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Amyotrophic lateral sclerosis (ALS) causes motor neuron degener-

ation, paralysis, and death. Accurate disease modeling, identifying

disease mechanisms, and developing therapeutics is urgently

needed. We previously reported motor neuron toxicity through

postmortem ALS spinal cord-derived astrocytes. However, these

cells can only be harvested after death, and their expansion is limited.

We now report a rapid, highly reproducible method to convert

adult human fibroblasts from living ALS patients to induced neu-

ronal progenitor cells and subsequent differentiation into astrocytes

(i-astrocytes). Non-cell autonomous toxicity to motor neurons is

found following coculture of i-astrocytes from familial ALS patients

with mutation in superoxide dismutase or hexanucleotide expan-

sion in C9orf72 (ORF 72 on chromosome 9) the two most frequent

causes of ALS. Remarkably, i-astrocytes from sporadic ALS patients

are as toxic as thosewith causativemutations, suggesting a common

mechanism. Easy production and expansion of i-astrocytes now

enables rapid disease modeling and high-throughput drug screening

to alleviate astrocyte-derived toxicity.

neurotoxicity | neurodegeneration | reprogramming

ALS, or Lou Gehrig disease, is a devastating disorder af-
fecting mainly upper and lower motor neurons (MNs) in the

motor cortex, brainstem, and spinal cord (1). Patients typically
suffer from muscular atrophy and paralysis, ultimately leading to
death within 2–5 y after diagnosis. Although 5–10% of cases
follow an autosomal dominant inheritance pattern and are
considered familial (fALS), the remaining ∼90% are classified as
sporadic (sALS). To date, more than 10 different genes have
been identified to cause ALS, with the highest proportion of
patients carrying a large hexanucleotide expansion repeat in the
ORF 72 on chromosome 9 (C9orf72) (2, 3). Although ALS leads
to selective degeneration of MNs, evidence from multiple groups
supports the contribution of other cell types of the central ner-
vous system (CNS), including astrocytes, microglia, and oligo-
dendrocytes to disease progression (4–6). A lack in understanding
disease origin, along with known interweaving contributions of
multiple cell types, hampers studying disease mechanisms and
testing potential therapeutic strategies.
To test non-cell autonomous interactions in familial and

sporadic ALS, we previously developed a coculture assay en-
abling the screening for therapeutics on astrocytes, differentiated
from spinal cord autopsy-derived neuronal progenitor cells
(NPCs) (5). However, the isolation and expansion of these NPCs
is difficult and postmortem tissues are of limited availability.
In addition, it is unclear how the inflammatory and necrotic

environment of an end-stage ALS patient spinal cord might in-
fluence the properties of the isolated cells.
Currently, many laboratories use reprogramming techniques

to generate induced pluripotent stem cells (iPSCs) from patient
fibroblasts that can then be differentiated into various cell types
of interest. The process of deriving iPS lines and subsequently
inducing differentiation is very time consuming and inefficient.
Furthermore, few studies have identified phenotypic markers of
ALS in cells differentiated from iPS lines (7). Recent advances
have led to the development of more direct approaches to con-
vert fibroblasts into specific cell types of interest. In 2011, Kim
et al. (8) reported the production of NPCs from embryonic and
adult mouse fibroblasts by direct conversion using four reprog-
ramming factors introduced by viral vectors and subsequent ex-
posure to NPC-stimulating growth factors. Since this discovery,
several laboratories reported the generation of neurons or neu-
ronal/oligodendroglial progenitor cells from mouse or human
fibroblasts using a combination of transcription factors (9–15).
However, the conversion of adult human patient fibroblasts into
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NPCs has not been reported, nor has the use of these cells for
modeling disease phenotypes.
Recognizing this, we sought to generate induced NPCs (iNPCs)

from adult human fibroblasts from patients who had been di-
agnosed with ALS and from age-matched healthy controls, using
an approach similar to that of Kim et al. (8). Using this technique,
we were able to produce tripotent iNPCs from patients and con-
trols within 1 mo. These cells could then be differentiated into
astrocytes to test the suitability of this technique for modeling
ALS and potentially other neurodegenerative diseases. Strikingly,
our data demonstrate a very similar toxicity of iNPC derived
astrocytes toward MNs as previously shown with autopsy derived
ones (5). In addition, we report non-cell autonomous toxicity of
astrocytes carrying a C9orf72 expansion mutation. Our findings
underline the crucial role of astrocytes in ALS and suggest com-
mon underlying mechanisms leading to astrocyte mediated tox-
icity in sporadic ALS and ALS with known genetic origin.

Results

Fibroblast samples from one fALS patient carrying a SOD1A4V

mutation, three ALS patients carrying the C9orf72 expansion
repeat as well as three sporadic ALS patients ranging in age from
51 to 81 y were either collected by skin biopsy or purchased from
established tissue banks (Table S1). Additionally, we included
four healthy age-matched controls in this study. To generate
iNPCs, skin fibroblasts were infected with a mixture of retroviral
vectors expressing Kruppel-like factor 4 (Klf4), POU transcription
factor Oct-3/4 (Oct3/4), SRY-related HMG-Box Gene 2 (Sox2),
and c-Myc (16). To promote NPC conversion, at 72 h post-
infection, the culture medium was switched to medium containing
the growth factors fibroblast growth factor 2 (FGF2), epidermal
growth factor (EGF), and heparin, and this was continued for 18
d, followed by supplementation with only FGF2 (Fig. 1A). Within
7 d after infection, cells underwent morphological changes from
a flat fibroblastic cell shape to become smaller with more distinct
extensions. The cells also began to form sphere-like structures
that could be picked and dissociated for further growth into
monolayers (Fig. 1 B and C). NPC marker expression was eval-
uated by immunohistochemistry and RNA expression analysis
(Tables S2 and S3). We confirmed the expression of NPC mark-
ers, such as Pax6 and Nestin, indicating successful conversion to
an NPC stage (Fig. 1 D and E). We observed that the conversion
efficiency ranges between 60% and 95%, in correlation with the
proliferative potential of the initial fibroblast cultures, as well as
the quality of the viral vectors. Further characterization revealed
that similar to NPCs generated from human fetal fibroblasts or
mouse cells by other groups (8, 17, 18), the iNPCs were able to
form neurospheres when cultured in uncoated dishes and expressed
NPC markers, such as neuronal cell-adhesion molecule (N-CAM)
and homeodomain transcription factor NKX2-2 (Fig. 1 F and G).
We next determined the differentiation potential of iNPCs

and found that they were tripotent, capable of differentiating into
oligodendrocytes, neurons, and astrocytes (Fig. 1 H–J). Addition
of insulin-like growth factor 1 (IGF-1) and PDGF receptor α

(PDGF-α) to the medium in absence of FGF-2 resulted in cells
demonstrating the typical ramified oligodendritic shape that
expressed myelin-binding protein (MBP), a marker for mature
oligodendrocytes (Fig. 1H). The differentiation efficiency toward
neurons varied between cell lines and according to the protocol
used. Approximately 50% of cells surviving after differentiation
with retinoic acid/forskolin were positive for the pan-neuronal
marker neuronal class III β-tubulin (TUJ1). When using the
protocol developed for the generation of MNs previously pub-
lished by our laboratory (19), ∼10–30% of the surviving cells
expressed the MN markers HB9 homeobox transcription factor
(HB9) and choline acetyltransferase (ChAT), along with Tuj1
(Fig. S1 A and B). This finding highlights that the produced

iNPCs have the potential to generate MNs, thereby providing
a model to study ALS in several affected cell types.
We characterized the derived astrocytes [differentiated from

induced neuronal progenitor cells (i-astrocytes)] more thor-
oughly to create a cell culture model for studying astrocyte–MN
interactions in ALS. Compared with the initial fibroblast lines,
the differentiated i-astrocytes expressed higher levels of several
astrocytic markers, including vimentin, CD44 antigen (CD44), as
well as markers for mature astrocytes including s100 calcium bind-
ing protein B (S100β) and glial fibrillary acidic protein (GFAP)
(Fig. 2A). Analysis of mRNA expression by RT-PCR showed
that, similar to a previous report of direct conversion of mouse
embryonic fibroblasts, a strong up-regulation of s100β in both
iNPCs and i-astrocytes as well as aquaporin 4 (Aqp4) in i-astrocytes
was observed, while the levels of the additional marker insulin-like
growth factor binding protein (IGFBP3) remained similar be-
tween all three cell types (Fig. 2B). These results further indicate
that our conversion protocol generates astrocyte-like cells with
similar properties to previous studies (17). Furthermore, typical
fibroblast genes were expressed at a markedly reduced level in
i-astrocytes (Fig. S2 A and B). Taken together, our data suggest

Fig. 1. Direct conversion of human skin fibroblasts to tripotent iNPCs. (A)

Schematic of the conversion process from fibroblasts to induced neuronal

progenitor cells (iNPCs). Fibroblasts were transduced with retroviral vectors

containing four reprogramming factors (Sox2, KLF4, Oct3/4, c-Myc). (B and C)

Within 6–10 d, cells underwent marked morphological changes from a fi-

broblastic spindle like shape (B) to a sphere-like form commonly seen with

NPCs (C). (D and E) Immunofluorescence of cultures at day 12 reveals ex-

pression of the NPC markers Pax6 and Nestin, as shown in red. DAPI staining

(blue) was used to visualize nuclei. (F) iNPCs can form and grow as neuro-

spheres when plated in uncoated dishes. (G) RT-PCR analysis demonstrates

a strong up-regulation of the prototypic NPC markers NCAN and NKX2-2 in

iNPCs. β-Actin was used as loading control. (H–J) iNPCs are tripotent and

upon differentiation they can give rise to oligodendrocytes (H), neurons (I),

and astrocytes (J). (Scale bars: black, 100 μm; white, 50 μm.) Fibro, fibroblast.
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a strong enrichment toward astrocyte-like cells without a further
purificationor selection step. Since purificationor clonal selection is
not required,wewereable to generate i-astrocytes fromcontrols and
patients in less than four weeks. These cells maintained highly
consistent and reproducible characteristics and provided a virtually
unlimited source of human astrocytes.
I-astrocytes from control or ALS patients were used in a co-

culture assay to determine their effect on MN survival. As pre-
viously described (5), mouse embryonic stem cell-derived MNs
expressing green fluorescence protein (GFP) under the control
of the HB9 promoter were sorted and added to i-astrocytes from
patients and controls. Their survival was monitored in a blinded
manner with daily confocal image acquisition. One day after
plating, the MNs had settled down equally between all groups
and started to extend neurites (Fig. S3A). On day 2, no differ-
ence was observed between MNs cultured on control i-astrocytes
versus ALS i-astrocytes, whereas fewer cells remained on ALS
i-astrocytes on day 3 and remaining cells exhibited shorter neu-
rites. After 4–5 d, MN survival was clearly reduced in cultures
with i-astrocytes from ALS patient samples, with 60–80% of the
cells dying and the surviving cells containing fewer and shorter
neurites (Fig. 3 A and B). Strikingly, i-astrocytes from the three

patients carrying the C9orf72 mutation demonstrated similar
toxicity to MNs compared with i-astrocytes derived from other
ALS subtypes. As a control, we also plated MNs in a mono-
culture and followed their survival over the same time course.
MN monocultures survived over the course of the experiment in
normal media compared with the ALS i-astrocyte cocultures,
indicating that the reduced viability is caused by toxic mecha-
nisms rather than a lack of support from astrocytes (Fig. S3B).
To further rule out that the ALS i-astrocytes were less supportive
compared with controls, we supplemented the ALS cocultures
with either 30% or 60% conditioned medium harvested from two
different control i-astrocyte cocultures and monitored the MN
survival over the same time period. We did not observe any
significant difference between supplemented and nonsupplemented
cocultures (Fig. S4). Staining of coculture plates after the sur-
vival assay demonstrated that all i-astrocyte lines expressed
similarly high levels of the astrocytic markers s100β, vimentin
and CD44, whereas the microglial markers Iba1 and CD11b were
completely absent (Fig. S5). In addition, we also tested MN
survival in combination with various ALS and control fibroblast
lines and found no difference in MN survival between groups
(Fig. S6). These experiments clearly demonstrate that the observed
toxicity toward MNs is caused by i-astrocytes and is likely not due
insufficient production of (a) trophic factor(s).

Fig. 2. I-astrocytes express prototypic astrocyte markers. (A) Immunofluores-

cence analysis reveals strong up-regulation of astrocytic markers such as

Vimentin, CD44, S100β, and GFAP in i-astrocytes compared with the initial

fibroblasts. DAPI (blue)was used to visualize nuclei. (B) RT-PCRanalysis revealed

expression of IGFB3 in fibroblasts, iNPCs, and i-astrocytes, whereas expression

of S100β and Aqp4 was detected in iNPCs and i-astrocytes or i-astrocytes only,

respectively. (Scale bar: 100 μm.) Fibro, fibroblast. i-Astro, i-astrocytes.

Fig. 3. I-astrocytes from fALS and sALS patients display toxicity toward

MNs. (A) Representative images after 96 h of coculture of HB9-GFP

expressing MNs (shown in black) with astrocytes from spinal cord (sc) or skin

of ALS patients and controls. A marked loss of MN viability was observed in

the presence of ALS astrocytes irrespective of their origin (spinal cord or

skin). (B) Relative percentage of MN survival after 96 h of coculture with ALS

astrocytes derived from spinal cord or skin and their respective controls.

***P < 0.001; ****P < 0.0001 [compared with the average taken from of all

converted control lines (HDFA, 8620, 155, 170)]. Error bars represent SEM.

Quantification was performed in triplicate wells of a 96-well plate, and data

are representative of n = 5.
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Remarkably, the difference in survival of MNs in coculture
with ALS i-astrocytes was very similar to our previous report
using spinal cord-derived astrocytes (5) (Fig. 3, left images).
Taken together, these findings indicate that astrocytes from both
fALS and sALS cases— including C9orf72 mutations—convey
toxicity toward MNs independent of their origin (spinal cord or
skin). In addition, the toxicity seems to be repressed in fibro-
blasts but becomes active upon conversion to astrocytes.

Discussion

In summary, we report rapid, reproducible direct conversion of
adult human patient fibroblasts into tripotent iNPCs. We es-
tablish that i-astrocytes from both familial and sporadic ALS
patients are toxic to cocultured MNs in a similar manner as
spinal cord-derived astrocytes. Although at this point, we cannot
completely rule out that ALS i-astrocytes are less supportive
compared with controls, our data from fibroblast cocultures and
supplementation assays, as well as monocultures, strongly sup-
port a gain of toxic function model. Excitingly, we demonstrate
that astrocytes carrying the recently discovered C9orf72 expan-
sion mutation also display toxicity toward MNs, thereby cor-
roborating a crucial role of this cell type in ALS pathogenesis.
Furthermore, these findings demonstrate that the toxicity is an
intrinsic property of ALS patient-derived astrocytes that is in-
dependent of the neuroinflammatory environment of the end-
stage ALS spinal cord. Because patient fibroblasts do not exert
a notable toxic effect on MNs, the increase in cell death observed
in the astrocyte cocultures is likely attributable to cell type-
specific toxic properties. The underlying mechanism behind as-
trocyte toxicity is currently unknown, but there is mounting ev-
idence for the involvement of misfolded SOD1 in sporadic ALS
(20–25). Although further studies are needed to address these
questions, SOD1 might be a promising target for a large ALS
patient population. Recent advances in vector-based gene de-
livery for efficient targeting of astrocytes led to an exciting ex-
pansion of the lifespan of G93A and G37R ALS mice (26). No
evidence to date has implicated the involvement of SOD1 in
ALS cases linked to C9orf72 repeat expansions; however, several

other mechanisms have been described. Despite a potential lack
of a C9orf72 protein isoform, the hexanucleotide repeat RNA
could lead to the sequestration of RNA-binding proteins, such as
Purα, or the translation of aberrant repeat peptides (27–30). Use
of i-astrocytes and MN coculture now provides a tool for testing
these hypotheses.
Finally, we note that these cultures of i-astrocytes and MNs

can be set up as high-throughput model systems and that po-
tential therapeutics can now easily be tested on a variety of ALS
backgrounds, including sporadic conditions in which the cause of
disease is completely unknown. This approach could also help to
improve the classification of patient subpopulations in sporadic
cases based on their responsiveness to different drugs. Thus,
direct conversion may be sufficiently fast to determine potential
therapies that would be most promising for an individual patient
with ALS, thereby opening the door to personalized modeling of
toxicity in ALS.

Methods

Human skin fibroblast samples were obtained from Stephen J. Kolb (ALS/

MND Clinic, Department of Neurology, The Ohio State University, Wexner

Medical Center, Columbus, OH), as well as John Ravits (University of Cal-

ifornia, San Diego, School of Medicine) and P.J.S. and from established tissue

banks as shown in Table S1 (Gibco and Coriell Institute). Informed consent

was obtained from all subjects before sample collection. Receipt of human

tissues was granted through Nationwide Children’s Hospital and Ohio State

Institutional Review Boards. For direct conversion, 104 fibroblasts were

seeded in a well of a six-well plate and treated with retroviral vectors for

OCT3, Sox2, KLF4, and C-MYC for 12 h. The medium was switched to NPC

medium containing FGF2 and EGF after 48 h posttransduction. Detailed

descriptions of all methods, reagents, and information about the cell lines,

as well as analysis, are provided in SI Methods.
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