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ABSTRACT

A direct algebraic desigll oí Cassegraill light shields is proposed, usillg ollly the assul1lption that the mirror sur-
faces are fla t.

lntrodllction

During the design and construction of a Cassegrain or Ritchey-Chretien telescope, the design of

an adequate shielding is required in order to avoid direct sky light falling on the focal planeo A sol u-
tion to this problem has been worked out by means of a graphical method, using succesive approxi-

mationst, and later applied to electronic computers2. Recently, a different graphical solution has been
explained, based also on succesive approximations3. Therefore, the possibility of a direct solution was
studied. The final goal was reached using in this method only the approximation of considering the

surfaces of the mirrors as plane surfaces.

Parameters 01 a Cassegrain system.

The main purpose of the shields in a Cassegrain system is to avoid direct sky light falling on
the image planeo As the field increases the required shielding introduces two new problems, vignett-

ing and central obscuration. The central obscuration is produced by the large size of the diameter
of the shield at the secondary mirror and the vignetting is due to both shields. (See Fig. 2). Hence as

it is pointed out by Young(2), these factors will set the conditions for the solution of the problem
and will establish a compromise between the allowable field size and central obscuration.
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Fig. l.-Parameters Qf a Cassegrain Sy-'tem.

This shielding solution was incorporated as a section, of a more general computer program for

the designing of Ritchey-Chrhien and Cassegrain systems in which the equations come from a previous
paper by one of US(4). There, it was shown that for the design of a Cassegrain system five initial para-
meters must be known. The selected ones are D¡.!¡, F, S and 1 (or 11/12 instead of /1) as shown in

Fig. 1. From them, the rest of those parameters shown also in Fig. 1 can óe calculated. Of course, any
other set of initial parameters could be selected. From the knowledge of all parameters the shielding

- 246 -

I

1
,, >'1' '5

t, ,t_

BOLETÍN DE LOS OBSERVATORIOS DE TONANTZINTLA Y TACUBAYA, VOL. 4, N°30, 1968.

©
 C

o
p
y
ri

g
h
t 

1
9
6
8
: 

In
st

it
u
to

 d
e 

A
st

ro
n
o
m

ía
, 
U

n
iv

er
si

d
ad

 N
ac

io
n
al

 A
u
tó

n
o
m

a 
d
e 

M
éx

ic
o



( 0.0)

_0
_0

_0_0

a

-_0
_0

.-0
_0

o-°

0_0.-°- RAY a

RAY 2

_0_0
,..""".

:, ~'*"""..:.-- ~
~._o -t:_

6(0.1/2)

-
O-°-._00-.-

H(0..1/2)
PRIMARY
SHIELD

a

Fig. 2.-Parameters for the Shielding Design.

design can be started as shown in Fig. 2; where the known values are used as the coordinates of
several convenient points.

Shield design

As it was previously mentioned, the shield design must avoid stray light on the image plane

1, and vignetting effects. Once these problems have been solved, the decision for the value to be
allowed for the central obscuration is left to the criteria of the designer, which can be modified by
changing the field.

In Fig. 2, the total angular field 2 a produces the image-size fields l' and l at the primary and

Cassegrain focus, respectively. The middle point of the image plane 1 will be taken as the origin of
the coordinate system. As a first approximation, the surfaces of the mirrors will be considered as

plane surfaces.

In order to solve at least partially the vigneting problem we will consider an extreme ray, at the
edge of the primary mirror. The ray forms an angle a with respect to the horizontal incident rayo The
ray at the angle a is reflected at the primary and secondary mirrors as ray 1 and ray 2 respectively of

Fig. 2. This gives us the path at an extreme ray in the optical system. Therefore, the lower limits for
the diameters of the shields must be along the ray 1 (secondary shield) and ray 2 (primary shield);
otherwise such an extreme ray could be stopped and vignetting is produced.

Looking at the problem of direct light falling on the image plane 1, we easily conclude that the
end points of the shields mut be along ray 1 and ray 2. Such points also have to be in alignment with

point H of the image plane 1, in order to avoid direct light falling on it; this means that B, F' amI
H of Fig. 2 must be aligned. Unfortunately, the problem is still unsolved beca use if we consider a

ray (at an angle a) passing throught the point B, we have the following vignetting effect: the ray in-
cident on the primary mirror at point E (See Fig. 2) is reflected toward point D of the image
plane 1', intersecting the ray 2 at point F'. If point F has been taken as the end of the primary
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shield satisfying the alignment condition with points B and H in order to eliminate direct light

falling on plane 1, vignetting will be produced since the reflected ray from E will be stopped, as is
shown in the Fig. 2. This effect must be avoided by having the points F and F' to coincide.

The mathematical condition for the coincidence of the points F and F' is that the straight line

HF' and F'B have the same slope. To reach such condition we must find the value of Y (ordinate of
E) that gives the alignment of points H, F' and B. In order lO do so, the coordinates of points B and
F' ha ve to be expressed as fllnctions of known parameters.

A 1gebra

The coordinates of all the points shown in Fig. 2 are known except those of the points U,F'
and the onlinate Y of point E. Therefore, the main task is lo relate their coordinates as functions of

the known parameters. In order to do so, mathematically we proceed as follows: The eqllation of the

rays numbered 1, 2, 3 and 4 are going to be written in the general form y = mx + b. It is possible
lo write:

Ray I (AC):

(1)

(2)

(3)

Ray 4 (DE)

[' /2 + Y
y=--- x

11
(

S

)
[".1

+Y 1+- +-
11 2 11

(4)

If the coordinates of the point B, in Eqs. 1 and 3, and those of point F' in equations 2 and 4,
are introdllced, we obtain:

2
(5)

Y. = a X. - as + Y (6)

D2 - 1 1
Yli = --xv +-

2 (.1+1) 2
(7)

(
['

) (
Xv

) (
S

)
['

Yv = - - + Y - + 1 + - y + - (s)
2 11) 11 2/1

(8)

Solving for x., y., XI)}Yv in function of the known parameters we have:

D1

(- a .1+ Y)l- 2(1+.1)

(9)

- al
2
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Ray 2 (CG)

D2-1 1
y= x+-

2 (.1+1) 2

Ray 3 (BE)

Y = a x - (a.l - Y)
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D2-1 1

YIJ = - xp + -
2 (s+l) 2

(10)

(11)

(12)

where the only unknown parameter is the ordinate Y 01' the point E on the mirror amI which we wiIl
find.

Now, the mathematical expression for the alignment o( H, R ami F'; which msures no stray
light at the image plane 1 and unvignetted fieldwill be:

(13)
Y8 - Yp
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Fig. 3.-Curve lor the Solution 01 the Shield Design.

Therefore, if the values 01' the coordinates x., Y8; Xp, YP are included into Eq. 13, a quadratic
equation for Y can be obtained. Fig. 3 shows the type 01' curve obtained by the method of succesive
approximations. After some algebraic work the following equation results:

(14)
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Y.= a x. - a s + y

J

l' 1

1
y (f1 + s) + - . s - - . f 1

2 2
xp = (s + 1)

1

D2-1 l' (

f1 + (2 + y) . (s + 1) J2
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,where the coefficient A2' Al and Ao given by:

[(

D2-1

)
D2-D1

]
A2 = (tI + s). a - . 1+ - al

2 (s+l) 2
- l 1 (15)

(

D2-/

) (
I's-lll

(
D2-D1 DI

))Al = a - - . -- 1 + (tI + s) s - - 1 -als
2 (s+l) 2 2 2

(
D2-D1

) ( (
l

)
I'S-lll

)+ ') -al . (tI + s) "2 -aS + 2

(
l. 1

) (
. D2 - l I'

) (
D2 - D1 D1

)- . 11+ - (s+ 1) - l s - - 1- als
s+l 2 2 2 2

(16)

(
D2 - 1

) (
Is - //1

) (
D2 - D1 D1

)Ao = a - . . s - - 1 - als
2~+0 2 2 2

(
D2-D1

) (
I'S-l/l

) (
l

)+ - al . . - - aS
2 2 2

J

(
D2 - DI DI

) (
DQ - l I'

)- - s- - 1 - als. - 11+ - (s+l)
s+l 2 2 2 2

(17)

As in Ref. 4, it is convenient to write everything in terms of five parameters: D1, F, (1' S and l

by using the following four equations:

11
I' =-1

F
(18)

l
a=-

2F
(19)

(
F-s

)1 = 11
I1 + F

(20)

(
F - S

) (
IF1

)D2 = DI + . - - D1

I1 + F F

obtaining in this way the following coefficients:

(
11 S

)A2 = - D1(/1+ F) (/1+ s) + l t. f¡ + s + F - F
(22)

(
ft S S2 F

)- D11t1' - + - + S - - + ti
F 2F 2

(23)

(
3 S S2

). -----

2 F 2F2
(24)
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Once Eq. 14 is solved, the positive solution of Y is substituted into the equations for x., y., xp
and Ypo With the values of these coordinates known, the dimensions of the shields can be obtained.

The lengths Lp and L. of the primary and secondary shield respectively will be taken using the
vertex of each mirror as a reference and will be equal to:

(25)

and

L. = 1+ s - xp (26)

The diameters Dp and D. of the primary and secondary shields respectively are given by:

D. = 2 x.

(27)

(28)

where Xp and x., from Eqs. 9 and 11 are given by:

(29)

lo
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TABLE 1

Dimenslon of the Shields in cm. Central Obscuratlon

Prlmary Secondary

Field Size Length Dlameter Length Dlameter WlthoutShield With Shield

20.0 91.04 21.31 49.14 36.24 7.84% 20.25 %

15;0' 94.41 18.91 38.15 32.40 7.29% 16.40 %

8.0 97.87 15.66 21.81 26.61 6.25% 11.40 %

4.0 98.68 13.70 11.58 22.94 5.90% 8.88 %

2.0 98.50 12.85 6.0 20.95 5.71 % 6.86 %

1.0 98.18 12.35 3.09 19.89 5.62% 6.20 %

0.5 97.95 12.10 1.56 19.35 5.57% 5.86 %

0.1 97.72 11.89 0.32 18.91 5.22 % 5.57 %

0.0 97.66 11.84 0.0 18.80 5.29 o¡. 5.29 %
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and

(30)

Final analysis

An analysis ol' Eq. 13 and graph 3 show how the difference in the slopes 01' HF', amI F'B

change as function 01' the ordinate Y; where the exact solution ol' Y will be the crossing point of the
curve with the x axis, which is the solution of Eq. 14. .

From Fig. 2 we can see how as the usable l'ield increases, the slopes 01' the lines HF' amI F'B
become bigger, implying that the diameters of the shield increase, ami with them the value ol' the

central obscuration (due mainly to the diameter of the secondary shield).
As an example of our program, in Table 1 the results for the dimensions of the shields for a

Ritchey-Chretien telescope are shown where field 1 has been given several values, and the values of
the parameters ol' the telescope are: DI = 80; F = 1200; tI = 264.0 t~ = 79.53; s = 80; 1 = 201.97
(aIl units are centimeters). In the last two columns 01' Table 1 the values for the central obscuration

are shown for the cases where shields are included, ami where no shields are used. Central obscura-

tions in the last case is due only to the size of the secondary minor.
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