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Abstract

Although brain-computer interfaces (BCIs) can be used in several different ways to restore

communication, communicative BCI has not approached the rate or success of natural human

speech. Electrocorticography (ECoG) has precise spatiotemporal resolution that enables recording

of brain activity that is distributed over a wide area of cortex, such as during speech production. In

this study, we investigated words that span the entire set of phonemes in the General American

accent using ECoG with 4 subjects. We classified phonemes with up to 36% accuracy when

classifying all phonemes and up to 63% accuracy for a single phoneme. Further, misclassified

phonemes follow articulation organization described in phonology literature, aiding classification

of whole words. Precise temporal alignment to phoneme onset was crucial for classification

success. We identified specific spatiotemporal features that aid classification, which could guide

future applications. Word identification was equivalent to information transfer rates as high as 3.0

bits/s (33.6 words/min), supporting pursuit of speech articulation for BCI control.

Keywords

electrocorticography; speech production; phonemes; linear discriminant analysis

1. Introduction

Brain-computer interfaces (BCI) can be used to restore communication in several different

ways (see [1], [2] for reviews). However, communicative BCIs using primarily evoked

potentials have not approached the rate or success of natural human communication [3]. One
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approach that could provide higher throughput is to classify and decode neural signals

related to speech production [4], but research in this field has failed to approach the

efficiency of speech. Advances in electrocorticography (ECoG), in which field potentials are

recorded directly from the surface of the cortex, may be able to improve decoding efficiency

by recording from cortical speech areas. ECoG has been used to decode movement

kinematics and kinetics [5], [6] and classify rapid cognitive processes [7]. ECoG recordings

have precise temporal and spatial resolution compared to noninvasive techniques [8] and

enable recording of rapid electrophysiological processes over a wide area of cortex [9].

ECoG can therefore facilitate mapping of rapid neural changes related to speech production

[10], which involves concurrent activation in a wide area of cortex.

Most studies of speech production using ECoG to date have been intentionally limited in

scope. Studies that employ a whole-word approach, classifying cortical activation patterns

primarily based upon the differences between full words, initially identified the cortical

areas that are active during speech articulation [11]. Classification of articulated words with

micro-ECoG electrodes over facial motor cortex successfully identified at best less than half

of 10 words in one patient [12]. Another study classified pairings of initial and final

consonants by comparing the ECoG activation relative to word onset, and achieved up to

45% classification of a single consonant pairing in one out of 8 subjects [13]. These whole-

word studies demonstrate preliminary success in speech decoding, but ultimately such

success rates cannot be extrapolated to more complex speech. Moreover, the current most

efficient BCI for communication reports information rates of 2.1 bits/s [14], much lower

than the average natural efficiency of human speech production at 25 bits/s [15]. Thus,

perhaps the ultimate goal for a speech neuroprosthetic is an information transfer rate that

approaches natural speech.

One way of improving information rates may be to specifically decode the smallest isolated

segments of speech, called phonemes. This approach would use phonemes, rather than

words, as the “events” around which to analyze changes in brain signal. Speech BCIs using

intracortically-recorded spikes to decode phonemes have achieved up to 21% classification

success of all phonemes [16], and demonstrated up to 70% classification success of

discrimination of 3 imagined vowels in an individual with locked-in syndrome [17]. Similar

studies using ECoG succeeded in classifying small subsets of phonemes, isolated from the

context of words (4 phonemes in [18], 2 in [19]). One ECoG-based BCI achieved an average

of 84% discrimination of 2 vowels for 2 subjects in real-time [19]. One recent study detailed

an approximate “phonemotopic” map of the areas to target within motor cortex using

intermediate-density ECoG electrodes, updating traditional somatotopic maps for motor

cortex [10]. These approaches demonstrate the potential to decode phonemes from cortical

signals.

To our knowledge, no ECoG study has specifically investigated phonemes as independent

events within words. ECoG approaches to date have not tried to classify phonemes with

millisecond precision in phoneme onset detection. Further, no ECoG study has investigated

classification of a comprehensive set of phonemes for a language.
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In this study, we investigated production of words using the entire set of phonemes in the

General American accent of English using ECoG. The rationale for this study was that once

the smallest segments of speech articulation were related to corresponding cortical signals,

the first critical step toward motor-based speech prosthetics would be established. We

attempted to identify specific factors of decoding success or failure as a guide for future

approaches. Furthermore, we hypothesized that precisely synchronizing analysis to each

individual phoneme event is crucial for accurately discerning event-related cortical activity.

This synchronization could reveal speech production dynamics in cortex, enabling decoding

of individual phonemes within articulation of words.

2. Methods

2.1. Subjects

Four subjects (mean age 42, 2 female) who required extraoperative ECoG monitoring for

treatment of their intractable seizures gave informed consent to participate in this study. The

Institutional Review Boards of Northwestern University and the Mayo Clinic approved this

study. Electrode coverage of cortex, determined by medical necessity, included some frontal

and temporal areas in all subjects, although the degree of frontal coverage varied widely.

Electrical stimulation mapping was performed for clinical purposes to determine areas

corresponding to speech motor function, defined by movement of speech articulators in

response to stimulation, and provided a gold standard for functional identification of brain

regions (Figure 1). ECoG electrode placement was determined by co-registering pre-implant

magnetic resonance images with post-implant computed tomography scans [20], [21].

2.2. Data Acquisition

We simultaneously collected speech audio signal (sampled at 44.1 kHz) from a USB

microphone (MXL) using customized BCI2000 software [22] and a Tucker-Davis Bioamp

system. We synchronized this signal with ECoG signals recorded on a clinical system

(Nihon Kohden for NU subjects and Natus XLTEK for the MC subject). ECoG sampling

frequencies, which varied due to clinical settings, were 500 Hz for Subject NU1, 1 kHz for

Subjects NU2 and NU3, and 9.6 kHz for Subject MC1. ECoG was subsequently bandpass

filtered from 0.5-300 Hz for NU2, NU3 and MC1 and 0.5-120 Hz for NU1 (Figure 2).

2.3. Experimental Protocol

Prior to the start of the experiment, subjects were screened for accent, mother tongue, and

foreign accent exposure. Subjects read words from the Modified Rhyme Test (MRT),

consisting of 300 monosyllabic words, predominantly with consonant-vowel-consonant

structure [23]. The frequency of phonemes within the MRT set roughly approximates the

phonemic frequency found in the English language [24], and it also has a high prevalence of

rhyming structures. Because the MRT did not include all phonemes present in the General

American accent of English, 20 additional words, which included 4 phonemes excluded

from the MRT (\ȩ\,\j\, \ə\, and \aɪ\) were added to the stimulus set to create a comprehensive

collection of General American phonemes in full words.
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Using BCI2000, we presented one word on a screen for 3 s, followed by a blank screen for 1

s. Subjects were encouraged to read each word aloud as soon as it appeared. Total trials per

subject varied from 320 words (Subjects NU1 and MC1) to 480 words (in which the first

160 words of the stimulus set were repeated; Subjects NU2 and NU3). This resulted in a

minimum of 600 consonant and 320 vowel phonemes for each subject.

2.4. Data Preprocessing

Data was reduced to time-frequency features for each trial [25] and further separated by

phoneme (Figure 2 depicts a summary of data preprocessing). We inspected visual and

auditory spectral changes in the microphone signal to manually label the onset of each

phoneme within each word. Phoneme assignment was determined using the CMU

Pronouncing Dictionary, which assumes General American pronunciation. ECoG signals

were common-average referenced in the time domain. Signals were split into 4-s trials

centered on word onset, defined as the start of the first phoneme of a word. We computed

short-time Fourier Transforms (FFTs) on moving 150 ms windows of each ECoG electrode.

A 2 Hz frequency step size was used. Power was computed relative to power in baseline

activity during the first second of each trial (Matlab).

To create spectrotemporal features for each phoneme, we combined FFT coefficients within

each frequency band to denote overall power changes for that band for each electrode. We

used the following 5 frequency bands: high-gamma, separated into 3 segments that avoided

the harmonics of 60 Hz noise (65-115 Hz, 125-175 Hz, and 185-250 Hz) [26], mu (7-13

Hz), and beta (15-30 Hz). We also used the local motor potential [27], the time-domain

signal smoothed over 150 ms. We computed features by shifting the 150-ms window in 50-

ms increments, and used the features from 300 ms prior to 300 ms after phoneme onset.

These 12 time bins included the entire phoneme (mean phoneme duration was 176 ms) as

well as any preparatory movements prior to phoneme production. While the period

surrounding phoneme onset could contain some information about neighboring phonemes,

this information quickly diminished with increasing number of samples of a given phoneme

since neighboring phonemes differed in each sample.

The time-frequency power features were then sorted by phoneme. For the full 320 word

stimulus set, 981 phonemes were analyzed; for subjects who completed 480 words, 1470

phonemes were analyzed (67.3% of which were consonants). To reduce feature

dimensionality and ensure phoneme class separability, features were ranked according to p-

values from one-way ANOVAs across phonemes during training.

2.5. Classification

The 140 features with the lowest p-values were selected to classify phonemes using linear

discriminant analysis (LDA) [25], [28]. The optimal number of features was determined by

systematically increasing the value until decoding performance reached a maximum. LDA

was selected primarily because it allowed us to identify features that led to successful

categorization. We used 10-fold cross-validation with randomly-selected test sets, which

were fully independent of each other and of the training sets, to compute success rates.
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We determined the most informative frequency bands by independently decoding with each

individual frequency band using all electrodes. Similarly, we determined the most

informative time features by investigating performance of individual time bins. Further, we

evaluated performance with increasing numbers of time bins, adding bins to the feature set

until performance no longer improved. Time bins were added in order of highest to lowest

significance, and included all electrodes and frequency bands.

To determine peak performance for each subject, we excluded electrodes that did not

contain significant features (p-values > 0.1) or that had no significant activity changes prior

to or during phoneme onset. This prevented electrodes associated with auditory areas from

confounding motor speech decoding. Features were selected from these electrodes for each

subject to determine their best possible decoding performance (i.e., 140 features were

selected from at least 288 possible features – at least 4 electrodes, 12 time bins, and 5

frequency bands plus LMP – from each subject Figure 1). To ensure decoding results were

not influenced by phoneme distributions within folds, decoding percentages were

determined by averaging 5 separate 10-fold cross-validation results (i.e., average of 50

folds). Chance classification percentages were determined by randomly shuffling phoneme

labels and re-classifying; this process was repeated 100 times.

2.6. Estimation of Information Transfer Rate

The goal for this speech BCI approach is to decode phonemic information during speech

production, but phonemes exist in combinations within words. We therefore analyzed how

phonemic decoding of combinations of consonants could be applied to identify words of the

data set. We further investigated this performance when constraining predictions of

phoneme combinations to those existing in the stimulus set in the order of posterior

probability. To calculate gross information transfer rate (ITR) from these results, we first

calculated average word duration (520 ms) and phoneme duration (176 ms). ITR was then

determined by multiplying the information capacity (in bits/phoneme) by classification

success and rate of speech production [29]. This procedure was generalized to other results

reported in the literature using speech duration times from our results. Conversion to words

per minute from bits per second was estimated using bit rates for syllable production of

speech [15].

3. Results

3.1. Classification performance

Vowels and consonants were analyzed separately [30]. Decoding results were significant

from chance levels despite varying widely over subjects, largely due to the wide variation in

coverage of face motor areas (Figure 3). Subject NU2 had the highest overall performance,

in which 36.1% of consonant phonemes were correctly classified. The maximum

performance for classifying any one phoneme was 63% (\k\ for Subject NU2). Averaged

across all subjects, 20.4±9.8% of all phonemes were classified correctly, significantly

greater than chance decoding (7.4%, p<0.001, t-test). Average classification performance for

vowels across all subjects was 19.2±3.7%, also significantly greater than chance (12.9%,

p<0.01, t-test), with the best performance in NU2 of 23.9%. The most successfully classified
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vowels were produced with similar articulatory positions to the most successfully classified

consonants for a given subject. For example, Subject NU2 had the most accurate

classifications of \i\, which involves a high back tongue, and \k\, which is also articulated

with the back of the tongue close to the palate.

Interestingly, decoding results supported phonetic categorizations (Figure 4). When a

phoneme was misclassified, it was typically classified as its nearest neighbor within the

International Phonetic Alphabet (IPA) chart of pulmonic consonants [31], the standard for

phonology and linguistics. The IPA chart organizes sounds across languages by their

articulation location along the vocal tract and the degree or manner of that articulation [31].

Our results indicate that consonants similar in articulation location and manner are more

often confused during classification. When misclassification incidence is compared via

ratios of IPA to non-IPA neighbors, a phoneme is 15.5% more likely to be mislabeled as a

direct neighbor than a phoneme distant on the IPA chart (24.2% for Subject NU2).

Similarly, phonemes are 34.3% more likely to be mislabeled as a phoneme with a similar

vocal tract constriction location (49.8% for Subject NU2). Further, notable exceptions to this

rule reveal other properties of IPA organization. Nonpulmonic consonants, which include

affricates (\tʧ\ in chip, \dȩ\ in jump) as well as approximants (\w\ in win), are most often

confused with their closest pulmonic relatives. Thus \w\, a labialized velar approximant, is

confused with both labial phoneme \b\ and velar phoneme \g\. Finally, poorest classification

of phonemes occurred in those with few numbers of trials (< 10 repetitions).

We analyzed how performance varied with the number of phonemes classified, the number

of phoneme samples, and the accuracy of phoneme onset (Figure 5). To investigate the

degree to which the number of phonemes affects results, classification was restricted to

subsets of phonemes included in descending order of their frequency of occurrence in the

data set. This process yields a maximum performance of 72.3% using 4 phonemes for

Subject NU2 (Figure 5a). For all subjects, performance decreased until approximately 15

phonemes were included (at which point additional, less common phonemes had fewer than

10 samples). To investigate how performance varied with quantity of phoneme samples, we

classified all 24 consonant phonemes using increasing number of samples (Figure 5b).

Performance increased with the number of samples for all subjects, which suggests that

results could improve with more data. To investigate the effect of the precision of alignment

to phoneme onset, we added variability to the onset time in the form of Gaussian noise

(Figure 5c). Performance sharply decreased when the standard deviation of onset time

variability increased to 100 ms, which is notably less than the 176 ms average length of a

phoneme in time (ranging from 75 ms for \b\ to 282 ms for \s\). This result demonstrates the

critical need for temporal precision in phonemic analysis, as performance sharply decreases

as timing offset noise increases.

3.2. Analysis of Feature Contribution

To determine the ECoG factors that influenced performance, we decoded phonemes using

each frequency band and time bin independently. The three segments of high-gamma band

(65-250 Hz) produced the highest decoding performance of all frequency bands (mean of

79.8% of maximum decoding values across subjects for the 65-115 Hz band). The mu band
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also showed significantly better than chance decoding (50.7% of maximum decoding values,

p < 0.05). Local motor potential and beta bands could not decode phonemes significantly

better than chance performance (p > 0.1). The most informative time bin occurred right at

phoneme onset (0-50ms) across subjects. When combined, features spanning 200 ms before

to 200 ms after phoneme onset accounted for 88.1% of peak performance. Most of the

significant ECoG activity therefore occurs in immediate preparation for and during onset of

phoneme production (i.e., causal activity). This minimized the influence of neighboring

phonemes. All subjects had at least 4 electrodes with causal information about speech for

decoding speech articulation.

Performance was predominantly best when only incorporating data from the electrodes

located over traditional primary motor cortex. Although we discovered atypical functional

organization for decoding phonemes for subject NU3, these subtemporal areas also

responded to facial motor activity and facial sensation during electrical stimulation. Overall,

in all subjects, the most information about phonemes was obtained from functional facial

motor areas.

3.3. Information Transfer Rate

We calculated the classification success of all consonant combinations in our stimulus set

with our best performing subject (NU2). We successfully identified 14.8% of these

combinations without having ever trained our algorithm to decode words (chance = 0.83%, p

< 0.0001, t-test). This investigation of phonemes within words outperforms simple joint

probability of phoneme classification. When we constrained the predictions of phonemes for

a whole word to only words used in the stimulus set, results improved to 18.8%. We

calculated an information transfer rate of 3.0 bits/sec (equivalent to 33.6 words per minute)

for a hypothetical BCI (Figure 6). This is higher than what would be expected for a similar

motor control behavioral paradigm due to the high information transfer of speech.

4. Discussion

This study is the first to decode the entire set of phonemes from American English using

ECoG. It is also the first to successfully analyze and classify individual phonemes within

word production. We found that that an event-related methodology enabled us to decode

phonemes within words by aligning to the onset of each speech sound. Although other

ECoG studies have classified overt phonemes by comparing words with similar phonemes,

by analyzing phonemes directly in context, we reveal properties of speech production that

corroborate decades of phonetics research. Misclassification of cortical activity follows the

similarities in designations of phonemes by the International Phonetic Alphabet. Using the

guidelines of the IPA to reduce words to their phonemic components, and their

corresponding identifiable patterns of cortical activity, we can then decode speech

information efficiently.

Our results suggest specific spatiotemporal guidelines for future endeavors into speech

decoding using ECoG, advancing the science behind speech BCI development. Recording

with higher electrode density over or neighboring sensorimotor cortices likely would

improve decoding performance substantially. Kellis and colleagues demonstrated that 5
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electrodes over facial motor cortex with 1 mm spacing yielded best results for their 10-word

stimulus set [12]. Our results expand on that result and suggest that there may be additional

information necessary to decode other details of articulation across a 4-cm mediolateral span

of speech sensorimotor cortex [10]. Thus, a high-density (1-2 mm) electrode array over an

area of at least 4 cm of speech motor cortex may be optimal for decoding speech.

Investigation of frequency content showed the high-gamma band provided the most

information about speech motor activity. This is consistent with prior studies on hand and

arm movements [25], [26], [32], [33]. Finally, although speech production, speech reception,

and visual stimuli are strongly related (e.g. McGurk effect [34]), the current results are

unlikely to be related to speech reception or visual confounds. Phonemes were classified

using causal features made in preparation for or during movements of articulation. Further,

misclassification of phonemes adhered to phonological designations for articulation and not

potentially confounding visual or auditory factors. For example, \s\ and \f\, often aurally

confused because of their similarities in frequency, are not confused within our data.

Comparisons with other speech ECoG studies are difficult due to large variability in the set

of phonemes, number of trials, types of decoding, and electrode coverage. However, we can

approximate comparisons by computing the efficiency (ITR) of our system (Error!

Reference source not found.). Our results compare favorably with those of Kellis et al. [12],

which identified 10 words with 48% success using their 5 best micro-ECoG electrodes, and

Pei et al [13], which identified 4 vowels and 9 consonant pairs at 40.7% (Error! Reference

source not found.). Although we did not directly train our decoders on whole words, we

successfully identified phonemes in 14.8% of our 320 word set on a first attempt. A best-

performance volitional control of a single /k/ channel for Subject NU2, computed similarly,

could yield a theoretical ITR of 32 words per minute, higher than many current BCI

communication systems. Finally, speech recognition algorithms could be applied to

phonemic results to leverage the frequency of phonemes within words in the English

language to exclude impossible scenarios (e.g. words starting with \ŋ\).

Although word identification was not sufficient for communication purposes at a mere

18.8%, it is notable that words can be identified from phonemic analysis alone. This result

outperforms the joint probability of isolated phoneme prediction and indicates that

classification across some words is better than others. It is important to note that we are not

strictly decoding words, as we have prior information as to where phonemic onset occurs.

However, the correct identification of phonemes within a word is a concrete step toward

whole word decoding from a broader set of words.

Finally, to analyze neural activity during phoneme production, phonemes need to be

precisely identified as events. The high temporal precision required to accurately decode

phonemes using this method suggests that there will be challenges for translating these

algorithms to a real-time BCI for locked-in patients. Other methods may be necessary to

detect onset of attempted speech production to enable speech decoding.

Despite these limitations, this study establishes that decoding phonemic information from

spoken words is not only possible, but follows findings of phonetics research. Our results

confirm that ECoG is capable of decoding rapid motor components of speech production.
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While current performance is good, we anticipate substantial improvement in classification

with more phoneme repetitions, which were limited here due to clinical constraints.

Phonemic decoding using an ECoG-based BMI may provide efficient and intuitive

communication. Similar to the ways in which a keyboard can provide a higher information

transfer rate than a mouse, such interfaces may be useful to individuals with locked-in

syndrome and other communication disorders.
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Figure 1.
Subject information and ECoG electrode locations (1cm spacing). Electrode coverage varied

due to each patient’s clinical needs. Red rings denote electrodes that contributed to best

classification performance, which predominantly occurred in areas identified as facial motor

cortex during stimulation. Blue, green, and yellow circles denote type of response to

electrical stimulation mapping. White lines denote Sylvian fissure locations.
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Figure 2.
Overview of data preprocessing. Speech signal is recorded simultaneously with ECoG signal

(apparatus inset). These signals are marked according to onset of phoneme time and aligned

with to the ECoG signal. An FFT is performed on the ECoG signal, and converted into

features by combining FFT coefficients to form each frequency band of interest and 50 ms

time windows relative to phoneme onset time.
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Figure 3.
Classification results for phonemes for each subject. Chance percentage for each category is

highlighted by a dotted line. Dark bars indicate performance across all phonemes for each

subject; shaded bars indicate best performance of a single phoneme for each subject.
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Figure 4.
Confusion matrices of decoding results of consonant phonemes for the (a) best performing

subject (NU2) and (b) an average across all subjects, with respect to probability of that

phoneme occurring within the data set. Phonemes are grouped by place of articulation, one

axis of the IPA pulmonic consonants chart [31], with thick black lines dividing each

articulation location. Decoding errors most often misclassified phonemes as neighboring

phonemes according to IPA designation. (c) A condensed chart of the pulmonic consonants

of the International Phonetic Alphabet used in American English. Asterisks denote non-

pulmonic consonants.
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Figure 5.
Dependence of classification performance on (a) quantity of phonemes classified, (b) total

quantity of phoneme samples, and (c) accuracy of phoneme onset determination. Traces

correspond to classification results for each subject, plotting the mean and standard

deviation for 5 repetitions of 10-fold cross-validated classification.
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Figure 6.
Information transfer rate for whole words and for consonant phonemes, with corresponding

estimates from other studies of overt speech decoding using ECoG.
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