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Direct Computation of the PEC Body of Revolution
Modal Green Function for the Electric Field

Integral Equation
Fahimeh Sepehripour, Martijn C. van Beurden, Senior Member, IEEE, Bastiaan P. de Hon

Abstract—We propose a five-term recurrence relation for the
direct computation of the modal Green function (MGF) arising
in the electric field integral equations (EFIE), when solving the
scattering of PEC bodies of revolution. It is shown that, by
considering it as an infinite penta-diagonal matrix, the proposed
five-term recurrence relation can be solved in a stable manner in
O(M) steps for M modes with high and controllable accuracy. By
evaluating the performance of the proposed five-term recurrence
relation for several scatterers of different geometries, we show
that the proposed approach enables an accurate computation
with a simple algorithm.

Index Terms—Electric field integral equation, Recurrence re-
lation, Body of revolution, Modal Green function, Singularity
extraction.

I. INTRODUCTION

The electromagnetic scattering by a perfectly electric con-
ducting (PEC) object is a classic, yet important, problem in
computational electromagnetics [1], [2]. When the shape of
the PEC scatterer exhibits spatial symmetry, the computational
costs in evaluating the scattering can sometimes be signifi-
cantly reduced. This is particularly the case for rotationally
symmetric objects, called bodies of revolution (BORs) [3]–
[6]. The scattering by PEC BORs has been studied since the
1960s [7]–[10]. The geometry of a BOR can be characterized
using a parametric curve, known as the generating curve.
The symmetry property of a BOR allows one to reduce the
computational domain from a three-dimensional problem to
an infinite series of decoupled two-dimensional ones.

Several approaches have been proposed to solve the scat-
tering of PEC BORs, among which the so-called electric
field integral equation (EFIE) is one of the most common
methods [11], [12]. In this approach, the scattering by the
BOR is formulated based on the boundary condition of the
electric field at the surface of the PEC boundary, leading to a
particular integral equation. EFIEs for BORs involve singular
kernels, which are called modal Green functions (MGFs).
While closed-form analytical solutions have been proposed
for the evaluation of such singular integrals in specific cases,
for instance, when the body has a slim geometry [13], the
associated MGFs need to be numerically computed in general
situations. Due to its singular nature, the computation of the
MGFs is the most time-consuming part of the computation.

The authors are with the Department of Electrical Engineering, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands (e-mail:
f.sepehripour@tue.nl; m.c.v.beurden@tue.nl; b.p.d.hon@tue.nl.

Various approaches have been proposed to mitigate the com-
putational complexities caused by such singularities. In [14],
four cases are distinguished, and handled for low-order modes
using a tailored combination of trapezoidal, steepest-descent-
path Gauss-Hermite quadrature, Gauss-Laguerre quadrature
and singularity extraction. In [15], another approach has
been proposed to improve the computational efficiency of the
MGF for the EFIE. The method is based on regularizing the
pertaining singular integral representation for the MGF by
extracting the singularity and evaluating it separately from
the regular part. In particular, the regular part of the MGF
is calculated utilizing the fast Fourier transform (FFT) for all
modes simultaneously. The remaining singular part is then in-
dividually calculated based on a three-term recurrence relation,
which leads to a significant speed up. However, this three-
term term recurrence relation suffers from loss of accuracy
when the source and observation points approach the axis of
rotation. This issue was addressed in [16], [17] by proposing
an alternative three-term recurrence relation approach that
leads to more accurate results, especially when the source and
observation points are close to the axis of rotation.

Despite the advantages of these singularity extraction ap-
proaches in providing high speed and accuracy, none of these
methods provides a direct solution for the MGF. In fact, in
all of these approaches the MGF is composed from two (or
more) constituents, obtained using different methods. While
there exist some direct solutions for the MGF arising in the
EFIE, for example, based on various kinds of quadrature rules
[10], [18], [19], these solutions are not sufficiently accurate
and fast in general cases when many modes are involved.

We propose a five-term recurrence relation that allows the
direct computation of all of the required MGFs arising in
the EFIE at once. The proposed five-term recurrence relation
is computed using a simple matrix operation that not only
provides stability, but also reduces the associated computa-
tional complexity. The accuracy of the proposed technique is
demonstrated by analyzing the scattering by various BORs.

II. DERIVATION OF A 5-TERM RECURRENCE RELATION TO
COMPUTE THE MGF

We assume an arbitrary PEC body of revolution with an
axially symmetric geometry, as shown in Fig. 1(a). Consid-
ering the symmetry of the body, embedded in a homoge-
neous medium, the BOR can be characterized by a planar
curve (black curve in the figure), called the generating curve.
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Fig. 1. Scattering analysis of PEC BOR. (a) An arbitrarily shaped PEC
BOR, (b) corresponding generating curve of the BOR, (c) Top path: Indirect
computational approach based on singularity extraction method involving a
FFT and a three-term recurrence relation [16]. Bottom path: the proposed
direct approach based on a five-term recurrence relation given in (17).

Fig. 1(b) represents the parameters of the incident field with
respect to the generating curve of the BOR. The aim is to
characterize the scattering of this PEC BOR based on the
EFIE. One approach to compute the singular integrals arising
in the MGF is based on the singularity extraction method (top
path in the flow chart of Fig. 1(c)). In this method [16], the
regular part of the MGF is computed based on an FFT, whereas
the singular part is calculated using a three-term recurrence
relation. An alternative strategy, investigated in this paper,
is based on a five-term recurrence relation that avoids the
decomposition of the MGF kernel (bottom path in Fig. 1(c)).
In the following, the derivation of this five-term recurrence
relation is explained.

We start our analysis by considering the MGF of the EFIE,
denoted by gm, expressed as

gm =

∫ π

0

cos(mα′)
e−jkR(α′)

R(α′)
dα′, (1)

where m ∈ Z is the mode index of the Fourier expansion in
the azimuthal direction, k is the wave number and R(α′) is the
distance between the source and observation points, defined as

R(α′) =
√
ρ2 + ρ′2 − 2ρρ′ cosα′ + (z − z′)2,

α′ = φ− φ′.
(2)

By defining variables w and α as

w =
4ρρ′

(ρ+ ρ′)2 + (z − z′)2
, 0 ≤ w ≤ 1

α =
α′ − π

2
.

(3)

we can express gm as

gm = (−1)m
√

w

ρρ′
Fm(w, k′), (4)

where

Fm(w, k′) =

∫ π/2

0

cos(2mα)GEw,k′(α)dα, (5)

in which

GEw,k′(α) =
e−jk

′
√

1−w sin2 α√
1− w sin2 α

, (6)

and

k′ = 2k

√
ρρ′

w
. (7)

By considering the trigonometric identity

cos(2mα) =2(1− 2 sin2 α) cos(2(m− 1)α)

− cos(2(m− 2)α),
(8)

one can write Fm as

Fm(w, k′) = 2Fm−1(w, k′)− Fm−2(w, k′)−

4

∫ π/2

0

cos(2(m− 1)α) sin2 αGEw,k′(α)dα.
(9)

The remaining integral on the right-hand side in (9) can be
rewritten as∫ π/2

0

cos(2(m− 1)α) sin2 αGEw,k′(α)dα

= − 1

w

∫ π/2

0

cos(2(m− 1)α)(1− w sin2 α− 1)GEw,k′(α)dα

= − 1

w

∫ π/2

0

cos(2(m− 1)α)(1− w sin2 α)GEw,k′(α)dα

+
1

w
Fm−1

= − 1

w
Im−1 +

1

w
Fm−1, (10)

where

Im(w, k′) =

∫ π/2

0

cos(2mα)(1− w sin2 α)GEw,k′(α)dα.

(11)
By substituting (10) in (9), we have

Fm(w, k′) =(2− 4

w
)Fm−1(w, k′)− Fm−2(w, k′)+

4

w
Im−1(w, k′).

(12)

For m 6= 0, we use integration by parts (see Appendix A) to
calculate Im, leading to the equation

Im(w, k′) =
w

8m
[Fm−1(w, k′)− Fm+1(w, k′)]−

jk′
w

8m
[Jm−1(w, k′)− Jm+1(w, k′)] ,

(13)
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where,

Jm(w, k′) =

∫ π/2

0

cos(2mα)
√

1− w sin2 αGEw,k′(α)dα.

(14)
Similarly, by applying integration by parts to Jm(w) (see
Appendix A) we have

Jm(w, k′) = jk′
w

8m
[Fm+1(w, k′)− Fm−1(w, k′)] . (15)

by substituting (15) and (13) in (12) we obtain

(
wk′2m

4(m− 1)(m+ 1)
+ 4m

w − 2

w

)
Fm =

wk′2

8(m− 1)
Fm−2+

(2m− 1)Fm−1 + (2m+ 1)Fm+1 +
wk′2

8(m+ 1)
Fm+2.

(16)

According to (4), the recurrence relation for gm can be written
as (

wk′2

16(m− 1)(m+ 1)
+
w − 2

w

)
gm =

wk′2

32m(m− 1)
gm−2

−(
1

2
− 1

4m
)gm−1 − (

1

2
+

1

4m
)gm+1 +

wk′2

32m(m+ 1)
gm+2,

(17)

which is a five-term recurrence relation that holds for m ≥ 2.
Note that m = 0 and m = 1 serve as initial values. It is also
worth mentioning that, since the MGF is an even function with
respect to the parameter m, the relation given in (17) holds
for negative integer values of m as well.

III. EXPLOITATION OF THE PROPOSED RECURRENCE
RELATION

It is tempting to try to exploit the 5-term recurrence relation
(17) using a forward (or backward) algorithm, as is customary
for three-term recurrence relations, see e.g. [20]. Fig. 2(a) and
(b) illustrate the absolute error in gm(w) corresponding to
the forward and backward algorithms for various values of w.
Note that, for the backward recurrence relation, the difference
index ∆m represents the starting point of gm+∆m(w) to obtain
an accurate answer for gm(w) for a fixed m = 20. Note further
that, we used (0, 1 + j, 1 − j, 1) as the initial points. For the
purpose of numerical integration, Mathematica’s NIntegrate
method [21] has been used as a reference to assess the error
in the modal Green functions. As observed in these figures,
neither of these approaches gives rise to a stable solution for
gm(w). Hence, we use a different strategy, based on a matrix
equation approach [22]–[24], to compute gm(w) in (17) in a
stable manner. To this end, we first represent the five-term
recurrence relation as a semi-infinite penta-diagonal matrix,

starting from (17) from m = 2, as

C



g2

g3

g4

g5

g6

...

...


=



−a2g0 − b2g1

−a3g1

0

0

0

...

...


, (18)

in which the vector with elements gm on the left represent
the unknowns and the first two modal Green functions, i.e. g0

and g1 are computed using global adaptive quadrature method
for all values of w, except for w close to 1, i.e. (1 − w) <
10−12. For (1 − w) < 10−12, we first subtracted the integral
representation of the first-kind complete elliptic integral from
the MGF. Then, we computed the resulting integral using a
global adaptive quadrature method.

The matrix C in (18) has the following form

C =



c2 d2 e2 0 0 · · ·

b3 c3 d3 e3 0
. . .

a4 b4 c4 d4 e4
. . .

...
. . . . . . . . . . . . . . .

0 · · ·
. . . . . . . . . . . .


, (19)

where

am = − wk′2

32m(m− 1)
, bm = (

1

2
− 1

4m
),

cm =
w − 2

w
+

wk′2

16(m− 1)(m+ 1)
,

dm = (
1

2
+

1

4m
), em = − wk′2

32m(m+ 1)
.

(20)

In the following, we show that the infinite matrix system given
in (18) can be computed in O(M) steps, where M is the
dimension of the corresponding truncated C matrix, i.e. M ×
M . To this end, we decompose C into three separate matrices
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as follows

C =
w − 2

w
I +

1

2



0 1 0 0 · · ·

1 0 1 0
. . .

0 1 0 1
. . .

...
. . . . . . . . . . . .

0 · · · · · · · · · · · ·


︸ ︷︷ ︸

C0

+

1

4



1/2 0 0 · · ·

0 1/3 0
. . .

0 0 1/4
. . .

...
. . . . . . . . .

0 · · · · · ·
. . .





0 1 0 · · ·

−1 0 1
. . .

0 −1 0
. . .

...
. . . . . . . . .

0 · · ·
. . . . . .


︸ ︷︷ ︸

C1

+

wk′2



c′2,2 0 e′2 0 · · ·

0 c′3,2 0 e′3
. . .

a′4 0 c′4,2 0
. . .

...
. . . . . . . . . . . .

0 · · · · · · · · ·
. . .


︸ ︷︷ ︸

C2

, (21)

in which I is the identity matrix and

a′m = − 1

32m(m− 1)
,

c′m,2 =
1

16(m− 1)(m+ 1)
,

e′m = − 1

32m(m+ 1)
.

(22)

In (21), C0, C1 and C2 are all independent of w and k′ and
can be set up once and for all once a fixed finite dimension
has been chosen. Below, we explain why the infinite matrix
can be truncated to a finite dimension.

A. Solvability of the static part of the MGF

We note that the matrix [(w−2)/w]I+C0+C1 corresponds
to the recurrence relation for the static part of the modal
Green function obtained in [16]. For 0 < w < 1, this
matrix is diagonally dominant and, as a result, non-singular
and invertible. In [16], a combined forward/backward three-
term recurrence relation algorithm was proposed, enabling
fast, accurate and stable computation of the static part of the
MGF. For the special case w = 1, we first concentrate on
[(w − 2)/w]I + C0, i.e. without C1, that can be represented

(a)

(b)

(c)

Fig. 2. Computation error of gm(w) for w = 0.2, 0.5, 0.7, 0.9, 0.99, k =
2π, ρ = 1.1 and ρ′ = 1.7 using, (a) forward recurrence relation, (b) backward
recurrence relation, (c) penta-diagonal matrix approach.

as



−1 1
2 0 0 · · ·

1
2 −1 1

2 0
. . .

0 1
2 −1 1

2

. . .
...

. . . . . . . . . . . .

0 · · · · · · · · · · · ·





g2

g3

g4

g5

...

...


=



− 1
2g1

0

0

0

...

...


. (23)

This is a familiar matrix that arises from a finite-difference
approximation of a second-order derivative. In this matrix the
diagonal elements are equal to −1. At the same time, the
row-wise sums of the absolute values from the lower and
upper diagonal elements are equal to 1. Therefore, the matrix
is no longer diagonally dominant. By analysing the matrix
equation in (23) from the second row onward by means of
a z transformation, which is feasible owing to the constant
coefficients along the diagonal of [(w − 2)/w]I + C0, one
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obtains the following two eigenvectors with eigenvalue zero

v1 =



1

1

1

...

...


, v2 =



1

2

...
m

...


, (24)

which is consistent with the discretization of a second order-
derivative. The vector v2 is not a desired solution since its
elements are linearly increasing with m and is therefore not a
minimal solution. Consequently, v1 is the solution of interest.
Additionally, we note that v1 is also an eigenvector of C1

with eigenvalue zero, apart from the first row. In spite of the
singular nature of the functions gm(w) for w = 1, it is still
possible to solve for the coefficients gm/g1 with the help of
v1 and the first row of [(w − 2)/w]I + C0 + C1, i.e.

1

g1



g2

g3

g4

g5

...

...


=

3

4
v1, (25)

which leads to an acceptable and stable solution for the static
case for w = 1, in part owing to the particular form of the
right-hand side of the equation.

B. Solvability of the entire MGF

The last two matrices in (21), namely C1 and C2, are
Hilbert-Schmidt and therefore compact (see Appendix B).
Therefore, for 0 ≤ w < 1, the penta-diagonal matrix C in (18)
is the summation of the invertible matrix [(w − 2)/w]I + C0

and the compact matrix C1 +C2. For such a case, it is known
that the infinite matrix can be truncated to finite dimension, M ,
as a special case of a projection method [26], [27], to yield a
convergent algorithm. The resulting finite matrix equation can
then be solved in O(M) steps, owing to the banded nature of
the matrix.

Fig. 2(c) indicates the corresponding absolute error for
several values of w, when the matrix relation of (18) is used
to compute the sequence gm(w), where the infinite matrix in
(18) was truncated to a 100× 100 matrix. For computing the
associated integrals as an independent reference, Mathemat-
ica’s NIntegrate method was employed. It is observed that, as
opposed to the forward and backward algorithms, the latter
approach provides a stable solution with an error level that is
around machine precision.

IV. NUMERICAL RESULTS

To evaluate the applicability of the proposed five-term
recurrence relation method for characterizing the scattering
by PEC BORs, we analyze the scattering of PEC objects
with two different shapes namely a sphere and a torus. We

(b)

(a)

Fig. 3. Scattering analysis of a perfectly conducting sphere with the radius
r/λ = 1, for a θ-polarized incident wave. (a) Surface current in tangential
direction in the plane φ = 0, obtained from the proposed five-term recurrence
relation (black) and from the singularity extraction method [16] (orange).
The induced currents are plotted over the perimeter of the generating curve,
normalized to the wavelength (i.e. the parameter perimeter/λ). (b) Same as
(a) but for φ-directed surface current in the plane φ = π/2.

discretized the surface currents on the generating curve of
BOR in the tangential direction, indicated by σ in Fig. 1 (a)
using basis functions that are piece-wise linear for σ directed
currents and piecewise constant for the φ directed currents.
The computation was performed using MATLAB 2019b on
a laptop with 16 GB of RAM and an Intel core i7-8850H
processor. We start by considering the case of a PEC sphere,
embedded in free space. The radius of the sphere is assumed
to be r/λ = 1, where λ is the free-space wavelength. In
the computation, the generating curve is discretized with 40
segments. We assume that the angle of incidence is θi = 0
and φi = 0.

Fig. 3 (a) and (b) illustrate the induced tangential (Iσ)
and φ-directed (Iφ) surface currents in the planes φ = 0
and φ = π/2 respectively, for a θ-polarized incident plane
wave. The induced currents are plotted versus the perimeter
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(a)

(b)

Fig. 4. Bistatic RCS of a PEC sphere with radius of r/λ = 1, and
k = 2π. (a) θθ component of the RCS in φobs = 0, obtained from the
proposed method (solid black curve) and Mie series (dashed orange curve)
[25]. (b) Same as (a) but for the φφ component of the RCS.

of the generating curve, normalized to the wavelength (i.e. the
parameter perimeter/λ). The results are calculated based on the
proposed direct method (black) and the singularity extraction
method (orange) [16]. As seen, the results match each other in
both cases (the maximum absolute error between the results
is 10−8), confirming the accuracy of the proposed method. It
should be noted that, when using the three-term recurrence
relation method proposed in [16] (the indirect approach), it
is only the singular part of MGF that is computed and the
computation of the remaining part, i.e. the regular part of the
MGF, remains as extra work that includes the sampling of the
3D Green function. By contrast, the proposed five-term re-
currence relation directly yields the entire sequence of MGFs.
For further verification of the proposed approach, we calculate
the bistatic radar cross-section (BRCS) corresponding to the
θ and φ polarizations at the observation plane φ = 0. Fig. 4
represents σθθ and σφφ, obtained from our method (solid black
curve) and compared to an independent reference, namely
Mie scattering solution (dashed orange line) [25]. The results
of this figure, which are also consistent with the previously
reported results in the literature [28], provides more evidence
for the validity of the proposed method (the maximum relative
error in panels (a) and (b) are 0.03 and 0.003, respectively).

The proposed approach can also be employed to analyze
the scattering by other kinds of bodies. As an example, we
consider a closed PEC BOR of torus shape with the minor
and major radii of r1/λ = 3.33 × 10−5 and r2/λ = 10−4

as depicted in Fig. 5(a). We assume the frequency and the
incident angle of the incident field to be f = 100 kHz
and θi = 0, respectively. Similar to the previous case, the
number of discretized segments over the generating curve is
considered to be 40. Shown in Fig. 5(b) is the associated θθ
component of the bistatic RCS (black solid curve), which is
compared to the result provided in the literature [28] (orange

Z

Y
X

Torus Generating 
Curve at Y=0 plane  

(a)

(b)

Fig. 5. Far-field analysis of a perfectly conducting torus for a θ-polarized
incident wave at the frequency f = 100 kHz. (a) Torus with the minor and
major radii of r1/λ = 3.33 × 10−5 and r2/λ = 10−4. (b) θθ component
of the bistatic RCS of the PEC torus discussed before, obtained from the
proposed method (solid back curve) and the literature [28] (dashed orange
curve).

dashed line). As a third example, we consider a PEC circular
cylinder of radius r/λ = 2 and height h/λ = 2. Fig. 6(a)
shows the current in the tangential direction in the plane
φ = 0, upon considering a θ-polarized incident field with an
angle of incidence θi = π/4. The results are obtained based
on the proposed direct five-term recurrence relation (black),
and the three-term recurrence relation approach (orange). The
corresponding φ-directed currents at φ = π/2 are illustrated
in Fig. 6(b).

The comparison of the proposed five-term recurrence rela-
tion with the three-term recurrence relation cross validates the
performance of the proposed method. It is more interesting to
compare the computational characteristics of the two different
approaches. In Table I, we have compared the computational
characteristics (computation time, maximum difference be-
tween direct and indirect approaches, and number of required
modes) of the proposed method with the singularity extraction
method proposed in [16]. For calculating the number of
required modes, we assumed an oblique incidence angle of
θi = π/4, while neglecting the spectral content of incident
fields possessing amplitudes less than 10−14. As observed
in this table, the difference between the indirect and direct
approaches is small, yet, the proposed direct method offers a
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(b)

(a)

Fig. 6. Scattering analysis of a perfectly conducting cylinder with the radius
r/λ = 2, and h/λ = 2 for a θ-polarized incident wave. (a) Surface current
in tangential direction in the plane φ = 0, obtained from the proposed five-
term recurrence relation (black), from the singularity extraction method [16].
(b) Same as (a) but for φ-directed surface current in the plane φ = π/2.

shorter computation time for both sphere and cylinder cases.
Finally, it is worth investigating the effect of the BOR

size on the computational characteristics. To this end, we
consider the scattering by PEC spheres of different sizes,
namely r/λ = 5, r/λ = 10, r/λ = 20. Table II provides
the information regarding the computational features corre-
sponding to all of the aforementioned cases, including the
computation time, the minimum number of modes required
for convergence, and the corresponding computational error,
i.e. maximum difference in computing the MGF between the
proposed method and Integral of Matlab. It is observed that,
by increasing the size of the BOR, one also needs to increase
the number of modes that is taken into account to maintain
the same accuracy, which in turn increases the computation
time. In addition, the computation times depend quadratically
on the number of segments due to the dense matrix method
we employ in our current implementation. The computation
time of the MGF using the proposed five-term recurrence

TABLE I
COMPUTATIONAL CHARACTERISTICS OF DIFFERENT BORS

INVESTIGATED IN THE PAPER

Object Sphere
(Fig. 3)

Cylinder
(Fig. 6)

Perimeter of generating curve πλ 6λ

Number of segments 40 60

Number of modes 22 30

Total computation time (direct method) (sec) 224 380

Total computation time (indirect method) (sec) 250 398

Maximum difference of the induced currents
between the direct and indirect methods

10−8 7×10−8

relation is also compared with the indirect method (three-term
recurrence relation approach together with FFT for the regular
part) proposed in [16]. As can be seen in Tables I–II, for
small bodies the direct method results in shorter computation
times. Yet, by increasing the size of the BOR, the computation
time of the direct approach becomes longer than for the
indirect one. The main reason is that in the direct method,
the computational costs of the initial values (computation of
integrals for the dynamic Green function) become dominant
for larger bodies. On the other hand, in the indirect method,
the computation of the initial values is faster owing to the
static Green function being used.

V. CONCLUSION

We have proposed a direct approach for computing the
MGF arising in the EFIE, when solving the electromagnetic
scattering of bodies of revolution. To this end we derived a
five-term recurrence relation for the MGF. It turns out that
forward or backward evaluation of the recurrence relation are
not stable procedures. However, we have shown that a penta-
diagonal matrix approach is demonstrably stable, and for M
MGFs can be performed in O(M) complexity. Moreover, our
proposed direct method is simple, as opposed to the indirect
(heterogeneous) methods involving the extraction of the static
Green function. We have validated our approach numerically,
through scattering simulations for a PEC sphere and a PEC
torus. The maximum absolute error in computing the MGFs
through the five-term recurrence relation was 10−14.

APPENDIX A

INTEGRATION BY PARTS TO Im(w, k′)

Here, we derive (13) using the integration by parts

Im(w, k′) =

∫ π/2

0

cos(2mα)(1− w sin2 α)GEw,k′(α)dα

=
1

2m

[
sin(2mα)(1− w sin2 α)GEw,k′(α)

]π/2
0

+
w

4m

∫ π/2

0

sin 2α sin(2mα)GEw,k′(α)dα

− jk′ w
4m

∫ π/2

0

sin 2α sin(2mα)
√

1− w sin2 αGEw,k′(α)dα,

(26)
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TABLE II
COMPUTATIONAL CHARACTERISTICS OF SCATTERING OF PEC SPHERES

WITH DIFFERENT SIZES

Object Sphere 1 Sphere 2 Sphere 3

Perimeter of generating curve 5πλ 10πλ 20πλ

Number of segments 40 80 160

Number of modes 53 80 135

Computation time of MGF us-
ing Integral of Matlab (sec)

1093 7579 58331

Total computation time of MGF
using indirect method (sec)

101 358 1875

Computation time of initial val-
ues (the first and last two
modes) for MGF using direct
method (sec)

80 347 1889

Computation time of setting up
and solving the penta-diagonal
matrix for MGF using direct
method (sec)

3 38 363

Total computation time of MGF
using direct method (sec)

83 385 2252

Total computation time of scat-
tering problem (sec)

248 1001 7468

Maximum difference in com-
puting MGF, between the pro-
posed method and Integral of
Matlab

6×10−12 7×10−12 7×10−11

and the trigonometry formula

sin 2α sin(2mα) =
1

2
(cos(2(m− 1)α)− cos(2(m+ 1)α)).

(27)
This results in (13).

INTEGRATION BY PARTS TO Jm(w, k′)

Similar to Im(w, k′), we also subject Jm(w, k′) to integra-
tion by parts

Jm(w, k′) =

∫ π/2

0

cos(2mα)
√

1− w sin2 αGEw,k′(α)dα

=

∫ π/2

0

cos(2mα)e−jk
′
√

1−w sin2 αdα

=
1

2m

[
sin(2mα)e−jk

′
√

1−w sin2 α
]π/2

0
−

jk′
w

4m

∫ π/2

0

sin 2α sin(2mα)GEw,k′(α)dα.

(28)

and use (27) to arrive at (15).

APPENDIX B

For an infinite matrix operator in `2, the sufficient condition
for compactness of a matrix with [aij ] elements is [29]

∞∑
i=1

∞∑
j=1

|aij |2 <∞. (29)

In C1 in (21), only the first lower and upper diagonal elements
are non-zero, being equal to − 1

4m and 1
4m , respectively. As

a results, it can be easily shown that this matrix satisfies the
sufficient condition of compactness in (29)

∞∑
i=1

∞∑
j=1

|aij |2 =
1

8
+

∞∑
m=3

|am,m−1|2 + |am,m+1|2

=
1

8
(1 +

∞∑
m=3

1

m2
)

(30)

which is convergent according to Basel problem [30], proving
the compactness of C1.
Now we investigate the compactness of C2. We show that the
matrix C2 in (21) satisfies (29).

∞∑
i=1

∞∑
j=1

|aij |2 =|c′2,2|2 + |e′2|2 + |c′3,2|2 + |e′3|2+

∞∑
m=4

|a′m|2 + |c′m,2|2 + |e′m|2,
(31)

in which a′m, c′m,2 and e′m are defined in (22). The first four
terms in the right hand side of (31) are finite. It can be shown
that the last term in this equation (the series) is convergent.
By employing the parameters defined in (22), the series can
be rewritten as
∞∑
m=4

|a′m|2 + |c′m,2|2 + |e′m|2 =

2

322

∞∑
m=4

[
1

(m− 1)2
+

1

m2
+

1

(m+ 1)2
− 3

(m− 1)(m+ 1)

]
,

(32)

in which the first three terms are convergent according to Basel
problem. The last term of the series can be expressed as

∞∑
m=4

(
1

(m− 1)
− 1

(m+ 1)
) =

1

3
+

1

4
, (33)

which is again a convergent series.These features represent
that C2 in (21) satisfy the sufficient condition of compactness.
As such, C1 and C2 are Hilbert-Schmidt operators with finite
absolute norm [31], enabling the truncation of each of them
to an M ×M matrix [26], [27].
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