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Summary
Direct asymptotic integration of the equations of transversely isotropic elasticity, for a layer
with in-plane axis of transverse isotropy and zero surface traction, is carried out in the vicinity
of the cut-off frequencies. In direct contrast to the corresponding isotropic case, in which there
is only one family of thickness shear resonance frequencies, two such families are observed to
exist. Consequently, the two-dimensional equations for the associated long-wave amplitudes are
each scalar equations, rather than the single vector equation which arises in the isotropic case.
These equations, together with that corresponding to thickness stretch resonance, are obtained.
The exact dispersion relation is also derived and asymptotic expansions, giving frequency as a
function of scaled wave number, are obtained in the neighbourhood of the cut-off frequencies.
This both reveals the appropriate asymptotic orders of stress and displacement components
to help facilitate the direct asymptotic integration and retrospectively acts as a check on the
coefficients of the two-dimensional equations. The mathematical equivalence of approximations
derived from the exact solutions and exact solutions derived from asymptotically approximate
equations is therefore verified.

1. Introduction

The use of fibre-reinforced composites is prevalent in modern structures, especially those for which
a high strength-to-weight ratio is of primary concern. For such materials a preferred direction,
usually termed the fibre direction, exists and a transversely isotropic model is most commonly
employed. For many applications fibre-reinforced materials are formed into bonded layers, each
with a specific fibre orientation relative to some fixed reference direction. The practical importance
of such structures has resulted in a high number of publications aimed at elucidating the mechanical
and dynamic properties of layered media, many including layers composed of fibre-reinforced
material. For a detailed list of recent publications within this area the reader is referred to the review
article by Chimenti (1). In dynamic problems concerning fibre-reinforced media it is common to
use a continuum model, whereby the fibres are assumed to be an inherent material property, rather
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than some form of inclusion, see for example, Rogerson (2). A detailed account of the constitutive
theory used in modeling fibre-reinforced composites, and the implications of using a continuum
theory, may be found in Spencer (3).

In this paper we seek to generalize asymptotic methods previously used for isotropic thin-walled
elastic bodies to the transversely isotropic case; see Kaplunov et al. (4). Specifically, that book
develops an approach to analysing long-wave high frequency, long-wave low frequency, short-
wave low frequency and short-wave high frequency motions. In the context of the present paper
our concern is long-wave high frequency motions of a transversely isotropic elastic layer with in-
plane axis of transverse isotropy and zero surface tractions. It is readily established, except for
fibres of small extensibility, that only for such motions is the asymptotic behaviour of the stress–
strain state (SSS) significantly different from the corresponding isotropic case, with the existence
of two distinct families of thickness shear resonance frequencies. The analysis of long-wave high
frequency motions is highly relevant for stationary thickness vibration of, or transient response to
high frequency shock loading in, thin-walled bodies. There is also application of the analysis of
such motions to fluid–structure interaction, this being particularly pertinent to jumps in radiation
power and first-order resonances of high frequency Lamb waves in scattering, phenomena known
to occur in the long-wave high frequency region; see for example, Kaplunov (5) and Kaplunov et
al. (6). A further noteworthy point is the possible dominance of motions of the type we consider in
problems involving fixed faces, such problems being characterized by the absence of fundamental
modes; see for example, (7).

The method of direct asymptotic integration in the vicinity of thickness resonance (cut-off)
frequencies is adopted. This enables two-dimensional second-order equations for the long-wave
amplitudes to be derived. The first attempt to analyse long-wave vibrations, in the vicinity of cut-off
frequencies, using direct asymptotic integration was seemingly carried out within the framework of
isotropic linear elasticity and in the context of stationary vibrations; see Achenbach (8). However,
that work does not involve derivation of the appropriate two-dimensional equations and the link
between the direct asymptotic integration of static problems, see, for example, Goldenveiser (9, 10),
and their dynamic counterparts was not made. The close connection between the direct asymptotic
integration techniques needed for both static and dynamic problems has been established and
exploited, and appropriate two-dimensional equations derived, in the isotropic case, see Kaplunov et
al. (4), Kaplunov (11, 12). It is noted that similar two-dimensional equations have also been derived
by asymptotic analysis of energy functionals, Berdichevskii (13) and Le (14). All of the previously
mentioned investigations are concerned with the application of direct asymptotic integration to
isotropic bodies. In the case of anisotropy seemingly little work within this area has been carried
out, one exception, however, being an investigation of trapped modes (at cut-off frequencies) in a
transversely isotropic elastic plate with surface elevation; see Tovstik (15).

We begin this paper in section 2 with a brief derivation of the exact dispersion relation associated
with small amplitude vibrations of a transversely isotropic elastic layer. In view of the anisotropy
this is done for the full three-dimensional equations and with a fibre direction parallel to the surface
of the layer. This specific fibre direction is both mathematically expedient and the most common
in industrial applications. In section 3 long-wave high frequency approximations of the dispersion
relations associated with flexural and extensional vibrations are derived. A similar investigation in
the context to linear isotropic elasticity was seemingly first carried out by Nigul (16). A consequence
of the approximations is that the asymptotic order of the displacement and stress components in
the vicinity of thickness stretch and thickness shear resonance frequencies is readily established.
This is done by analysing the asymptotic form of the associated eigenfunctions. A knowledge of
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the asymptotic order of stress and displacement components motivates appropriate scalings and
thereby facilitates direct asymptotic integration in the vicinity of thickness shear and thickness
stretch resonance frequencies in sections 4 and 5, respectively. In the case of thickness shear there
exist two scalar equations, which is in contrast to the single vector equation previously obtained
in the isotropic case. The asymptotic integration is carried out using a systematic perturbation
scheme which could readily be extended both to higher order and layered media. The result of the
integration process, in each case, yields a two-dimensional equation for the long-wave amplitudes,
the coefficients of which agree with the corresponding approximations of the dispersion relations
derived in section 3. It should be emphasized that our primary concern in this paper is to construct
a two-dimensional asymptotic model to accurately describe the dynamic response of a layered
structure. However, the fact that approximations based on the exact solution are mathematically
equivalent to the exact solution of approximate governing equations, something not shared by some
other plate theories which are based on ad hoc assumptions, serves both as a validation of the model
and as an indication of its potential.

2. Governing equations and derivation of the exact dispersion relation

Our concern in this paper is a layer, composed of linear transversely isotropic elastic material, of
thickness 2h and infinite lateral extent. The stress–strain relation for such an elastic solid may be
expressed in the component form

σi j = λekkδi j + 2µT ei j + α(akamekmδi j + ai a j ekk)

+2(µL − µT )(ai akek j + a j akeki ) + βakamekmai a j , (2.1)

in which α, β, λ, µT and µL are material parameters, a is a unit vector defining the direction of
transverse isotropy, σi j denote the components of the Cauchy stress tensor and ei j the associated
infinitesimal strain tensor components; see, for example, Green (17). Attention is restricted to the
case in which the direction of transverse isotropy lies in the plane of the plate, this being both
mathematically expedient and common in engineering applications. A Cartesian coordinate system
of axes Ox1x2x3 is therefore chosen with origin O in the mid-plane, Ox3 normal to the plane of the
plate and Ox1 coincident with the direction of transverse isotropy, a direction usually termed the
fibre direction. The equations of motion are assumed in their usual form

∂σi j

∂x j
= ρ

∂2ui

∂t2
, (2.2)

in which ρ is the material density, ui (x, t) the components of displacement for a particle at position
x at time t and summation over the suffix j is assumed. It is remarked that the summation convention
will apply in this paper only in respect of Latin subscripts. Equations (2.2) are to be solved subject
to traction free boundary conditions on the upper and lower faces of the plate, namely

σi3 = 0, i = 1, 2, 3, at x3 = ±h. (2.3)

The stress–displacement relations for a transversely isotropic elastic material are deduced
from (2.1), for a fibre direction parallel to Ox1 taking the explicit form

σ11 = ρc2
5
∂u1

∂x1
+ ρc2

4

(
∂u2

∂x2
+ ∂u3

∂x3

)
, (2.4)
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σ22 = ρc2
4
∂u1

∂x1
+ ρc2

1
∂u2

∂x2
+ ρ(c2

1 − 2c2
2)

∂u3

∂x3
, (2.5)

σ33 = ρc2
4
∂u1

∂x1
+ ρ(c2

1 − 2c2
2)

∂u2

∂x2
+ ρc2

1
∂u3

∂x3
, (2.6)

σ12 = ρc2
3

(
∂u2

∂x1
+ ∂u1

∂x2

)
, σ13 = ρc2

3

(
∂u3

∂x1
+ ∂u1

∂x3

)
, σ23 = ρc2

2

(
∂u3

∂x2
+ ∂u2

∂x3

)
, (2.7)

within which c2
1, c2

2, c2
3, c2

4 and c2
5 are defined by

ρc2
1 = λ + 2µT , ρc2

2 = µT , ρc2
3 = µL ,

ρc2
4 = λ + α, ρc2

5 = λ + 4µL − 2µT + 2α + β. (2.8)

Solutions of the equations of motion are now sought in the form of the travelling-wave solutions

u = (U, V, W )ekpx3ei(k cos θx1+k sin θx2−ωt), (2.9)

in which k is the wave number and ω the frequency, of a wave travelling with phase speed v = ω/k
in a direction within the plane of the plate at an angle θ with the x1 axis and p is to be determined,
in terms of k, θ, ω and material constants, from the equations of motion. Substituting equation (2.9)
into the equations of motion (2.2) yields

{c̄2
3 p2 − (cos2 θ c̄2

5 + c̄2
3 sin2 θ − v̄2)}U − (c̄2

3 + c̄2
4) cos θ sin θV + i p(c̄2

3 + c̄2
4) cos θW = 0,

(2.10)

− cos θ sin θ(c̄2
3 + c̄2

4)U + {c̄2
2 p2 − (cos2 θ c̄2

3 + sin2 θ − v̄2)}V + i sin θp(1 − c̄2
2)W = 0,

(2.11)

i p cos θ(c̄2
3 + c̄2

4)U + i sin θp(1 − c̄2
2)V + {p2 − (cos2 θ c̄2

3 + sin2 θ c̄2
2 − v̄2)}W = 0, (2.12)

in which v̄ is defined by c1kv̄ = ω and c̄i = ci/c1. Equations (2.10) to (2.12) have non-trivial
solutions (known as partial waves) provided that either

p2 = p2
2 =

(
cos2 θ c̄2

3 + sin2 θ c̄2
2 − v̄2

c̄2
2

)
(2.13)

or

c̄2
3 p4 + {(c̄2

3 + c̄2
4)

2 cos2 θ − c̄2
3(cos2 θ c̄2

3 + sin2 θ − v̄2) − (cos2 θ c̄2
5 + sin2 θ c̄2

3 − v̄2)}p2

+(cos2 θ c̄2
5 + sin2 θ c̄2

3 − v̄2)(cos2 θ c̄2
3 + sin2 θ − v̄2) − cos2 θ sin2 θ(c̄2

3 + c̄2
4)

2 = 0. (2.14)

Denoting the two roots of (2.14) by p2
1 and p2

3 and then superposing the six resulting solutions of
the form (2.13) gives a general form for a travelling-wave solution ui = u∗

i ei(k cos θx1+k sin θx2−ωt) as

u∗
1 = F(p1)(A+

1 ekp1x3 + A−
1 e−kp1x3) + F(p3)(A+

3 ekp3x3 + A−
3 e−kp3x3), (2.15)

u∗
2 = −{sin θ(A+

1 ekp1x3 + A−
1 e−kp1x3) + p2(A+

2 ekp2x3 − A−
2 e−kp2x3)}

− sin θ(A+
3 ekp3x3 + A−

3 e−kp3x3), (2.16)

u∗
3 = i p1(A+

1 ekp1x3 − A−
1 e−kp1x3) + i sin θ(A+

2 ekp2x3 + A−
2 e−kp2x3)

+i p3(A+
3 ekp3x3 − A−

3 e−kp3x3), (2.17)
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in which

F(p) =
{

cos2 θ c̄2
3 + sin2 θ − v̄2 − p2

cos2 θ(c̄2
3 + c̄2

4)

}

and A+
m, A−

m, m = 1, 2, 3 are constants.
The six homogeneous equations in six unknowns arising from the boundary conditions (2.3) may

be represented as two sets of three equations in three unknowns, to yield

p1η1(p1) Â−
1 C1 − cos2 θ sin θ(c̄2

3 + c̄2
4) Â+

2 C2 + p3η1(p3) Â−
3 C3 = 0, (2.18)

2 sin θp1 Â−
1 C1 + (p2

2 + sin2 θ) Â+
2 C2 + 2 sin θp3 Â−

3 C3 = 0, (2.19)

η2(p1) Â−
1 S1 + 2c̄2

2(c̄
2
3 + c̄2

4)p2 sin θ Â+
2 S2 + η2(p3) Â−

3 S3 = 0, (2.20)

or

p1η1(p1) Â+
1 S1 − cos2 θ sin θ(c̄2

3 + c̄2
4) Â−

2 S2 + p3η1(p3) Â+
3 S3 = 0, (2.21)

2 sin θp1 Â+
1 S1 + (p2

2 + sin2 θ) Â−
2 S2 + 2 sin θp3 Â+

3 S3 = 0, (2.22)

η2(p1) Â+
1 C1 + 2c̄2

2(c̄
2
3 + c̄2

4)p2 sin θ Â+
2 C2 + η2(p3) Â+

3 C3 = 0, (2.23)

in which Â+
m = A+

m + A−
m , Â−

m = A+
m − A−

m , Cm = cosh(kpmh), Sm = sinh(kpmh), m = 1, 2, 3
and within which

η1(p) = (k2
2 − v̄2 − p2 − k2

1 c̄2
4), η2(p) = c̄2

3(p2 − k2
2)+ c̄2

4(c̄
2
3k2

1 − v̄2)+ 2c̄2
2k2

2(c̄2
3 + c̄2

4). (2.24)

It is noted that when the determinant of coefficients associated with (2.18) to (2.20) vanishes, then
A+

1 + A−
1 = A+

2 − A−
2 = A+

3 + A−
3 = 0 and from the solutions (2.15) to (2.17) it is deduced

that W is symmetric about x3 = 0, with U and V anti-symmetric. Setting the determinant of the
coefficients of (2.18) to (2.20) to zero will therefore yield the dispersion relation associated with
flexural waves, given explicitly by

−η2(p3){(p2
2 + sin2 θ)(sin2 θ − v̄2 − p2

1 − cos2 θ c̄2
4) + 2 cos2 θ sin2 θ(c̄2

3 + c̄2
4)}p1T3

+4c̄2
2(c̄

2
3 + c̄2

4)p1 p2 p3 sin2 θ(p2
3 − p2

1)T2

+η2(p1){(p2
2 + sin2 θ)(sin2 θ − v̄2 − p2

3 − cos2 θ c̄2
4)

+2 cos2 θ sin2 θ(c̄2
3 + c̄2

4)}p3T1 = 0. (2.25)

Similarly the determinant of coefficients of (2.21) to (2.23) yields the dispersion relation associated
with extensional waves, namely

−η2(p3){(p2
2 + sin2 θ)(sin2 θ − v̄2 − p2

1 − cos2 θ c̄2
4)

+2 cos2 θ sin2 θ(c̄2
3 + c̄2

4)}p1T2T1 + 4c̄2
2(c̄

2
3 + c̄2

4)p1 p2 p3 sin2 θ(p2
3 − p2

1)T1T3

+η2(p1){(p2
2 + sin2 θ)(sin2 θ − v̄2 − p2

3 − cos2 θ c̄2
4)

+2 cos2 θ sin2 θ(c̄2
3 + c̄2

4)}p3T3T2 = 0, (2.26)

in which Tm = tanh(kpm x3), m = 1, 2, 3. The dispersion relations (2.25) and (2.26) were seemingly
first derived by Green (17) and Green and Milosavljevic (18) in the context of studies of flexural
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and extensional waves, respectively. In both of these studies attention was largely focused on the
fundamental modes, with no asymptotic analysis of the type to be carried out in the present paper.

We end this section by noting that Â−,+
1 , Â−,+

2 and Â−,+
3 may be represented in terms of the one

parameter Ã as

Â−
1 =

(
p3[(p2

2 + sin2 θ)η1(p3) + 2 cos2 θ sin2 θ sin2 θ ]C3

p1C1

)
Ã, (2.27)

Â+
1 =

(
p3[(p2

2 + sin2 θ)η1(p3) + 2 cos2 θ sin2 θ ]S3

p1S1

)
Ã, (2.28)

Â−
2 =

(
2 sin θp3[η1(p3) − η1(p1)]S3

S2

)
Ã,

Â+
2 =

(
2 sin θp3[η1(p3) − η1(p1)]C3

C2

)
Ã, (2.29)

Â−
3 = (η1(p1)(p2

2 + sin2 θ) + 2 cos2 θ sin2 θ) Ã,

Â+
3 = (η1(p1)(p2

2 + sin2 θ) + 2 cos2 θ sin2 θ) Ã. (2.30)

3. Long-wave high frequency approximations
We shall now seek long-wave high frequency approximations of the two dispersion relations (2.25)
and (2.26) to give scaled frequency as a function of scaled wave number kh. Specifically, the
approximations sought are valid for all harmonics of the dispersion relations in the vicinity of cut-
off frequencies, that is, in the low wave number regime. To begin it is noted that in the long-wave
region v̄ is large, although ω remains O(n), the mode number. Accordingly (2.13) and (2.14) are
used to establish that

p2
1 = − v̄2

c̄2
3

+ p̄2
1 + O(v̄−2), p2

2 = − v̄2

c̄2
2

+ p̄2
2, p2

3 = −v̄2 + p̄2
3 + O(v̄−2), (3.1)

in which

c̄2
3 p̄2

1 = p(1)
1 cos2 θ + p(2)

1 sin2 θ, c̄2
2 p̄2

2 = p(1)
2 cos2 θ + p(2)

2 sin2 θ,

p̄2
3 = p(1)

3 cos2 θ + p(2)
3 sin2 θ,

with

p(1)
1 = (c̄2

3 + c̄2
4)

2

(c̄2
3 − 1)

+ c̄2
5, p(2)

1 = c̄2
3, p(1)

2 = c̄2
3, p(2)

2 = c̄2
2, p(1)

3 = (c̄2
3 + c̄2

4)
2

(1 − c̄2
3)

+ c̄2
3,

p(2)
3 = 1.

The approximations (3.1) may now be inserted into equation (2.25) to establish that in the long-wave
high frequency approximation

�1 tan(k p̂1h) + �2 tan(k p̂2h) + v̄2 tan(k p̂3h) ∼ 0, (3.2)

in which pm = i p̂m , m = 1, 2, 3 and

�1 = a1 cos2 θ, �2 = a2 sin2 θ, a1 = (1 + c̄2
4)

2c̄3
3

(1 − c̄2
3)

2
, a2 = 4c̄3

2.
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From equation (3.2) it is deduced that three distinct cases exist:

tan(k p̂1h) ∼ v̄2 or tan(k p̂2h) ∼ v̄2 or tan(k p̂3h) ∼ v̄−2. (3.3)

We begin by considering the first case from which we are able to deduce that

k p̂1h = (
n + 1

2

)
π + φ(kh)2 + O(kh)3 ⇒ tan(k p̂1h) = −1

φ(kh)2
+ O(1),

tan(k p̂2h) = tan
(
�a

sh1/c̄2
) + O(kh)2, tan(k p̂3h) = tan(�a

sh1) + O(kh)2, (3.4)

in which φ is an O(1) quantity to be determined. It is also noted that kh ∼ v̄−1 and �a
sh1 is the

associated cut-off frequency, defined by

�a
sh1 = (

n + 1
2

)
π c̄3.

Upon inserting the leading-order terms in equation (3.4) into (3.2), and equating leading-order terms
to zero, φ is obtained explicitly. This may then be used in equation (3.1)1 to obtain

ω̄2 = (�a
sh1)

2 +
(

p̄2
1 c̄2

3 + 2c̄3�1

�a
sh1 tan(�a

sh1)

)
(kh)2 + O(kh)4, (3.5)

in which the non-dimensional frequency ω̄ is defined by ω̄ = ωh/c1. In a similar way
approximations appropriate to the two other cases indicated by (3.3) are also obtainable, yielding

ω̄2 = (�a
sh2)

2 +
(

p̄2
2 c̄2

2 + 2�2c̄2

�a
sh2 tan(�a

sh2)

)
(kh)2 + O(kh)4 (3.6)

and

ω̄2 = (�a
st )

2 +
(

p̄2
3 − 2

(
�1 tan(�a

st/c̄3) + �2 tan(�a
st/c̄2)

�a
st

))
(kh)2 + O(kh)4, (3.7)

within which the cut-off frequencies �a
sh2 and �s

st are defined by

�a
sh2 = (

n + 1
2

)
π c̄2, �a

st = nπ.

We now consider the corresponding extensional-wave problem for which the analogous form
of (3.2) is given by

�1 tan(k p̂2h) tan(k p̂3h) + �2 tan(k p̂1h) tan(k p̂3h) + v̄2 tan(k p̂1h) tan(k p̂2h) ∼ 0. (3.8)

From equation (3.8) it is deduced that

tan(k p̂2h) ∼ v̄−2 or tan(k p̂3h) ∼ v̄2 or tan(k p̂1h) ∼ v̄2. (3.9)

In a very similar fashion to that previously used for the flexural case it is deduced that the three
corresponding expansions associated with extensional waves are given by

ω̄2 = (�s
sh1)

2 +
(

p̄2
1 c̄2

3 − 2c̄3�1 tan(�s
sh1)

�s
sh1

)
(kh)2 + O(kh)4, (3.10)

ω̄2 = (�s
sh2)

2 +
(

p̄2
2 c̄2

2 − 2�2c̄2 tan(�s
sh2)

�s
sh2

)
(kh)2 + O(kh)4, (3.11)

ω̄2 = (�s
st )

2 +
(

p̄2
3 + 2

(
�1 cot(�s

st/c̄3) + �2 cot(�s
st/c̄2)

�s
st

))
×(kh)2 + O(kh)4, (3.12)
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Fig. 1 Comparison of numerical and asymptotic solutions of the dispersion relation for the first nine non-zero
cut-off frequencies for flexural modes

within which the cut-off frequencies �s
sh1, �s

sh2 and �s
st are defined by

�s
sh2 = nπ c̄2, �s

st = (
n + 1

2

)
π, �s

sh1 = nπ c̄3. (3.13)

In Figs 1 and 2 numerical solutions of the first nine harmonics of flexural and extensional motions,
showing ω̄ as a function of kh, are shown with their appropriate asymptotic expansions. These
figures relate to a direction of propagation θ = 70◦ and employ material parameters measured by
Markham (19) for a carbon fibre-epoxy resin composite, for which c1, c2, c3, c4 and c5 are given by

ρc2
1 = 10·57 × 109Nm−2, ρc2

2 = 2·46 × 109Nm−2, ρc2
3 = 5·66 × 109Nm−2,

ρc2
4 = 4·37 × 109Nm−2, ρc2

5 = 241·71 × 109Nm−2.

Although the asymptotic solutions are strictly valid only for kh � 1, they never the less provide
a good approximation in many cases until the harmonic reaches the so-called ghost line associated
with a wave front. These are lines in the (ω̄, kh) plane along which the harmonics have a near-
constant gradient over a specific wave number range. Over this range the group velocity has close
to zero gradient, indicating a wave front. A point of interest associated with these plots concerns the
first harmonic of extensional motion, for which their clearly exists an associated mode below the
cut-off frequency for small kh. Moreover, before ω̄ reaches its minimum value the group velocity
is negative. We shall discuss this point in more detail later in the paper.

It is noted that the cut-off frequencies �a
st and �s

st are the so-called thickness stretch resonance
frequencies associated with anti-symmetric and symmetric motions. These represent the natural
frequencies of stretch (in the Ox3 direction) motions of an infinitesimally thin transverse fibre of
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Fig. 2 Comparison of numerical and asymptotic solutions of the dispersion relation for the first nine non-zero
cut-off frequencies for extensional modes

the layer. The stretch thickness resonance frequencies are the eigenvalues of

∂2u3

∂x2
3

+ ω2u3 = 0,
∂u3

∂x3
= 0 at x3 = ±h. (3.14)

Similarly, �
a,s
sh1 and �

a,s
sh2 are the first and second shear resonance frequencies, which satisfy the

eigenvalue problems

∂2u1

∂x2
3

+ c̄−2
3 ω2u1 = 0,

∂u1

∂x3
= 0 at x3 = ±h, (3.15)

∂2u2

∂x2
3

+ c̄−2
2 ω2u2 = 0,

∂u2

∂x3
= 0 at x3 = ±h, (3.16)

respectively. It is also noted that in the present transversely isotropic case two distinct families
of thickness shear resonance frequencies exist, contrasting with only one in the corresponding
isotropic case; see for example, Kaplunov et al. (4). The asymptotic structure therefore may deviate
significantly from the corresponding isotropic case in respect of specific frequencies of vibration.
In particular, it is now possible that two different families of shear resonance frequencies may be
excited independently.
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4. Asymptotically approximate equations in the vicinity of the thickness shear resonance
frequencies

In order to derive asymptotically approximate equations we first introduce the non-dimensional
parameter η, defined as the ratio of plate half-thickness to wavelength, thus

η = h

l
⇒ η = kh, (4.1)

in which l is the wavelength. For long-wave motions we may assume that h � l and we therefore
regard η as a small non-dimensional parameter. It is now possible to insert the approximations (3.1),
in conjunction with the both definitions of (�a

shα) (�s
shα), into (2.27) to (2.30) to establish that in the

vicinity of either the first (α = 1) or second (α = 2) symmetric (anti-symmetric) shear resonance
frequencies,

Â−
α , Â+

α ∼ O(v̄)4 Ã, Â+
β , Â−

β ∼ O(v̄)3 Ã, Â−
3 , Â+

3 ∼ O(v̄)4 Ã, (4.2)

in which α, β ∈ {1, 2 : α �= β}. Utilization of (2.15) to (2.17) is now made to motivate the
introduction of scaled variables appropriate to long-wave high frequency approximations, in the
vicinity of the thickness shear resonance frequencies, thus

uα = lηu0
α, uβ = lη3u0

β, u3 = lη2u0
3, (4.3)

in which a superscript 0 indicates an O(1) quantity. The corresponding orders of stress components
are readily obtainable and we therefore note that

σαα = ρc2
1ησ 0

αα, σαβ = ρc2
1ησ 0

αβ, (4.4)

σα3 = ρc2
1σ

0
α3, σβ3 = ρc2

1η
2σ 0

β3, σ33 = ρc2
1ησ 0

33. (4.5)

In passing it is remarked that the asymptotic structure indicated by (4.3) to (4.5) differs from
that associated with the isotropic case, in which uα ∼ uβ and σα3 ∼ σβ3. Motivated by (3.5),
(3.6), (3.10), (3.11), (3.15) and (3.16), and in view of the fact that we are considering long-wave
high frequency approximations in the vicinity of the first or second thickness shear resonance
frequencies, it is assumed that

∂2uk

∂τ 2
+ �2

shαuk ∼ η2uk, k = 1, 2, 3. (4.6)

Before we begin to consider approximations of the equations of motion we introduce appropriate
scales for spatial coordinates and time, thus

xα = lξα, x3 = lηζ, t = lηc−1
1 τ. (4.7)

Equations (4.3) to (4.7) may now be used with the three equations of motion to establish that

∂σ 0
α3

∂ζ
+ �2

shαu0
α + η2

(
∂σ 0

αα

∂ξα

+ ∂σ 0
αβ

∂ξβ

)
−

(
∂2u0

α

∂τ 2
+ �2

shαu0
α

)
= 0, (4.8)

∂σ 0
αβ

∂ξα

+ ∂σ 0
ββ

∂ξβ

+ ∂σ 0
β3

∂ζ
+ �2

shαu0
β −

(
∂2u0

β

∂τ 2
+ �2

shαu0
β

)
= 0, (4.9)

∂σ 0
α3

∂ξα

+ ∂σ 0
33

∂ζ
+ �2

shαu0
3 + η2

∂σ 0
β3

∂ξβ

−
(

∂2u0
3

∂τ 2
+ �2

shαu0
3

)
= 0. (4.10)
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If equations (4.3) are inserted into the stress components (2.4) to (2.7) the stress–displacement
relations are obtained in the form

σ 0
αα = καα

∂u0
α

∂ξα

+ mα

∂u0
3

∂ζ
+ η2καβ

∂u0
β

∂ξ2
, σ 0

ββ = κβα

∂u0
α

∂ξα

+ mβ

∂u0
3

∂ζ
+ η2κββ

∂u0
β

∂ξβ

, (4.11)

σ 0
33 = mα

∂u0
α

∂ξα

+ ∂u0
3

∂ζ
+ η2mβ

∂u0
β

∂ξβ

, σ 0
αβ = c̄2

3
∂u0

α

∂ξβ

+ η2c̄2
3

∂u0
β

∂ξα

, (4.12)

σ 0
α3 = Cα

∂u0
α

∂ζ
+ η2Cα

∂u0
3

∂ξα

, σβ3 = Cβ

(
∂u0

3

∂ξβ

+ ∂u0
β

∂ζ

)
, (4.13)

in which

κ11 = c̄2
5, κ12 = κ21 = m1 = c̄2

4, κ22 = 1, C1 = c̄2
3, C2 = c̄2

2, m2 = 1 − 2c̄2
2. (4.14)

Solutions to the governing equations (4.8) to (4.10) are now sought in the form

u0
i = u0(1)

i + η2u0(2) + O(η4), i = 1, 2, 3. (4.15)

Equations (4.11) to (4.13) may now be used in equations (4.8) to (4.10) to establish the leading-order
system of equations

Cα

∂2u0(1)
α

∂ζ 2
+ �2

shαu0(1)
α = 0, (4.16)

Cβ

∂2u0(1)
β

∂ζ 2
+ �2

shαu0(1)
β = −(c̄2

3 + κβα)
∂2u0(1)

α

∂ξα∂ξβ

+ (mβ + Cβ)
∂2u0(1)

3

∂ξβ∂ζ
, (4.17)

∂2u0(1)
3

∂ζ 2
+ �2

shαu0(1)
3 = −(mα + Cα)

∂2u0(1)
α

∂ζ∂ξα

. (4.18)

Equations (4.16) to (4.18) must be solved subject to the leading-order boundary conditions

∂u0(1)
α

∂ζ
= 0,

∂u0(1)
3

∂ξβ

+ ∂u0(1)
β

∂ζ
= 0, mα

∂u0(1)
α

∂ξα

+ ∂u0(1)
3

∂ζ
= 0 at ζ = ±1. (4.19)

The anti-symmetric solution

In order to proceed further the anti-symmetric and symmetric cases must be considered separately.
First the anti-symmetric solution is considered for which the leading-order equations (4.16)
to (4.18), subject to the boundary conditions (4.19), are readily solved to obtain the leading-order
displacement components

u0(1)
α = U (0,0)

α (ξ1, ξ2, τ ) sin

(
�a

shαζ√
Cα

)
, (4.20)

u0(1)
β = U (0,0)

β sin

(
�a

shαζ√
Cα

)
+ U (1,0)

β sin(�a
shαζ ) + U (2,0)

β sin

(
�a

shαζ√
Cβ

)
, (4.21)

u0(1)
3 = W (0,0) cos

(
�a

shαζ√
Cα

)
+ W (1,0) cos(�a

shαζ ), (4.22)
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in which

U (0,0)
β = −Cα

(Cα − Cβ)(�a
shα)2

(
c̄2

3 + κβα + (mα + Cα)(mβ + Cβ)

Cα − 1

)
∂2U (0,0)

α

∂ξα∂ξβ

, (4.23)

U (1,0)
β = −

(
(mα + 1)(mβ + Cβ)Cα

(1 − Cα)(1 − Cβ)(�a
shα)2

)
sin(�a

shα/
√
Cα)

sin(�a
shα)

∂2U (0,0)
α

∂ξα∂ξβ

, (4.24)

U (2,0)
β =

√
Cβ sin(�a

shα/
√
Cα)Cα(mα + 1)(mβ + 1) cot(�a

shα)

(�a
shα)2(1 − Cα)(1 − Cβ) cos(�a

shα/
√
Cβ)

∂2U (0,0)
α

∂ξα∂ξβ

, (4.25)

W (0,0) = − (mα + Cα)
√
Cα

�a
shα(Cα − 1)

∂U (0,0)
α

∂ξα

, W (1,0) = sin(�a
shα/

√
Cα)

�a
shα sin(�a

shα)

(Cα(mα + 1)

Cα − 1

)
∂U (0,0)

α

∂ξα

, (4.26)

and U (0,0)
α is the long-wave amplitude. In order to obtain a two-dimensional governing equation for

U (0,0)
α , correct up to O(η2), we need only consider equation (4.8) at second order, which takes the

form

Cα

∂2u0(2)
α

∂ζ 2
+ (�a

shα)2u0(2)
α = −(Cα + mα)

∂2u0(1)
3

∂ζ∂ξα

− καα

∂2u0(1)
α

∂ξ2
α

−c̄2
3
∂2u0(1)

α

∂ξ2
β

+ η−2
(

∂2u0(1)
α

∂τ 2
+ �2

shαu0(1)
α

)
, (4.27)

and which must be solved subject to the appropriate second-order boundary condition

∂u0(2)
α

∂ζ
+ ∂u0(1)

3

∂ξα

= 0 at ζ = ±1. (4.28)

The solution of equation (4.27) subject to the boundary condition (4.28) is given by

u0(2)
α = V (0,0)

α sin

(
�a

shαζ√
Cα

)
+ V (0,1)

α ζ cos

(
�a

shαζ√
Cα

)
+ V (1,0)

α sin(�a
shαζ ), (4.29)

within which

V (1,0)
α = − (mα + Cα)(mα + 1)Cα

(1 − Cα)2(�a
shα)2

sin(�a
shα/

√
Cα)

sin(�a
shα)

∂2U (0,0)
α

∂ξ2
α

, (4.30)

V (0,1)
α = 1

2
√
Cα�a

shα

{(
καα + (Cα + mα)2

Cα − 1

)
∂2U (0,0)

α

∂ξ2
α

+ c̄2
3
∂2U (0,0)

α

∂ξ2
β

−η−2
(

∂2U (0,0)
α

∂τ 2
+ (�a

shα)2U (0,0)
α

)}
. (4.31)

Without resorting to higher-order approximations it is not possible to obtain an expression for V (0,0)
α .

However, it not not necessary to do this in order to obtain an equation for the long-wave amplitude
U (0,0)

α . Such an equation is obtained by satisfying the boundary condition (4.28) to yield

(
∂2

∂τ 2
+ (�a

shα)2
)

U (0,0)
α − η2

( ∑
γ=α,β

P(γ )

sh + T (γ )

sh cot(�a
shγ )

�a
shγ

∂2U (0,0)
α

∂ξ2
γ

)
= 0, (4.32)
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in which

T (α)
sh = 2(mα + 1)2C2

α

(1 − Cα)2
, P(α)

sh = καα − (Cα + mα)2

1 − Cα

, T (β)
sh = 0, P(β)

sh = c̄2
3. (4.33)

In the vicinity of the first thickness shear resonance frequency, for which α = 1, (4.14) may be used
in conjunction with those given directly after (3.1) and (3.2) to establish that

P1
sh = p(1)

1 , P(2)
sh = p(2)

1 , T (1)
sh = 2c̄3a1, (4.34)

enabling the appropriate two-dimensional equation to be deduced from (4.32) in the form

(
∂2

∂τ 2
+ (�a

sh1)
2
)

U (0,0)
1 − η2

{(
p(1)

1 + 2a1c̄3 cot(�a
st1)

�a
st1

)
∂2U (0,0)

1

∂ξ2
1

+ p(2)
1

∂2U (0,0)
1

∂ξ2
2

}
= 0. (4.35)

The corresponding equation associated with vibrations in the vicinity of the second shear resonance
frequencies is similarly given by

(
∂2

∂τ 2
+ (�a

sh2)
2
)

U (0,0)
2 − η2

{
p(1)

2

∂2U (0,0)
2

∂ξ2
1

+
(

p(2)
2 + 2c̄2a2 cot(�a

sh2)

�a
sh2

)
∂2U (0,0)

2

∂ξ2
2

}
= 0. (4.36)

It is now possible to confirm, by assuming solutions of the form

U (0,0)
α = V̂αei(cos θξ1+sin θξ2−ω̄τ ), (4.37)

that the dispersion relation approximations obtained from the exact relations, see (3.5) and (3.6),
are exactly the same as those obtained from (4.35) and (4.36), respectively.

The symmetric solution

In the symmetric case the solution (4.20) is replaced by

u0(1)
α = U (0,0)

α (ξ1, ξ2, τ ) cos

(
�a

shαζ√
Cα

)
. (4.38)

A similar analysis may then be followed to obtain the analogous equations to (4.36) and (4.37) in
the forms(

∂2

∂τ 2
+ (�a

sh1)
2
)

U (0,0)
1 − η2

{(
p(1)

1 − 2a1c̄3 tan(�a
st1)

�a
st1

)
∂2U (0,0)

1

∂ξ2
1

+ p(2)
1

∂2U (0,0)
1

∂ξ2
2

}
= 0.

(4.39)(
∂2

∂τ 2
+ (�a

sh2)
2
)

U (0,0)
2 − η2

{
p(1)

2

∂2U (0,0)
2

∂ξ2
1

+
(

p(2)
2 − 2c̄2a2 tan(�a

sh2)

�a
sh2

)
∂U (0,0)

2

∂2ξ2
2

}
= 0,

(4.40)

where again consistency with the relevant approximations in section 3, namely (3.10) and (3.11), is
easily verified.

The possible existence of negative group velocity associated with certain dispersion curve
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branches at low wave number was noted earlier in the paper. In order to investigate this
further, and its consequence for the governing equation for the long-wave amplitude, we consider
equation (4.40). For a given angle of propagation new variables ξ̄1 and ξ̄2 may be chosen, with
ξ̄1 = cos θξ1 + sin θξ2 and O ξ̄1 along the direction of propagation and O ξ̄2 normal to it. The
governing equation for U (0,0)

2 associated with propagation along O ξ̄1 may now be written as

∂2U (0,0)
2

∂τ 2
+ (�a

sh2)
2U (0,0)

2 − η2 An
∂U (0,0)

2

∂ξ̄2
1

= 0, (4.41)

in which n denotes the harmonic number and

An = p(1)
2 cos2 θ +

(
p(2)

2 − 2c̄2a2 tan(�a
sh2)

�a
sh2

)
sin2 θ. (4.42)

As might have been expected the term An in equation (4.41) is exactly the same as the multiplier
of (kh)2 in the corresponding expansion (3.11). When An < 0 the group velocity will be negative at
low wave number. In any region for which this occurs the governing equation for U (0,0)

2 will not be
hyperbolic, as it is when An > 0, but rather elliptic. It is then the case that any initial-value problem
cannot be properly posed.

In Fig. 3 An is plotted against θ for the first six modes of the associated family of shear resonance
frequencies. In this case when θ = 0, An = p(1)

2 and is independent of n. Also for the specific
material constants �a

sh2 is close to nπ/2 and therefore the contribution from the second term within
the larger brackets in (4.42) is negligible for all even modes. For the odd modes, A1 becomes zero
at the lowest value of θ , with A3 also becoming zero but at a higher value of θ . In contrast for A5,
and all even modes, An is always positive with A2, A4 and A6 indistinguishable. It would appear
that the low wave number models derived might well have some application in elucidating the effect
of negative group velocity on dynamic response.

A highly noteworthy point is that in contrast to the isotropic case, in which only a single vector
equation exists, we now have through (4.39) and (4.40) two scalar equations. The implication is
that two distinct families of shear resonance frequencies now exist, increasing the range of potential
material response. In particular both families may be excited independently for vibration in the
vicinity of the appropriate frequency. This is in direct contrast with the isotropic case for which
both types to shear vibration are in general always excited simultaneously. Moreover, each type
may only ever be excited independently for highly specific forms of dynamic load.

5. Asymptotically approximate equations in the vicinity of the thickness stretch resonance
frequency

In the vicinity of the stretch resonance frequency it is deduced from equations (2.27) to (2.30) that

Â−
1 , Â+

1 ∼ O(v̄2) Ã, Â−
2 , Â+

2 ∼ O(v̄3) Ã, Â−
3 , Â+

3 ∼ O(v̄4) Ã, (5.1)

which by using (2.15) to (2.17) motivates introduction of the scaling

uα = lη2u0
α, u3 = lηu0

3. (5.2)

The corresponding order of the stress components is given by

σαα = ρc2
1σ

0
αα, σ33 = ρc2

1σ
0
33, σ12 = ρc2

1η
2σ 0

12, σα3 = ρc2
1η

2σ 0
α3. (5.3)
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Fig. 3 Plot of An against θ for the second shear resonance frequencies of extensional motion, n = 1, 2, . . . , 6

In view of the fact that we are considering long-wave high frequency approximations in the vicinity
of the stretch resonance frequencies, it follows from (3.7), (3.12) and (3.14) that we may assume

∂2uk

∂τ 2
+ �2

st uk ∼ η2uk, k = 1, 2, 3. (5.4)

Equations (5.2) and (5.3) may now be used in conjunction with (5.4) to establish that the first two
components of the equations of motion may be cast in the form

∂σ 0
αα

∂ξα

+ ∂σ 0
α3

∂ζ
+ �2

st u
0
α −

(
∂2u0

α

∂τ 2
+ �2

st u
0
α

)
+ η2

∂σ 0
αβ

∂ξβ

= 0, (5.5)

with the third given by

∂σ 0
33

∂ζ
+ �2

st u
0
3 + η2

(
∂σ 0

13

∂ξ1
+ ∂σ 0

23

∂ξ2

)
−

(
∂2u0

3

∂τ 2
+ �2

st u
0
3

)
= 0. (5.6)

The stress-displacement relations are now expressible in the form

σ 0
αα = mα

∂u0
3

∂ζ
+ η2

(
καα

∂u0
α

∂ξα

+ καβ

∂u0
β

∂ξβ

)
, σα3 = Cα

(
∂u0

α

∂ζ
+ ∂u0

3

∂ζα

)
, (5.7)

σαβ = c̄2
3

(
∂u0

α

∂ξβ

+ ∂u0
β

∂ξα

)
, σ33 = ∂u0

3

∂ζ
+ η2

(
mα

∂u0
α

∂ξα

+ mβ

∂u0
β

∂ξβ

)
. (5.8)
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If a series solution of the form (4.15) is sought the leading-order equations are given by

Cα

∂2u0(1)
α

∂ζ 2
+ �2

st u
0(1)
α = −(mα + Cα)

∂2u0(1)
3

∂ζ∂ξα

, (5.9)

∂2u0(1)
3

∂ζ 2
+ �2

st u
0(1)
3 = 0, (5.10)

which must be solved in conjunction with the leading-order boundary conditions

∂u0(1)
α

∂ζ
+ ∂u0(1)

3

∂ξα

= 0,
∂u0(1)

3

∂ζ
= 0, at ζ = ±1. (5.11)

The anti-symmetric solution

We begin by considering the anti-symmetric solution of equations (5.9) and (5.10), subject to the
boundary conditions (5.11), this solution taking the form

u0(1)
α = U (0,0)

α sin(�a
stζ ) + U (α,0)

α sin

(
�a

stζ√
Cα

)
, α = 1, 2, (5.12)

u0(1)
3 = W (0,0) cos(�a

stζ ), (5.13)

in which

U (0,0)
α (ξ1, ξ2, τ ) = Cα + mα

(1 − Cα)�a
st

∂W (0,0)

∂ξα

, U (α,0)
α =

√
Cα(1 + mα) cos(�a

st )

�a
st cos(�a

st/
√
Cα)(1 − Cα)

∂W (0,0)

∂ξα

,

(5.14)
with W (0,0) the associated long-wave amplitude. In order to derive the governing equation for
W (0,0) we need to consider the equation associated with (5.6) at second order, which is given by

∂2u0(2)
3

∂ζ 2
+ (�a

st )
2u0(2)

3 = η−2
(

∂2u0(1)
3

∂τ 2
+ (�a

st )
2u0(1)

3

)

−
2∑

α=1

(
(mα + Cα)

∂u0(1)
α

∂ζ∂ξα

+ Cα

∂2u0(1)
3

∂ξ2
α

)
= 0, (5.15)

and which must be solved in conjunction with the appropriate second-order boundary condition

∂u0(1)
3

∂ζ
+ m1

∂u0(1)
1

∂ξ1
+ m2

∂u0(1)
2

∂ξ2
= 0 at ζ = ±1. (5.16)

The inhomogeneous second-order differential equation (5.15) may be solved to yield the solution

u0(2)
3 = V (0,0) cos(�a

st ) + V (0,1)ζ sin(�a
stζ ) +

2∑
α=1

V (α,0) cos

(
�a

stζ√
Cα

)
, (5.17)

in which

V (α,0) =
(Cα(1 + mα)(Cα + mα)

(�a
st )

2(1 − Cα)2

)
cos(�a

stζ )

cos(�a
st/

√
Cα)

∂2W (0,0)

∂ξ2
α

, (5.18)
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V (0,1) = −1

2(�a
st )

2

2∑
α=1

({Cα + 2mαCα + m2
α

1 − Cα

}
∂2W (0,0)

∂ξ2
α

+η−2�a
st

{
∂2W (0,0)

∂τ 2
+ (�a

st )
2W (0,0)

})
. (5.19)

It is noted that it is not possible to obtain V (0,0) at this order of approximation. The next order of
approximation is required therefore if the stress–strain state is to be completely determined at this
order. However, as V (0,0) is the coefficient of cos(�a

stζ ), which vanishes at ζ = ±1, this is of no
consequence in the derivation of a two-dimensional equation for W (0,0). Such an equation is derived
by satisfying the boundary condition (5.16), yielding

∂2W (0,0)

∂τ 2
+ (�a

st )
2W (0,0) + η2

2∑
α=1

(
T (α)

st + P(α)
st

�a
st

tan

(
�a

st√
Cα

))
∂2W (0,0)

∂ξ2
α

= 0, (5.20)

in which

T (α)
st = −

(Cα + 2mαCα + m2
α

1 − Cα

)
, P(α)

st = 2C
3
2
α (1 + mα)2

(1 − Cα)2
. (5.21)

The definitions (4.14) may now be used to establish that

T (1)
st = −p(1)

3 , T (2)
st = −p(2)

3 , P(1)
st = 2a1

�a
st

, P(2)
st = 4a2

�a
st

, (5.22)

enabling (5.20) to be cast into the form

∂2W (0,0)

∂τ 2
+ (�a

st )
2W (0,0) − η2

{(
p(1)

3 + 2a1

�a
st

tan

(
�a

st

c̄3

))
∂2W (0,0)

∂ξ2
1

+
(

p(2)
3 + 4a2

�a
st

tan

(
�a

st

c̄2

))
∂2W (0,0)

∂ξ2
2

}
= 0. (5.23)

It is a straightforward matter now to assume a solution of the form (4.37) and verify that scaled
frequency is exactly that derived as an appropriate approximation of the exact anti-symmetric
dispersion relation; see equation (3.7).

The symmetric solution

In the case of the symmetric solution the counterpart of (5.13) is

u0(1)
3 = W (0,0) cos(�s

stζ ). (5.24)

Following the analysis for the anti-symmetric case, the analogous equation to (5.20) is given by

∂2W (0,0)

∂τ 2
+ (�s

st )
2W (0,0) + η2

2∑
α=1

(
T (α)

st − P(α)
st

�s
st

cot

(
�s

st√
Cα

))
∂2W (0,0)

∂ξ2
α

= 0, (5.25)
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which upon using the definitions (5.22) may be cast in the form

∂2W (0,0)

∂τ 2
+ (�s

st )
2W (0,0) − η2

{(
p(1)

3 − 2a1

�s
st

cot

(
�s

st

c̄3

))
∂2W (0,0)

∂ξ2
1

+
(

p(2)
3 − 4a2

�s
st

cot

(
�s

st

c̄2

))
∂2W (0,0)

∂ξ2
2

}
= 0. (5.26)

It is now possible to assume a solution of the form (4.37) and verify that the dispersion relation
obtained from (5.26) is identical to the expansion (3.12).

6. Concluding remarks

In this paper the equations associated with a layer of transversely isotropic elastic material have been
integrated in the vicinity of cut-off frequencies. Appropriate two-dimensional equations have been
derived for the long-wave amplitudes, the coefficients of which agree with the similar ones obtained
through approximation of the corresponding exact dispersion relation. It should be reiterated that
the construction of a two-dimensional theory is the motivation for this work. The fact that the
appropriate approximation of the dispersion relation may be recovered acts both as a check on the
governing equation and an indication of its potential. In particular, the derived governing equation
may be useful for problems involving structures of complex geometry for which the dispersion
relation is not obtainable in closed form. The methods used in this paper may readily be generalized
to consider long-wave high frequency approximations of different linear wave guides and problems
involving surface or edge loading.
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