
Direct Carbon Isotope Exchange Through Decarboxylative 
Carboxylation

Cian Kingston1, Michael A. Wallace2, Alban J. Allentoff2, Justine N. deGruyter1, Jason S. 
Chen3, Sharon X. Gong2, Samuel Bonacorsi Jr.2, Phil S. Baran1

1Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La 
Jolla, California 92037

2Radiochemistry, Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, USA

3Automated Synthesis Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, 
La Jolla, California 92037

Abstract

A two-step degradation-reconstruction approach to the carbon-14 radiolabeling of alkyl carboxylic 

acids is presented. Simple activation via redox-active ester formation was followed by nickel-

mediated decarboxylative carboxylation to afford a range of complex compounds with ample 

isotopic incorporations for drug metabolism and pharmacokinetic studies. The practicality and 

operational simplicity of the protocol was demonstrated by its use in an industrial carbon-14 

radiolabeling setting.

Graphical Abstract

Successful execution of the metabolic and pharmacokinetic studies required in a modern 

drug development campaign is often predicated on the ability to access useful quantities of 

radiolabeled lead analogues.1 The demand for ever more advanced radiolabeling techniques 

is illustrated by the recent reports describing the tritiation of arene-, azaarene-, amine-, 
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amide- and thioether-containing compounds through efficient hydrogen isotope exchange 

(HIE) processes (Figure 1A, I).2 As the more metabolically-stable radiolabel, carbon-14 is 

heavily relied upon during all stages of drug development, including (pre)clinical absorption, 

distribution, metabolism, and excretion (ADME) studies.3 In contrast to tritium, the 

synthetic methods for introduction of this isotope have remained relatively inefficient due to 

the difficulties associated with C–C bond formation.4 Still, the ubiquity of carboxylic acids 

in nature has made them a prime target for carbon-14 radiolabeling, particularly in the 

synthetically favorable degradation-reconstruction strategies that begin from the unlabeled 

target compound (Figure 1A, II).1a,5 However, current approaches rely on harsh conditions 

to facilitate the common activation/substitution/hydrolysis sequence, thereby severely 

limiting their application.6 Inspired by the synthetic utility of HIE, we set out to invent a 

method to radiolabel alkyl carboxylic acids through direct carbon isotope exchange, wherein 

the isotope is incorporated in the final step. We envisaged an expedient sequence consisting 

of mild formation of a redox-active ester7 (RAE) followed by a chemoselective nickel-

mediated reductive decarboxylative carboxylation (Figure 1A, III).8 As a further advantage, 

the use of carbon-14 labeled CO2 would maximize the radiochemical yields and minimize 

the handling of radioactive intermediates.9 A concern with the use of RAE substrates is the 

undesired partial reformation of the unlabeled target compound via cleavage or incomplete 
12CO2/14CO2 exchange (Figure 1B). However, while mechanistically limiting the specific 

activity, the levels of incorporation should be more than sufficient for practical use in ADME 

studies.10

The desire to evaluate the proposed methodology using cheap and readily available 12CO2 

uncovered an interesting problem: how does one quantify product formation in the presence 

of an identical byproduct? Different mechanistic solutions (Scheme 1A) were evaluated to 

address this issue. Whereas methods relying upon diastereomeric inversion (Scheme 1A, I)7l 

and nickel chain-walking11 (Scheme 1A, II) afforded irreproducible results and no product 

formation, respectively, the use of cyclopropylmethyl substrate 7 enabled reproducible 

differentiation between the carboxylated and hydrolyzed products 9 and 10 via radical-

induced ring opening (Scheme 1A, III). With a proof-of-concept in hand, RAE 11 was 

chosen as a model substrate and subjected to carboxylation by non-radioactive 13CO2 as a 

surrogate for 14CO2 (a summary of reaction optimization is depicted in Scheme 1B). Some 

initial difficulties encountered using a traditional pressure vessel were circumvented by 

switching to Unchained Labs deck screening pressure reactor, which provided reliable and 

reproducible results (see the Supporting Information for further details). Screening of the 

reaction parameters led to the formation of acid [13C]-12 in 42% yield with 19% 13CO2 

incorporation (entry 1).12 If this level of incorporation could be realized using 14CO2, a 

specific activity of 66 µCi/mg would be achieved. Lowering both the pressure and the nickel/

ligand loading had a deleterious effect upon the isotopic incorporation (entries 2–3) and 

control reactions showed the nickel source, ligand and reductant were all essential for 

product formation and/or 13CO2 incorporation (entries 4–6). Photoinduced electron transfer 

processes were also investigated but failed to provide the product in meaningful yields and 

isotopic incorporations (see the Supporting Information).
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With an optimized set of conditions in hand, the scope of the reaction was explored with a 

series of primary, secondary, and tertiary RAEs (Scheme 2A). To gauge the potential 

application of the methodology for preclinical and clinical ADME studies, the observed 
13CO2 incorporations were converted to the theoretical specific activities which would result 

from using 14CO2. With the recent advent of ultrasensitive analytical techniques, the 

bottleneck for specific activity in radiolabeling clinical human ADME studies has shifted to 

analysis of radiochemical purity. Industrial standard HPLC with in-line radioactivity 

detection requires 10 µCi/mg or higher to allow for sufficient disintegrations per minute for 

precise radiochemical analysis while maintaining column performance.13 Lower isotopic 

incorporations can be analyzed by liquid scintillation counting, microplate scintillation or 

accelerator mass spectrometry, but these are more resource-intensive techniques. In general, 

higher incorporations over 20 µCi/mg are required for early preclinical animal ADME 

studies.14 Gratifyingly, primary and secondary RAEs generated from acids 14–22 bearing a 

variety of functional groups including ketone, ester, protected amines and amides and a 

phenol were all well tolerated, with excellent isotopic incorporations suitable for all 

preclinical and clinical ADME studies. In the case of such radiolabeling studies, isolated 

chemical yields are less important than the speed of preparation and cost of the isotope 

source. Chemoselectivity of the process is also critical so as to avoid extra functional group/

protecting group manipulations on radioactive material. Thus, the mild degradation-

reconstruction approach described here in which the unlabeled target compound is readily 

available from preliminary scale-up is ideal. Compound 23 bearing additional functionality 

in an epoxide and free alcohols was formed with isotopic incorporation that would be 

sufficiently high for in-line HPLC purity analysis for use in carbon-14 clinical ADME 

studies. While secondary acids 19, 2115 and 22 were formed with excellent isotopic 

incorporations, no incorporation was observed for tertiary acid 24.

With the scope and practicality of the reaction established, it was implemented in an 

industrial radiosynthetic setting using 14CO2. Although only a small amount of pressure was 

required under the optimized conditions with 13CO2, efforts to further increase operational 

simplicity, cost effectiveness and safety were made through consideration of Henry’s law.16 

Gratifyingly, implementation of an initial temporary cryogenic period provided a balance of 

CO2 solubility and chemical reactivity at atmospheric pressure. This facilitated the 

development of a practical laboratory setup using standard vacuum manifold techniques to 

allow safe application of 14CO2 to the process (see the Supporting Information for further 

details). Using only 5.5–32 equivalents of 14CO2 (depending on the use of an ampule or in 
situ formation from [14C]-BaCO3), a selection of RAEs underwent decarboxylative 

carboxylation to afford the carbon-14 radiolabeled products with sufficient levels of isotopic 

incorporation for general use in preclinical and clinical ADME studies (Scheme 2B). 

Interestingly, the inverted α-diastereomer of 21 was isolated with a significantly higher 

specific activity than the corresponding β-product, presumably due to the intermediacy of a 

radical species (as proposed in Scheme 1A, I). To further explore the advantages of this 

methodology, it was compared to two previous radiosyntheses of biologically important 

compounds (Scheme 3). Parnes and co-workers previously reported a seven-step 

degradation-reconstruction approach to [14C]-mycophenolic acid 25 which relied upon a 

decarboxylative halogenation/[14C]-cyanation sequence to introduce the radiolabel in the 
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antepenultimate step.17 In stark contrast, the developed procedures for 13CO2 and 14CO2 

both afforded the product in just two steps, one (radio)labeled, with sufficient isotopic 

incorporation for all ADME studies. In the synthesis of [14C]-chlorambucil 26, Madelmont 

and co-workers introduced the radiolabel in the first step of an eight-step sequence via [14C]-

cyanation of alkyl bromide 27 using low specific activity K14CN.18 In contrast, 

decarboxylative carboxylation afforded the product in an expedient two-step sequence with 

excellent 13CO2/14CO2-incorporation. The results bode well for the widespread adoption of 

this method for carbon-14 radiosynthesis of ubiquitous alkyl carboxylates.19

In summary, a decarboxylative carboxylation method has been developed for the efficient 

carbon-14 radiolabeling of carboxylic acid containing compounds. Conceptually analogous 

to H/D and H/T isotopic exchange, the 12C/13C and 12C/14C isotopic exchange represents an 

expedient and operationally simple alternative to existing radiosynthetic methods that rely 

on inconvenient multi-step strategies. The utility of the method is self-evident through its 

field testing in an established radiosynthetic pharmaceutical setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) A new approach to carbon-14 radiolabeling inspired by hydrogen isotope exchange. 

NHPI = N-hydroxyphthalimide. (B) Potential pitfalls of Ni-mediated carboxylation of 

redox-active ester substrates.
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Scheme 1. 
(A) Initial investigation with 12CO2. (B) Development, optimization and analysis with 
13CO2. a0.1 mmol. b1H NMR yield with 1,3,5-trimethoxybenzene as an internal standard. 
cCalculated from high-resolution mass spectrometry data in MassWorks (Cerno Bioscience) 

and confirmed by 13C NMR. dIsolated yield. DSPR = deck screening pressure reactor.
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Scheme 2. 
(A) Scope of the Ni-mediated decarboxylative carboxylation with 13CO2. Reaction 

conditions: RAE (1.0 equiv.), NiBr2•glyme (1.0 equiv.), neocuproine (2.2 equiv.), Mn (2.2 

equiv.), 13CO2 (50 psi), DMF (0.1 M), rt, 20 h. a1H NMR yield with 1,3,5-

trimethoxybenzene as an internal standard. LSC = liquid scintillation counting, AMS = 

accelerator mass spectrometry, HPLC = high-performance liquid chromatography. (B) 

Translation to a 14CO2 radiochemistry setup. Reaction conditions: RAE (1.0 equiv.), 

NiBr2•glyme (1.0 equiv.), neocuproine (2.2 equiv.), Mn (2.2 equiv.), 14CO2 (1 atm, 5.5–32 

equiv.), DMF (0.03–0.05 M), −25° C (1h) to rt, 20 h.
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Scheme 3. 
Comparative studies on the synthesis of biologically-relevant compounds. Reactions 

conditions as in Scheme 2.
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