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Direct computation of type-II discrete Hartley transform 

Huazhong Shu, Member, IEEE , Yuan Wang, Lotfi Senhadji, Senior Member, IEEE and Limin Luo, 
Senior Member, IEEE 

  
Abstract—We present in this letter an efficient direct method for the 
computation of a length-N type-II generalized discrete Hartley transform 
(GDHT) when given two adjacent length-N/2 GDHT coefficients. The 
computational complexity of the proposed method is lower than that of the 
traditional approach for length N ≥ 8. The arithmetic operations can be 
saved from 16% to 24% for N varying from 16 to 64. Furthermore, the new 
approach can be easily implemented. 
 

Index Terms—Compressed-domain processing, discrete Hartley 
transform, fast algorithm 
 

I. INTRODUCTION 
HE generalized discrete Hartley transform (GDHT) has 
been used in many digital signal and image processing 

applications. One advantage of the GDHT over the generalized 
discrete Fourier transform (GDFT) is that it can be used to avoid 
complex operations when the input sequence is real [1], [2]. It 
was shown [3] that the type-I, -II, -III, and -IV GDHT and the 
discrete W transform (DWT) have a similar definition with 
difference in constant scaling factors. Many fast methods for 
efficient computation of GDHT were reported in the literature. 
Hu [4] proposed a fast algorithm for computing the GDHT, Bi 
and Chen [5] derived a split-radix algorithm for the computation 
of GDFT and GDHT. Both methods were focused on the 
sequences with length N being power of two. Recently, Bi [6] 
developed fast algorithms for calculating GDHT of composite 
sequence lengths. 

Since the GDHT is widely used in signal or image 
compression techniques, the following question arises: How can 
we directly manipulate such a compressed data stored in the 
GDHT domain? In other words, how can we construct a long 
GDHT sequence from several short GDHT sequences? This 
problem may be encountered when the signals are stored in the  
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 Fig. 1 Flow graph of traditional approach 
 
GDHT domain. In such a case, the signals need to be processed 
before being displayed, transmitted, etc. Some of the frequently 
used processing operations are scaling, filtering, translation, 
and rotation. When the scaling operation is concerned, it is 
necessary to construct a long GDHT sequence from several 
short GDHT sequences or to decompose a long GDHT 
sequence into some short GDHT sequences in the compressed 
domain. We address this problem in the present letter. In 
particular, we are interested in the problem of the direct 
computation of the length-N type-II GDHT coefficients, when 
the two adjacent N/2 sets of type-II GDHT coefficients are 
given. The traditional way of implementing this calculation is 
shown in Fig. 1. According to this scheme, two inverse GDHTs 
of length-N/2 are required, followed by a length-N type-II 
GDHT. Such a process may not be optimal in terms of the 
number of arithmetic operations. Inspired by a method proposed 
by Skodras [7], which was derived to the direct computation of 
N-point DCT when the two adjacent N/2-point DCT coefficients 
are known, we propose in this letter a new approach that is 
directly based on the GDHT domain for solving the above 
mentioned problem.  

The rest of paper is organized as follows. Section II presents 
two new raidx-2 algorithms for computing the N-point type-II 
GDHT coefficients. Section III describes the way of obtaining 
the N-point GDHT coefficients when given the two adjacent 
N/2-point GDHTs. The computational complexity of the 
proposed approach is analyzed in Section IV. 

II. THE TYPE-II GDHT ALGORITHMS FOR N BEING EVEN 
NUMBER 

The type-II GDHT of an input data sequence x(n), n = 0, 1, …, 
N – 1, is defined as [4] 

{ } ∑
−

=

+
==

1

0

II )12(cas)()(GDHT)(
N

n
N N

knnxnxkX π
,  

 k =0, 1, …, N – 1,       (1) 
                                                                                                      
de Recherche en Information Biomédicale Sino-Français (CRIBs) (e-mail: 
lotfi.senhadji@univ-rennes1.fr). 

T 

H
A

L author m
anuscript    inserm

-00149853, version 1

HAL author manuscript
IEEE Signal Processing Letters 05/2004; 14(5): 329 - 332



> SPL-03392-2006 < 
 

2

 and the corresponding inverse GDHT (IGDHT) is given by [4] 
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with casθ = cosθ + sinθ. 

When the sequence length N is even, for the even index k, (1) 
can be decomposed into 
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, k = 0, 1, …, N/2 – 1. (3) 
The above equation shows that X(2k) is a length-N/2 type-II 
GDHT. For the odd index, we have 
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By using the property 
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(4) can be expressed as 
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  k = 0, 1, …, N/2 – 1.  (6) 
Making the change of variable  in the second 
term of the right-hand side of (6), we obtain 
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Proceeding in a similar way as for X(2k), we have 
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with a(n) = x(n) – x(N/2 + n) and . Nnn /)12( πθ +=
(8) shows that X(2k+1) is also a length-N/2 type-II GDHT. 
Moreover, the computation of X(2k+1), for each given k, k = 0, 
1, …, N/2 – 1, needs N additions and N multiplications. 

The above decomposition method is categorized as 
“decimation in frequency.” Its computational complexity is 
given by 
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Hu [4] proposed a “decimation in time” algorithm for 
computing the type-II GDHT coefficients. The computational 
complexity of their method is 
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where  and  are the number 
of multiplications and additions for the computation of type-I 
GDHT of length N/2. 
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It can be seen from (9) and (10) that the efficiency of the 
proposed method is comparable to that derived by Hu. Note 
that in [6], Bi derived a radix-2 algorithm for computing the 
type-II GDHT coefficients where X(2k) is calculated with 
equation (3), and X(2k+1) defined by (4) is transformed into a 
length-N/2 type-IV GDHT, and the latter can be further 
decomposed into two sequences of type-II GDHT with length 
N/4. The computational complexity of Bi’s method is [6] 
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It was shown [6] that Bi’s algorithm requires about the same 
computational complexity in terms of the total number of 
arithmetic operations as that needed in Hu’s algorithm. 
   Although the above proposed method is efficient for 
computing the type-II GDHT coefficients, but for the purpose 
of this paper, we will derive another approach for computing 
X(2k+1) defined by (4). In fact, (4) can be rewritten as 
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As for X(2k), X1(k) can be decomposed into     
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which is a length-N/2 type-II GDHT. 

For X2(k), k = 0, 1, …, N/2 – 1, using the 
property )(cas)(cas θθπ −=+− , we have 
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  (18) 
which is also a length-N/2 type-II GDHT. Note that X2(0) = 
–X2(N/2). 

Since X1(k) and X2(k) are both N/2-point type-II GDHTs, we 
can obtain the sequence X(2k+1), k = 0, 1, …, N/2 – 1, from 
X1(k) and X2(k) with N/2 additions. The computational 
complexity of the above method is given by 
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(19) shows that the computation of X(2k+1) based on (16) 
and (18) requires much more arithmetic operations than that 
based on (8), but the advantage of the former algorithm is that 
it can be used to efficiently calculate the N-point GDHT from 
two adjacent N/2-point sequences of GDHT when the latter 
coefficients are given. This will be explained in the next 
section. 

III. PROPOSED APPROACH FOR COMPUTING THE 
LENGTH-N TYPE-II GDHT COEFFICIENTS 

Let us readdress the problem as follows. Assume an N-point 
sequence x(n) be created by the concatenation of two adjacent 
sequences of length N/2, i.e., an = x(n), and bn = x(N/2 + n), and 
Ak and Bk are their length-N/2 type-II GDHT coefficients, 
respectively. How can we efficiently compute the N-point 
type-II GDHT coefficients X(k) when Ak and Bk are known? To 
answer this question, we propose a new approach based on the 
algorithm derived in the previous section. 

 

A.  Computation of X(2k), k = 0, 1, …, N/2 – 1 
From (3), we have 
   12/,...,1,0,)2( −=+= NkBAkX kk .         (20) 

B. Computation of  X1(k), k = 0, 1, …, N/2 – 1 
From (16), we have 
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C. Computation of  X2(N/2 – k), k = 0, 1, …, N/2 – 1 
From (18), we have 
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According to the derivation above, we can construct the whole 
structure in Fig. 2. 
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Fig. 2 Flow graph of the proposed method 
 

D. Computation of  X(2k + 1), k = 0, 1, …, N/2 – 1 
Once the values X1(k) and X2(N/2 – k), k = 0, 1, …, N/2 – 1, 

are obtained, we can compute X(2k+1) by simply using equation 
(13). Note that for k = 0, we have X2(0) = –X2(N/2). 
 

IV. COMPUTATIONAL COMPLEXITY 
Fig. 2 shows that the computation of X(2k), X1(k), and X2(N/2 

– k) requires two N/2-point vector multiplications and additions, 
respectively, and three N/2-point type-II GDHTs, assuming that 
both of GDHT and IGDHT are of the same complexity. On the 
other hand, the computation of X(2k+1) using (13) needs N/2 
additions. Therefore, the computational complexity of the 
proposed method is 
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For comparison purpose, we choose N = 2m, where m is a 
positive integer, so that the fast computation of N/2-point GDHT 
can be applied. According to the algorithm proposed by Hu [4], 
the number of operations for computing the type-II GDHT of 
size N = 2m is given by 
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Using (24), (23) becomes 
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If the conventional approach shown in Fig. 1 is applied, two 
N/2-point IGDHTs and one N-point GDHT are required. Using 
the algorithm proposed by Hu to compute the N-point GDHT, 
the total numbers of additions and multiplications for the 
traditional approach are given by 
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(26) 
Table 1 shows the number of arithmetic operations of the two 
methods for some specific values of N. It can be seen that about 
7-24% arithmetic operations can be saved except for N = 4. 
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N T

NM  T
N  A T T

N NM A+  P
NM  P

NA  P P
N NM A+   

4 2 18 20 4 18 22 0% 
8 12 48 60 14 42 56 7% 
1
6 40 132 172 40 10

8 148 16% 

3
2 112 348 460 104 27

6 380 21% 

6
4 288 876 1164 256 68

4 940 24% 

 
Table 1. Computational complexity of traditional and proposed methods 

 

V. CONCLUSIONS 
We propose in this letter an efficient approach to compute a 

length-N type-II GDHT given two adjacent length-N/2 type-II 
GDHT coefficients. The arithmetic operations can be saved 
from 16% to 24% for N varying from 16 to 64. Generally 
speaking, greater the value of N, more operations we can save. 
Therefore, the proposed method could find its application in 
signal processing tasks. 
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