh et al., 1991). 
Confluent MDBK cells from two 15-cm dishes were scraped and collected 
by brief centrifugation. They were homogenized in 1 mM NaHCO3 or in 
solution K with tight-fitting Dounce homogenizer, followed by centrifuga- 
tion at 100,000 g for 1 h. The pellet was resuspended by sonication in 1 
ml of 10 mM Hepes buffer (pH 7.5) containing 1 M KC1, 1 mM EGTA, 
2 #g/ml leupeptin, and 0.5 mM PMSF, and was then incubated on ice for 
1 h. After centrifugation at 100,000 g for 1 h, the supernatant was diluted 
with 10 mM Hepes buffer (pH 7.5) at a final concentration of 140 mM KC1. 
Aggregated proteins were removed by centrifugation at 10,000 g for 10 min, 
and the supernatant was used for the binding assay. The extract containing 
MBP-ZO-1 fusion protein was prepared by the same procedure as that for 
GST-occludin fusion proteins. 

Gel Electrophoresis and Immunoblotting 

One-dimensional SDS-PAGE (12.5% gel) was based on the method of 
Laemmli (1970). Gels were stained with Coomassie brilliant blue R-250 or 
by using a silver staining kit (Wako Pure Chemical Industries, Osaka, Ja- 
pan). For immunoblotting, proteins separated by SDS-PAGE were elec- 
trophoretically transferred to nitrocellulose sheets, which were then in- 
cubated with the antibodies. The antibodies were detected with a blotting 
detection kit (Amersham). 

Results 

Localization of Chick Occludin Expressed by a 
Full-length cDNA at Tight Junctions in Human and 
Bovine Epithelial Cells 

Chick occludin eDNA clones were isolated and sequenced 
(Furuse et al., 1993). To construct the expression vector, a 
1.6-kb eDNA encoding full-length occludin was assembled 
from two overlapping clones. This eDNA encodes a 55.9 kD 
occludin polypeptide (Furuse et al., 1993). The complete 
eDNA was subcloned into a mammalian expression vector 
driven by the/3-actin promoter, which was then introduced 
into cultured cells. 

The bovine and human epithelial cell lines, MDBK and 

T84, were selected for our transfection studies. Both types 
of cells bear the typical junctional complex including TJ at 
the most apical portion of the lateral membranes. To detect 
the transiently expressed chick occludin by immunofluores- 
cence microscopy, we used the rat anti-chick occludin mAb 

Oc-2, which did not recognize human and bovine occludin 
(Furuse et al., 1993). 

MDBK cells transfected with plasmids encoding full- 
length occludin displayed a characteristic pattern of fluores- 
cence. In addition to the diffuse staining at perinuclear 
cytoplasm, the concentration of expressed chick occludin 
was detected in a linear fashion at the cell-cell border (Fig. 
1 a). When the transfectants were doubly stained with anti- 
occludin mAb and anti-ZO-1 mAb, ZO-1 appeared to be 
colocalized with the expressed chick occludin concentrated 
at the cell-cell border (Fig. 1 b). Therefore, to precisely 
compare the distribution of occludin with that of ZO-1, we 
analyzed the doubly stained 1"84 transfectants by laser scan 
microscopy (Fig. 1, c and d). As shown in Fig. 1, e and f 
as overlaid computer-generating cross-sectional images, the 
expressed chick occludin and ZO-1 were precisely colocal- 
ized at the most apical region of lateral membranes. In our 
laser scan microscopy system, tight and adherens junctions 
can be resolved (Yonemura et al., 1994). All these observa- 
tions together led us to the conclusion that the expressed 
chick occludin was correctly delivered to and concentrated 
at TJ in human and bovine epithelial cells. 

The question naturally arose as to whether or not occludin 
expressed in nonepithelial cells lacking TJ were delivered to 
cell-cell contact sites. Chick occludin was then introduced 
into the human fibroblast PF-7N. As reported Otoh et al., 
1993), ZO-1 was concentrated at cell-cell contact sites in 
fibroblasts. The introduced occludin was concentrated at 
some of these ZO-l-enriched cell-cell contact sites in cells 
expressing a large amount of occludin (Fig. 1, g and h). 

Sequences in the COOH-terminal Cytoplasmic 
Domain of Occludin Necessary for Localization at 
Tight Junctions 

To analyze the role of the COOH-terminal cytoplasmic do- 
main of occludin molecules (domain E; amino acid residues 
250-504) in their localization at TJ, we performed transfec- 
tions with various domain E deletion mutants. Since the 
efficiency of transfection was significantly higher in MDBK 
than in "1"84 cells, we used the former in the following mutant 
occludin expression studies. We designed an expression vec- 
tor with two major considerations. Immunofluorescence mi- 
croscopy would be used and the sequences encoding the anti- 
genic determinant of the protein should not be lost during the 
construction of deletion mutants. To accomplish these goals, 
a 30-bp sequence encoding a portion of c-myc was added to 
the 3' end of each eDNA construct, allowing us to detect the 
expressed protein by anti-c-myc mAb. 

To narrow down the sequence necessary for the TJ local- 
ization of occludin from both COOH- and NH2-terminal 
sides, we constructed several COOH- or NH:-terminal 
truncations of domain E from full-length occludin with the 
c-myc epitope on their COOH-terminal end (Fig. 2). As 
shown in Fig. 3 a, the c-myc-tagged, full-length occludin 
(mOc) was transiently expressed and localized at TJ in 
MDBK cells, indicating that the tag peptide did not interfere 
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Figure L Subcellular distribution of chick full-length occludin in transient transfectants. Bovine and human epithelial cells, MDBK (a 
and b) and 1"84 (c-f), respectively, or human fibroblasts, PF-7N (g and h) were transfected with plasmids encoding full-length occludin~ 
and were then doubly stained with anti-chick occludin mAb, Oc-2 (a, c, e, and g) and anti-rat ZO-1 mAb, T8-754 (b, d, f, and h). 
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Figure 2. Full-length and truncated occludin constructs with the 
c-myc epitope on their COOH-terminal end (m). Occludin is seg- 
mented into five domains (A-E) by four transmembrane domains, 
and both COOH- and NH2-terminal truncations of domain E from 
full-length occludin were constructed. 

with the concentration of occludin at TJ. All COOH-terminal 
truncations constructed here (mOc/dC474, mOc/dC444, 
mOc/dC414, and mOc/dC357) failed to localize at TJ (Fig. 
3, b-e), indicating that the responsible sequence could not 
be narrowed down from the COOH side. By contrast, the 

NH2-terminal truncation, mOc/dN358, was clearly concen- 
trated at TJ, although its localization efficiency was rather 
lower than that of mOc (Fig. 3 f ) .  The further NH2- 
terminal truncation, mOc/dN387, was by no means localized 
at TJ (Fig. 3 g). 

Taking all these results together, we concluded that amino 
acid residues 358-504 (domain E358/504) is necessary for 
the TJ localization of occludin, although detailed analysis of 

this domain remains to be performed. For example, mOc/d 
(445-474) was not concentrated at TJ (see Figs. 2 and 3 h). 

Association of  Itght Junction Peripheral Proteins with 
the COOH-terminal Cytoplasmic Domain of  Occludin 

Another possible function of the COOH-terminal cytoplas- 
mic domain (domain E) of occludin is its association with 

TJ peripheral proteins such as ZO-1, ZO-2, etc. To test this 

association in vitro, domain E was expressed in E. coli as 
a fusion protein with GST (GST-OcE). E. coli lysate was in- 
cubated with glutathione-Sepharose beads on a column, and 

after washing, the low salt alkali extract of junctional frac- 
tion isolated from chick liver was applied onto the column. 
After incubation and washing, the proteins associated with 
GST-OcE coupled to glutathione-Sepharose beads were 
eluted with a solution containing glutathione, and were then 
resolved by SDS-PAGE. 

As shown in Fig. 4 a, lane 2, this in vitro binding assay 
revealed two major bands with molecular masses of 220 and 
160 kD bound to domain E of occludin. The 220-kD band 
was specifically recognized by anti-ZO-1 mAb (Fig. 4 a, 
lane 6). The molecular mass of the 160-kD band indicated 
that it would be related to ZO-2, a ZO-l-binding protein 

identified in canines (Gumbiner et al., 1991). Since an mAb 
recognizing chick ZO-2 was not available, we prepared a 
high salt extract from the membranes of cultured MDBK 
cells, from which ZO-2 is recognized by the pAb R9989 pro- 
duced by Jesaitis and Goodenough (1994). Oecludin-binding 
proteins were recovered from the extract using the column 

system described above. Immunoblots of these proteins re- 
vealed that ZO-2, as well as ZO-1, were bound to domain 
E of occludin (Fig. 4 b). This suggests that the 160-kD band 
from the chick junctional fraction is the chick homologue of 
ZO-2. Furthermore, as shown in Fig. 4 b, a,-spectrin from 
the high salt extract of MDBK cells was also specifically 

trapped by the GST-OcE beads. 

Sequences in the COOH-terminal Cytoplasmic 
Domain of  Occludin Necessary for Association 
with ZO-1 

The question has naturally arisen whether the association of 
occludin with ZO-1 is required for TJ localization of oc- 

cludin. We attempted to narrow down the sequence neces- 
sary for the association of occludin with ZO-1 from both 
COOH- and NH2-terminal sides, and to evaluate whether 
or not this domain is included in or overlapped with the do- 
main E358/504, which is necessary for TJ localization ofoc- 
cludin. We expressed several GST-fusion proteins containing 
COOH- or NH2-terminal truncations of domain E in E. coli 
(Fig. 5). Using these fusion proteins and the extract of junc- 
tional fraction, we performed in vitro binding studies in 
which the amount of ZO-1 molecules bound to a fixed quan- 
tity of GST-fusion proteins was evaluated by immunoblot- 
ting. 

As shown in Fig. 6, all COOH-terminal truncated fusion 
proteins (GST-OcE/dC474, GST-OcE/dC444, GST-OcE/ 
dC414, and GST-OcE/dc357) exhibited no or markedly 
weaker binding to ZO-1 than GST-OcE, indicating that the 
sequence necessary for the ZO-1 binding could not be nar- 

Oc-2 recognizes chick occludin but neither bovine nor human occludin, whereas "1"8-754 crossreacts with both human and bovine ZO-I. 
(a and b) Conventional immunofluorescence microscopic images of MDBK cells. The transiently expressed chick occlndin and bovine 
ZO-1 were coconcentrated at the eel-cell border. The cytoplasmic staining with anti-occludin mAb is specific, and this may be a result 
of overexpression of chick occludin. (c-f) Laser scan microscopic images of'1"84 cells. Optical sections at the level of the junctional complex 
(c and d) and computer-generated cross-sectional images (e and f) .  The expressed chick occludin and human ZO-1 were precisely colocal- 
ized at the most apical region of lateral membranes (arrows). ap, the level of apical surface; ba, the level of basal membrane. (g and h) 
Conventional immunofluorescence microscopic images of fibroblasts. Most of the expressed chick occludin was distributed in the 
cytoplasm, but some of them was colocalized with ZO-I at cell-cell contact sites. Bar, 10/~m. 
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Figure 4. Association of tight junction peripheral proteins with do- 
main E of oeeludin. (a) In vitro binding of GST-OcE fusion protein 
to proteins in the low salt alkali extract of junctional fraction iso- 
lated from chick liver (IF extract). Domain E of oecludin was ex- 
pressed in E. coli as a fusion protein with GST (GST-OcE), and 
E. coli lysate was incubated with glutathione-Sepharose beads on 
a column. After washing and applieatiun of JF extract onto the 
column, the proteins associated with GST-OcE were eluted with a 
solution containing glutathione. Silver-stained gel (lanes 1-4) and 
accompanying immunoblot with anti-ZO-1 mAb, I'8-754 (lanes 
5-8) of glutathione-eluate from GST column incubated with IF ex- 
tract (lanes I and 5), ghtathione-eluate from GST-OcE eolunm in- 
cubated with JF extract (lanes 2 and 6), ghtathione-eluate from 
GST-OcE column without the incubation with IF extract (lanes 3 
and 7), and JF extract (lanes 4 and 8). Comparison between lanes 
1, 2, and 3 revealed that two major bands of • 220 and 160 kD 
bound to domain E of occludin (arrowheads), and immunoblot 
analyses identified the former bands as ZO-1. The mobility of mo- 
lecular mass markers is shown at the left (200, 116, 97, 66, 45, and 
31 kD from the top). (b) In vitro binding of GST-OcE fusion pro- 
tein to proteins in the high salt extract of MDBK ceils. Immuno- 
blots with anti-ZO-1 mAb, I"8-754 (lanes I and 2), anti-ZO-2 pAb, 
R9989 (lanes 3 and 4), and anti-u-spectrin pAb (lanes 5 and 6) of 
glutathione-eluate from GST beads incubated with MDBK extract 
(lanes 1, 3, and 5) and glutathione-eluate from GST-OeE beads in- 
cubatr.d with MDBK extract (lanes 2, 4, and 6). Note that ot-spec- 
trin and ZO-1/ZO-2 were specifically trapped by domain E of oc- 
cludin. The mobility of molecular mass markers is shown at the left 
(200 and 116 kD from the top). 

rowed down from the COOH-terminal side. On the other 

hand, the NH2-terminal truncated fusion proteins, GST- 

OcE/dN358, strongly bound to ZO-1, whereas the further- 

truncated fusion proteins, GST-OcE/dN387, showed very 

poor binding. 

Therefore, this bidirectional strategy identified amino acid 

residues 358-504 (domain E358/504) as the region neces- 

sary for the association of  occludin with ZO-1. The same re- 
suits were obtained when the high salt extract from MDBK 

and "184 cells was applied onto the column (data not shown). 

This conclusion is similar to that of the analysis of  sequences 

Figure 5. GST-fusion proteins containing normal or truncated do- 
main E of occludin. 

necessary for the TJ localization of occludin, but in sharp 

contrast, GST-OcE/d (445-474) strongly bound to ZO-1. 

Finally, to evaluate whether ZO-1 is associated with oc- 

cludin directly or indirectly, we performed the in vitro bind- 

ing studies between various GST-OcE mutant proteins and 

an MBP-ZO-1 fusion protein produced in E. coli. As shown 

in Fig. 7, the MBP-ZO-1 fusion protein bound strongly to 

GST-OcE, GST-OcE/dN358, and GST-OcE/d (445-474), 

but very weakly to the other GST-OcE mutant proteins. 

These data indicated that ZO-1 directly associates with the 

domain E358/504 of occludin. 

Discussion 

In our previous study, we identified a novel integral mem- 

brane protein with an apparent molecular mass of  •65 kD 

called occludin, and showed by immunofluorescence and im- 

munoelectron microscopy that it is localized exclusively at 

TJ of various types of  epithelial and endothelial cells (Furuse 

et al., 1993). Preembedding electron microscopic immuno- 

labeling of  isolated bile canaliculi with anti-occludin mAb 

characteristically revealed immunogold particles directly 

over the points of membrane fusion of TJ, suggesting that oc- 

cludin is a component of the TJ strand. In this study, we dem- 

onstrated, by means of transfection, that the newly syn- 

thesized chick full-length occludin was delivered to and 

incorporated into preexisting TJ in human and bovine epithe- 

lial cells. Also in fibroblasts lacking TJ, the introduced chick 

occludin was occasionally localized at cell-cell contact sites, 

although it remains to be checked electron microscopically 

whether or not TJ-like structures are formed there. Further 

analyses using these transfection systems will lead us to a 

Figure 3. Subeellular distribution of c-myc-tagged fnll-length and truncated chick occludin in transient MDBK transfectants. MDBK cells 
were transfected with plasmids of mOc (a), mOc/dC474 (b), mOetdC444 (c), mOc/dC414 (d), mOc/dC357 (e), mOctdN358 (f) ,  
mOc/dN387 (g), or mOo/d(445-474) (h), and were then immunofluorescently stained with anti-c-myc mAb. Only in a andf  intense signal 
was detected from the cell--cell border. In the other transfectants, the expressed truncated occludin was concentrated at the cytoplasm, 
and it formed large spheres. Even in the transfectants expressing a large amount of mOc and mOc/dN358 products, the products were 
concentrated not only in TJ, but also in similar spheres in the cytoplasm (data not shown). Bar, 10/zm. 
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Figure 6. Association of normal and truncated domain E of oc- 
cludin with ZO-1 in the low salt alkali extract of isolated junctional 
fraction from chick liver. Columns were constructed using normal 
or truncated GST-OcE fusion proteins (see Fig. 5). After applica- 
tion of the low salt alkali extract, proteins trapped by each column 
were elnted with a solution containing ghitathione. After each elu- 
ate was resolved by SDS-PAGE, the amount of GST-fusion protein 
and ZO-1 was evaluated by Coomassie brilliant blue staining (bot- 
tom) and immunoblotting with anti-ZO-1 mAb, "18-754 (top), 
respectively. (Lane 1) GST-OcE; (lane 2) GST-OcE/dC357; (lane 
3) GST-OcE/dN358; (lane 4) GST-OcE/dN387; (lane 5) GST; 
(lane 6) GST-OcE/dC414; (lane 7) GST-OcE/dC444; (lane 8) 
GST-OcE/dC474; (lane 9) GST-OcE/d(445-474). Only GST- 
OcE/dN358 (lane 3) and GST-OcE/d(445-474) (lane 9) were 
strongly bound to ZO-1 to the same extent as GST-OcE (lane 1 ). 
GST-OcE/dN387, GST-OcE/dC414, and GST-OeE/dC444 (lanes 
4, 6, and 7) appeared to weakly trap ZO-1. The mobility of molecu- 
lar mass markers is shown at the left (66, 45, and 31 kD from the 
top). 

better understanding how the cell polarity is formed and 
maintained in epithelial and endothelial cells. 

In addition to the TJ localization mechanism, the isolation 
of occludin cDNA enabled us to analyze the interaction of 
occludin with TJ peripheral proteins at the molecular level. 
Based on the distance from the plasma membrane, TJ pe- 
ripheral proteins can be subclassified into two categories 
(Anderson et al., 1993; Citi, 1993). The first class includes 
ZO-1, which is localized in the immediate vicinity of mem- 
branes (Stevenson et al., 1986, 1989; Anderson et al., 1988; 
Itoh et al., 1991, 1993). Immunoprecipitation studies have 
shown that ZO-1 forms a protein complex with another pe- 
ripheral protein, ZO-2 (Gumbiner et al., 1991; Jesaitis and 
Goodenough, 1994). Therefore, it is likely that ZO-2 is also 
localized just beneath the plasma membrane. The second 
class includes cingulin and the 7H6 antigen, which are local- 
ized more than 40 nm from the plasma membrane (Citi et 
al., 1988, 1993; Zhong et al,, 1993; Stevenson et al., 1989). 
In this study, we showed that the GST-fusion protein (GST- 
OcE) of the COOH-terminal cytoplasmic domain of oc- 
cludin (domain E) specifically associated at least with 220- 

Figure 7. Association of normal and truncated domain E of occludin 
with MBP-ZO-1 fusion protein produced in E. coli. Glutathione- 
conjugated beads were incubated with normal or truncated GST- 
OcE fusion proteins (see Fig. 5). After washing followed by incuba- 
tion with the lysate from E. coil producing MBP-ZO-I fusion pro- 
tein, proteins trapped by beads were ehited with SDS-PAGE sample 
buffer. After each eluate was resolved by SDS-PAGE, the amount 
of GST-fusion protein and MBP-ZO-1 fusion protein was evaluated 
by Coomassie brilliant blue staining (bottom) and immunoblotting 
with anti-ZO-1 mAb, I"8-109 (top), respectively. For Coomassie 
brilliant blue staining, one tenth or one fifth of the amount of each 
immunoblot sample was used in lanes 1-6 or 7-9, respectively. 
(Lane 1) GST-OcE; (lane 2) GST-OcE/dC474; (lane 3) GST- 
OcE/dC357; (lane 4) GST-OcE/dN358; (lane 5) GST-OcE/dN387; 
(lane 6) GST; (lane 7) GST-OcE; (lane 8) GST-OcE/d(445-474); 
(lane 9) GST. Only GST-OcE/dN358 (lane 4) and GST-OcE/d(445- 
474) (lane 8) were strongly bound to MBP-ZO-1 fusion protein to 
the same extent as GST-OcE (lanes 1 and 7). GST-OcE/dC474 
(lane 2) appeared to weakly trap MBP-ZO-1. The mobility of mo- 
lecular mass markers is shown at the left (200, 116, 97, 66, 45, and 
31 kD from the top). 

and 160-kD bands among the various membrane peripheral 
proteins in the junctional fraction extract. Taking our immu- 
noblotting data into consideration together with previous 
data, we concluded that the two bands corresponded to ZO-1 
and ZO-2. Furthermore, we demonstrated that the MBP-ZO-1 
fusion protein directly bound to the domain E of occludin, 
at least in vitro. Therefore, we concluded that ZO-1 is 
directly bound to the domain E of occludin, and that ZO-2 
may be associated with occludin through ZO-1. This conclu- 
sion is highly consistent with the notion that ZO-1 and ZO-2 
are localized just beneath the plasma membrane of TJ. 

We showed that spectrin tetramers are associated with ZO- 
1 at ~10-20 nm from their midpoint (Itoh et al., 1991). Also 
in this study, spectrin from MDBK cells was specifically 
trapped by the GST-occludin column. Thus there may be a 
molecular linkage between occludin and actin filaments, as 
shown in Fig. 8, since an intimate spatial relationship be- 
tween TJ and actin-based cytoskeletons has been observed 
(Madara, 1987). The reason why occludin has not been so 
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Figure 8. Schematic drawing of the possible molecular architec- 
ture of tight junctions. The direct association between ZO-1 and 
a-spectrin was reported by Itoh et al. (1991) using the isolated junc- 
tional fraction. So far, immunoprecipitation experiments with anti- 
ZO-I antibodies from whole cell lysate have not detected this as- 
sociation (Gumbiner et al., 1991; Jesaitis and Goodenough, 1994). 

far identified in ZO-1 immunoprecipitates is not clear, but it 
may be partly caused by the insolubility of occludin against 
nonionic detergents and partly caused by the very low ex- 
pression level of occludin in cells. 

All the data obtained from two series of experiments with 
various domain E deletion mutants are summarized in Fig. 
9. The sequences in domain E (amino acid residues 250-504) 
necessary for the TJ localization or ZO-1 association of 
occludin were narrowed down from COOH- and NH2-ter- 
minal sides. Neither TJ localization- nor ZO-1 association- 
responsible sequences could be defined from COOH-termi- 
nal side, whereas both sequences were narrowed down as far 
as amino acid residue 358 from the NH2-terminal side. 
This coincidence led to the speculation that the ZO-1- 
binding ability of occludin is required for its TJ localization. 
Actually, as far as we examined in a combination of in vivo 
transfection experiments and in vitro binding assays, all dele- 
tion mutants with significantly reduced ZO-l-binding ability 

lacked TJ-localization ability. However, the converse was not 
so. All deletion mutants bearing sufficient ZO-l-binding 
ability did not bear TJ-localization ability. For example, an 
occludin mutant lacking amino acid residues 445-474 bound 
to ZO-1 in vitro, but was not concentrated at TJ. Therefore, 
we speculate that the association of not only ZO-1, but also 
other factors to the 358-504 aa sequence of domain E (do- 
main E358/504), is required for the localization of occludin 
at TJ. At present, it is not clear why ZO-1 association is at 
least required for the TJ localization. It may be required for 
the targeting of occludin to membranes, assembly of oc- 
cludin into TJ strands, or retention of occludin on mem- 

branes. These should be clarified in the near future. 
Two distinct types of small rab GTPases, rabl3 and rab3B, 

are reportedly concentrated at TJ in epithelial cells (Zah- 
raoui et al., 1994; Weber et al., 1994). Considering that the 
rab family members are involved in membrane traffic in 
general (Bourne, 1988; Goud and McCaffrey, 1991; Zerial 

and Stenmark, 1993), it is likely that these rabl3 and rab3B 
play an important role in the assembly of TJ, that is, the tar- 
geting of occludin. Therefore, we should evaluate whether 
or not these small rab GTPases can interact with the domain 

Figure 9. Comparison of the results obtained from transfection 
studies with those from in vitro binding studies. The constructs that 
were concentrated at tight junctions are marked with (+), and those 
that showed strong, weak, and no binding affinity to ZO-1 are repre- 
sented by S, W, and N, respectively. Of course, it is possible that 
some of the constructs marked with ( - )  exhibit "weak ~ localization 
at tight junctions, which was hard to detect. 

E of occludin directly or indirectly, and we should further 
search for other factors that regulate the TJ localization of 

occludin by interacting with domain E. Also, we should ob- 
tain information about the functions of the other cytoplasmic 
domain of occludin (domains A and C), although they are 
somewhat shorter than the domain E. Identification of cyto- 
plasmic proteins directly associated with occludin and as- 
signment of their binding domains on occludin molecules 
will give us a wealth of information for the future studies, 
not only on the structure, but also on the functions of tight 
junctions. It is possible, for example, that some of the dele- 
tion occludin mutants used in this study behave as dominant 
negative mutants and interfere with the functions of tight 
junctions. We believe that further analyses of the cytoplas- 
mic domains of occludin will lead us to a better understand- 
ing of the structure and functions of TJ at the molecular level. 
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