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We present a direct calculation by molecular-dynamics computer simulation of the crystal�melt inter-
facial free energy g for a system of hard spheres of diameter s. The calculation is performed by ther-
modynamic integration along a reversible path defined by cleaving, using specially constructed movable
hard-sphere walls, separate bulk crystal, and fluid systems, which are then merged to form an interface.
We find the interfacial free energy to be slightly anisotropic with g � 0.62 6 0.01, 0.64 6 0.01, and
0.58 6 0.01kBT�s2 for the (100), (110), and (111) fcc crystal�fluid interfaces, respectively. These val-
ues are consistent with earlier density functional calculations and recent experiments.

PACS numbers: 68.45.–v, 05.10.–a, 05.70.Np, 68.35.Md

A detailed microscopic description of the interface be-
tween a crystal and its melt is necessary for a full under-
standing of such important phenomena as homogeneous
nucleation and crystal growth [1–3]. Computer simula-
tion studies of model materials have had some success
in elucidating the phenomenology of such systems [4],
the importance of such work being enhanced by the near
absence of reliable experimental studies. These efforts,
however, have been primarily focused on structural and dy-
namical properties, since the central thermodynamic prop-
erty, the crystal�melt interfacial free energy, is difficult
to measure by simulation or experiment. In this Letter
we report the results of a direct calculation via molecular-
dynamics (MD) simulation of the crystal�melt surface free
energy of the hard-sphere system, one of the most impor-
tant reference models for simple materials.

The crystal�melt surface free energy g is defined as the
(reversible) work required to form a unit area of interface
between a crystal and its coexisting melt. Experi-
mentally, g can be measured either indirectly from mea-
surements of crystal nucleation rates interpreted through
classical nucleation theory or directly by contact angle
measurements [1]. Using the former method, Turnbull
[5] estimated g for a number of materials and found a
strong empirical correlation between the values obtained
and the latent heat of fusion for each material given by the
relation g � CTDfHr2�3, where r is the number density
of the crystal and with CT (the Turnbull coefficient)
taking on the value 0.45 for most metals and 0.32 for
other mostly nonmetallic materials. For the hard-sphere
system considered in this Letter, recent experiments [6]
of the crystallization kinetics of a colloidal suspension of
coated silica spheres, which closely mimic hard spheres,
have been interpreted within a classical nucleation model
to yield an estimate for g of the hard-sphere system of
�0.55 6 0.02�kBT�s2 [7]. This value is in agreement [8]
with that predicted using the empirical relationship above
assuming a CT of 0.45 and values of DfH and coexis-
tence densities for hard spheres as determined by MD
simulation [9]. Unfortunately, the accuracy of the values

of g obtained from nucleation rates is severely limited by
the approximations inherent in classical nucleation theory.
More accurate values can be obtained directly using
contact angles, but such experiments are difficult and only
a few materials have been studied to date. One notable
example is a series of grain boundary contact angle experi-
ments on bismuth [10] that determined g to be relatively
independent of crystal orientation at 61.3 3 10

23 J�m2,
which is about 10% higher than Turnbull’s estimate from
nucleation rates of 54.4 3 10

23 J�m2.
In recent years, the primary theoretical approach

to studying the structure and thermodynamics of the
crystal�melt interface has been density-functional theory
(DFT) [11–16]. For these studies, the hard-sphere system
has been the benchmark calculation, due to the simplicity
of the interaction and the availability of accurate, analyti-
cal formulas for the properties of the fluid. However, as
discussed by Marr [8] the value of g obtained is highly
dependent on the approximations used to construct the
DFT and the reported values range from 0.25kBT�s2 to
4.00kBT�s2. The DFT studies also disagree dramatically
in the degree of orientation dependence of the interfacial
free energy. Unfortunately, in the absence of simulation
results it has been difficult to assess the validity of the
individual approaches, although only the DFT approach
of Curtin [13] (g � 0.62kBT�s2) and the related one of
Marr and Gast [7] (g � 0.60kBT�s2) come close to the
nucleation result of �0.55 6 0.02�kBT�s2.

To date, the only reliable calculation of the crystal�melt
interfacial free energy via simulation is that of a system of
particles interacting via a truncated Lennard-Jones poten-
tial by Broughton and Gilmer [17]. In that work, a series
of continuous, external “cleaving” potentials are used to
separate (cleave) separate samples of bulk liquid and fcc
crystal, prepared at the calculated coexistence temperature
and densities. The solid and liquid slabs thus produced
are then placed next to one another and the cleaving po-
tentials removed to merge them into a coexisting inter-
face. The reversible work to perform these steps can be
calculated by thermodynamic integration, giving a direct
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calculation of g for this system. The values of g at the
triple point were found to be statistically isotropic with
gs2�e � 0.35 6 0.02, 0.34 6 0.02, and 0.36 6 0.02 for
the (111), (100), and (110) interfaces, respectively.

For the hard-sphere system, the Broughton-Gilmer
procedure must be modified since the algorithm for MD
simulation of discontinuous hard-core potentials is con-
ceptually very different from the algorithm for continuous
potentials. The latter are performed by integrating the
system of ordinary differential equations, while in the
former the dynamical algorithm proceeds on a collision
by collision basis. Therefore, incorporating continuous
cleaving potentials into the collisional algorithm would
result in lost efficiency and substantial modification of the
structure of the algorithm.

In this Letter we introduce an approach, which uses only
hard-sphere interactions in order to cleave the bulk hard-
sphere systems. This allows us to apply the Broughton-
Gilmer cleaving procedure to the hard-sphere system with
only minor changes to the algorithm structure. The idea
of our approach is illustrated in Fig. 1. To cleave the bulk
system at a cleaving plane (shown by the dashed line in
Fig. 1), the spheres are assigned types 1 or 2 based on
their position relative to the plane. Next, two walls, which
are also assigned types 1 and 2, are placed on the oppo-
site sides of the cleaving plane. The two types are intro-
duced in order to specify interaction between the spheres
and the walls; namely, the walls interact only with the

spheres of similar type. Therefore, when the walls are
placed as shown in Fig. 1 and the distance from the walls
to the cleaving plane is larger than the sphere radius, the
walls do not interact with the spheres. It is important that,
during a simulation run, a sphere changes its type when-
ever it crosses the cleaving plane. Because of the periodic
boundary conditions in the z direction, another plane must
be defined sufficiently far away from the cleaving plane,
where the spheres also change type.

The cleaving of the system is achieved by slowly mov-
ing the walls towards each other (as shown by the arrows
in Fig. 1), starting from the initial position zi , where the
walls do not interact with the system, till zf , where the
spheres of different types no longer collide with each other
at the cleaving plane. During the process, the average pres-
sure on the walls, P�z�, is measured as a function of wall
position. The work per unit area required to perform the
cleaving is given by the integral

w �

Z zf

zi

P�z� dz . (1)

Thus the crystal-fluid interfacial free energy g can be mea-
sured in the reversible process involving the following four
steps: (1) cleave the bulk crystal by inserting two walls
at the cleaving plane and moving them from zi to zf ;
(2) cleave the bulk fluid in a similar way; (3) juxtapose
the cleaved crystal and fluid systems by changing the pe-
riodic boundary conditions while retaining the crystal and
fluid systems restricted by the respective cleaving walls;
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FIG. 1. Diagram illustrating the cleaving of the bulk hard-
sphere system by two moving walls. Spheres are assigned types
1 and 2 based on their position with respect to the cleaving plane
(dashed line). Two walls of types 1 and 2, which interact only
with spheres of similar type, are placed on the opposite sides of
the cleaving plane, so that initially there are no collisions be-
tween walls and spheres (as shown on the diagram). The system
is then cleaved by moving the walls in directions indicated by
the arrows.

(4) slowly move the walls back to their initial positions
with respect to the cleaving planes. This series of steps
is the same as that used by Broughton and Gilmer [17],
except that, in our case, no work is done on the system in
step 3. The interfacial free energy is given by the sum g �

w1 1 w2 1 w4, where w4 is negative and consists of the
work done by the walls on the crystal and fluid parts of the
system during the process of removing the cleaving walls.

The structure of the cleaving walls is crucial to the suc-
cess of the procedure. The main requirement is that the
insertion of the walls perturbs the systems as little as pos-
sible. Our approach is to use walls made of layers of ideal
crystal oriented in correspondence with the orientation of
the crystal system. For the (100) and (111) orientations it
is sufficient to use one layer, while for the (110) orienta-
tion we use two layers. Such a choice of the wall structure
ensures minimal perturbation of the cleaved crystal, while
the cleaved fluid is expected to form properly oriented in-
terfacial layers. The implementation of such a wall struc-
ture is quite simple, since we can treat collisions with the
walls in the same manner we treat collisions between all
the spheres in the system, except that the spheres forming
the walls are assigned infinite mass.

The position of the walls, z, is measured by the dis-
tance of the centers of the spheres forming the walls to the
cleaving plane. Obviously, the walls do not interact with
the system when z . s. Therefore, we set the initial posi-
tion of the walls at zi � s. The pressure P�z� is obtained
by moving the walls from zi to zf in steps of 0.01s. In or-
der to move the walls to a new position, we assign a small
velocity (about 0.1% of the average particle velocity) to
the spheres forming the walls and run the simulation until
the walls reach the new position. At that moment the wall
velocity is set to zero, and the velocities of the particles
are rescaled in order to restore the initial value of the total
kinetic energy of the system. Before measuring the pres-
sure, we allow the system to relax in an equilibration run.
In order to verify the reversibility of the cleaving process,
we have also simulated the reverse process and measured
the pressure while moving the walls from zf back to zi .
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The details of the simulation process and obtained results
follow.

Step 1: Cleaving the crystal.—For each of the three
orientations, we start with a crystal at a density rc �

1.037s23, which corresponds to the crystal-fluid coexis-
tence pressure of 11.55kBTs23 [18]. In order to minimize
the size effects and the amount of stress in the crystal
introduced by the cleaving walls, we use large systems of
about 8000 spheres and approximate dimensions of 14s 3
14s 3 40s. (To perform the simulations efficiently for
such large systems, we use the algorithm of Rappaport
[19].) The cleaving plane is placed in the middle between
two crystal layers. The dependence of the pressure on the
wall position is shown in Fig. 2. The walls do not interact
with the crystal until they move sufficiently close to the
crystal layers (about 0.7s for all orientations). Then the
pressure on the walls quickly rises to slightly above
the bulk crystal pressure. The steepness of the rise is
directly related to the compactness of the layers for each
orientation. The final positions zf , where the spheres of
different types no longer collide across the cleaving plane,
were determined to be 0.31s, 0.16s, and 0.35s for the
(100), (110), and (111) system orientations, respectively.
No hysteresis was observed in the reverse process.

Step 2: Cleaving the fluid.—The fluid systems con-
sisting of about 7400 particles are prepared at the co-
existence density rf � 0.939s23 using box dimensions
nearly identical to the crystal systems. Unlike in step 1,
the cleaving walls begin to interact with the fluid system
as long as z , s. As can be seen in Fig. 3, the pres-
sure on the walls increases approximately linearly until the
fluid near the cleaving walls begins to develop significant
crystal-like ordering commensurate with the wall structure.
At that point the pressure in the bulk fluid decreases to
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FIG. 2. Step 1: Cleaving crystal system. Pressure on the
cleaving walls as a function of wall position for the three
orientations of the interface. The error bars are smaller than
the size of the symbols.

about 11.2kBTs23, after which the dependence of pres-
sure on the wall position follows essentially the same curve
as during the cleaving of the crystal system, which leads
to the same values of zf as in step 1. A similar non-
monotonic dependence of the pressure profile as a func-
tion of confinement volume has recently been observed in
integral equation studies of charged fluids in a spherical
pore [20].

Simulation of the reverse process shows that the order-
ing of the fluid against the walls is the source of some
hysteresis. However, we have found that the magnitude of
the hysteresis can always be reduced to within the statis-
tical error by increasing the duration of the equilibration
run. In other words, at every position of the cleaving walls,
the pressure on the walls eventually converges to the same
value (within the statistical error bounds) in both forward
and reverse processes.

Step 3: Changing boundary conditions.—The com-
bined system has two cleaving planes and four walls. The
crystal part of the system and the two walls restraining it
are assigned type 1, while the fluid part and the other two
walls are assigned type 2.

Step 4: Removing the cleaving walls.—As can be seen
in Fig. 4, the pressure on the walls restraining crystal and
fluid parts of the system is essentially the same as in steps
1 and 2, respectively, except that the fluid part retains its
structure in the interfacial region. Thus the main contri-
bution to the interfacial free energy comes from the pres-
sure of the fluid on the cleaving walls before significant
crystal-like ordering at the wall develops.

The work done during each step and the resulting
interfacial free energy for each of the three orientations is
given in Table I. The average values of g for the three
orientations is about 0.61kBT�s2, which corresponds to a

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

(100)

(110)

(111)

z/σ

P
σ

3
/(

k
B

T
)

FIG. 3. Step 2: Cleaving fluid system. Pressure on the cleav-
ing walls as a function of wall position for the three orientations
of the interface. The error bars are of the order of the size of
the symbols.
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FIG. 4. Step 4: Removing the cleaving walls. Pressure on
the cleaving walls as a function of wall position for the three
orientations of the interface. Filled and open symbols indicate
pressure on the walls restraining fluid and crystal parts of the
system, respectively. The error bars are of the order of the size
of the symbols.

Turnbull coefficient of 0.51. This average value is about
10% higher than the value determined from nucleation
rates on colloidal crystals, consistent with the differences
found in other materials, such as bismuth (discussed
above). Note that the hard-sphere g values are slightly
anisotropic and increase in the order of (111), (100), and
(110). That (111) has the lowest interfacial free energy
is perhaps not surprising, since the (111) crystal face
resembles most the structure adopted by the fluid against
a structureless wall [18].

It is generally accepted that the structure and ther-
modynamics of dense simple fluids is dominated by the
repulsive part of the potential, which can often be well ap-
proximated as a hard sphere. If one considers the truncated
Lennard-Jones system studied by Broughton and Gilmer
and calculates an effective hard-sphere diameter at the
triple point (T � 0.617e�kB), using the Barker-Henderson
approach [21], one obtains a value of (0.39e�s2) simply
by rescaling the hard-sphere result calculated here. Thus,
the attractive part of this potential accounts for only
about 10% of the total g, which is consistent with a
similar observation by Curtin on the basis of DFT cal-
culations [13].

To summarize, we have determined the crystal�melt in-
terfacial free energy g for the hard-sphere system directly
from simulation using a method that is similar to that
Broughton and Gilmer [17] used for the truncated Lennard-
Jones system except that we have replaced their exter-
nal cleaving potentials with specially constructed cleaving
walls. Although the method of cleaving walls is espe-
cially advantageous for the hard-sphere system, it could
also be easily applied in modified form to continuous po-
tentials. The hard-sphere g obtained is only slightly de-

TABLE I. Values of wn for the steps of the thermodynamic
integration process together with their sum g. The statistical
error estimates represent 2s error bounds.

(100) (110) (111)

w1 0.850 6 0.001 1.287 6 0.001 1.125 6 0.001

w2 1.561 6 0.008 1.989 6 0.007 1.768 6 0.008

w4 21.789 6 0.005 22.639 6 0.006 22.311 6 0.005

g 0.62 6 0.01 0.64 6 0.01 0.58 6 0.01

pendent upon orientation and averages about 0.61kBT�s,
consistent with some previous theoretical predictions from
density-functional theory. This value is also about 10%
higher than that determined from nucleation experiments
on colloidal suspensions of coated silica spheres, giving a
rare comparison between direct evaluations of g and less
accurate indirect determinations via nucleation theory.
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