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Direct determination of phase coexistence properties of ¯uids by
Monte Carlo simulation in a new ensemble
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A methodology is presented for Monte Carlo simulation of ¯uids in a new ensemble that can
be used to obtain phase coexistence properties of multicomponent systems from a single
computer experiment. The method is based on performing a simulation simultaneously in
two distinct physical regions of generally di� erent densities and compositions. Three types
of perturbations are performed, a random displacement of molecules that ensures equilibrium
within each region, an equal and opposite change in the volume of the two regions that results
in equality of pressures, and random transfers of molecules that equalize the chemical poten-
tials of each component in the two regions. The method is applied to the calculation of the
liquid±gas coexistence envelope for the pure Lennard-Jones (6, 12) ¯uid for several reduced
temperatures from the vicinity of the triple point to close to the critical point …T ˆ 0:75 to
T ˆ 1:30†. Good overall agreement with previously available literature results is obtained,
with some deviations at the extremes of this temperature range.

1. Introduction
The calculation of the phase equilibrium behaviour of

¯uids (pure components and mixtures) from funda-
mental information on the intermolecular interactions

is of signi®cant theoretical and practical value. Phase
equilibrium properties form the basis for a large
number of separations used by the process industries,
and determine the behaviour of a wide range of physical

systems. From a theoretical point of view, the problems
of e� ective testing of theories of the liquid state and
determining appropriate intermolecular potentials for
representing real ¯uids can greatly bene®t from knowl-

edge of the phase equilibrium behaviour of model ¯uids.
Such properties have inherently greater discriminatory
power [1] than the simple thermodynamic or structural
properties that have been commonly utilized in the past.

The canonical (NVT) ensemble Monte Carlo tech-

nique introduced by Metropolis et al. in 1953 [2] has
been extensively used to study the equilibrium properties
of ¯uids [3, 4]. Extensions of the technique to the con-
stant pressure (NPT) ensemble [5, 6] and the grand

canonical …·VT † ensemble [7±9] have signi®cantly broa-
dened the scope of the basic methodology. The ·VT
ensemble allows speci®cation of the chemical potential
and can thus be used to study the coexistence properties

of ¯uids. Such applications have until now been limited

to single component systems [8, 9]. One of the reasons

for this is that the number of simulations that need to be
performed for the determination of a phase envelope

increases dramatically with the number of components

in a mixture. Recent developments based on the Widom

potential-distribution theory [10] have also allowed the

determination of the chemical potential from NVT

Monte Carlo [11] or Molecular Dynamics [12, 13] simu-

lations. These methods have been used to calculate
vapour±liquid phase equilibria for binary systems [14,

15]. The calculations required are long, and some prior

knowledge of the appropriate location of the phase equi-

librium region is required.

The purpose of this work is to introduce a method for

Monte Carlo simulation in a new ensemble, for which

we propose the name `Gibbs ensemble’, that enables the
direct calculation of the phase coexistence properties of

pure components and mixtures from a single simulation,

without need for determining or specifying the chemical

potential. The validity of the method is demonstrated

by the calculation of the coexistence properties of the
pure Lennard-Jones (LJ) (6, 12) ¯uid. The LJ ¯uid was

chosen because it is by far the best studied continuous
potential ([16, 9] and references quoted therein), and

gives a reasonable approximate representation of the

properties of spherically symmetric, nonpolar real

¯uids.

In the following sections we ®rst present the
theoretical foundation for the proposed method, give

some implementation details of the calculations and
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obtain a series of results for the coexistence curve of
the LJ ¯uid at temperatures ranging from close to the
triple point to almost the critical point of this system
(T ˆ 0:75 to T ˆ 1:30; all units denoted with a are
reduced using the LJ potential parameters [15]). Finally,
we suggest a range of additional applications for the
proposed methodology.

2. Theory
The basic idea in our method is to attempt to simulate

phase coexistence properties by following the evolution
in phase space of a system composed of two distinct
regions. The two regions have di� erent (in general) den-
sities and compositions and are at thermodynamic
equilibrium both internally and with each other. The
conceptually simplest way to develop the formalism is
through thermodynamic arguments and ¯uctuation
theory.

In ®gure 1(a), we show a system consisting of two
regions labelled I and II. The system is considered
under NVT conditions: it is assumed that the system

volume and the total number of molecules are constant
and that an in®nite medium of constant temperature

completely surrounds the system. Note that the `surface’

separating the two regions in ®gure 1 is devoid of any

physical signi®cance and does not represent an interface.

One may think of the two regions as large macroscopic
volumes of coexisting vapour and liquid, with an in-

terface that has a negligible e� ect on the total system

properties. Since our attempt is to simulate the phase

behaviour of the macroscopic (in®nite) system, we

would like to avoid introducing interfaces.

The ®rst type of perturbations to be considered

are conventional random displacements of molecules
in either of regions I or II (or both), without a change

in the volume or number of molecules in each region.

First, we derive the criteria of acceptance of the

new con®guration based on a di� erent argument than

the one normally given [17]. Our starting point is the

¯uctuation equation by Landau and Lifshitz [18] that

gives the probability of a ¯uctuation in a closed
system as
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Figure 1. Schematic illustration of the possible steps for the proposed method.



/ exp…¢St=k† ˆ exp…¡¢Emin=kT †; …1†
where ¢St is the change in entropy of the total system
(which includes the in®nite medium surrounding our
NVT box) and ¢Emin is the minimum work required
to carry out reversibly the change from the equilibrium
condition of the system to the state of interest. T is the
temperature of the medium and thus the equilibrium
temperature of the NVT box. Now consider two such
states, x and x 0 of the NVT box that deviate from the
equilibrium state. Since the probability of occurrence of
each state is given by (1), a su� cient condition [17] for a
long sequence of such con®gurations to converge to the
correct thermodynamic averages for the system is the
detailed balance condition

…x ! x 0†
…x 0 ! x† ˆ exp…¡¢Emin=kT †; …2†

where now ¢Emin is the minimum reversible work
required to bring the system from state x to state x 0

and …x ! x 0† is the probability of the transition. A
convenient choice for the transition probability is then

ˆ min…1; exp‰¡¢Emin=kT Š†: …3†
For the perturbation in the system resulting from the

displacement of molecules as shown schematically in
®gure 1 (b), the di� erence in con®gurational energy

¢Emin ˆ ¢EI ‡ ¢EII …4†
is calculated, and the new con®guration is accepted with
the probability given by equation (3).

It is clear that if only this type of perturbation were to
be considered, the simulation in each of the two regions
separately would sample the NVT ensemble in each
region. The simplest way of performing such a step
would be to attempt to change the con®guration of a
single region at a time. It is easy to show that in this
case, the presence of two independent regions does not
a� ect the calculated properties in each region, with the
exception of a trival e� ect on convergence rates from the
fact that only a portion of the attempted moves are
relevant for each region. This would however also be
true if attempted moves were made simultaneously in
the two regions.

We now consider a di� erent type of perturbation, in
which the volumes of the two regions are changed so as
to keep the total system volume constant. In ®gure 1(c),
we consider a perturbation in volume of region I, with a
corresponding equal and opposite change in the volume
of region II. The new con®gurations in each region
would be obtained by scaling the positions of the par-
ticles to the new volume, a procedure familiar from NPT
ensemble simulations. If ¢EI and EII are the resulting
changes in con®gurational energy of the two regions, the

total reversible work required to bring about this change
is

¢Emin ˆ ¢EI ‡ ¢EII ¡ NIkT ln
V I ‡ ¢V

V I

¡ NIIkT ln
V II ¡ ¢V

V II : …5†

The last two terms in equation (5) result from the
ideal gas contribution to the change in system entropy.
Since the two regions are to be kept at constant tem-
perature, the surrounding medium must provide a heat
input equal to ¡T ¢SIG (where IG denotes the ideal-gas
contribution). The total system is under NVT conditions
and thus the probability of acceptance of the con®gura-
tion with the changed volume is again simply given by
equation (3).

The same formalism provides a simple and intuitive
way to derive the acceptance criteria for the NPT
ensemble simulation [6]. If region II is much larger
than region I and if its properties are not a� ected by
the small volume change (that is, if region II is e� ec-
tively in®nite) then the acceptance criterion implied by
(3) is

ˆ min 1; exp ¡ ¢EI ¡ NIkT ln
V I ‡ ¢V

V I

Á"Á

‡P¢V

!,
kT

#!
…6†

so that the simulation for region I is in e� ect an NPT
simulation (provided that the number of molecules in
region I is kept constant). In deriving equation (6)
from equation (5), the P¢V term results from the
thermodynamic relationship for the pressure of region
II, P ˆ ¡…@EII

=@V †T ;N;
, exactly valid at the limit of an

in®nite region II.
Clearly, if this type of perturbation is considered in

addition to the displacement steps (that ensure equi-
libration within each region), the equilibrium con®g-
uration of the total system would be one in which the
pressure in both regions would be identical. This press-
ure (contrary to the case for an NPT ensemble simula-
tion) is not speci®ed externally. The system adjusts itself
to locate the appropriate value for the pressure.

In a similar manner, we now consider in ®gure 1(d)
a perturbation in regions I and II which consists of
the movement of a single molecule from region II to
region I. The transfer of a molecule from one region to
the other does not take place through an interfacial
region: in a simulation, one would select a molecule at
random from one region to disappear and appear at a
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random point in the other region. The appropriate
change in energy would be

¢Emin ˆ ¢EI ‡ ¢EII ‡ NIkT ln
NI ‡ 1

NI

‡ NIIkT ln
NII ¡ 1

NII ‡ kT ln
V II

NII ¡ 1

¡ kT ln
V I

NI ‡ 1 : …7†

As previously, the acceptance criterion for the new
con®guration is then given by equation (3). In this
case the formalism reduces to the criterion for an ·VT
ensemble simulation [8] in region I, if region II is in®nite.
If no change in the volume of system I is attempted,
under these conditions the simulation in region I sam-
ples the grand canonical …·VT † ensemble. The chemical
potential · that appears in the ·VT ensemble acceptance
criterion would arise in this case as an explicit param-
eter from the thermodynamic expression · ˆ …@EII

=
@NII†T ;V

, exact at the limit of an in®nite region II. Equa-
tion (7) is written for a single component system for
simplicity, but can be easily extended to a multicompo-
nent system.

In the proposed simulation method, the two regions
are thus coupled in a way that implicitly (that is, without
specifying a value for the chemical potential) assures
that the chemical potential of all components in the
two regions would be identical.

In essence then, we are proposing a simulation
method that combines elements of the NVT, NPT and

·VT ensembles in a way that, at least in principle, results
in two regions in internal equilibrium that obey the
following conditions

PI ˆ PII
;

·
I
i ˆ ·

II
i ; for all species present;

9
=

; …8†

where P is the pressure and ·i the chemical potential of
species i.

The set of equations (8) are necessary and su� cient
conditions for phase equilibrium between the two
regions I and II, as originally derived by J. W. Gibbs
more than 100 years ago [19]. It is for this reason that
we propose the name `Gibbs ensemble’ for a simulation
on the lines described above, with the purpose of ob-
taining the properties of coexisting phases. Each of the
two regions taken separately samples the `generalized
ensemble’ introduced by Hill [20], in which a system is
at mechanical, thermal and material contact with its
surroundings. We prefer, however, to use the term
`Gibbs ensemble’ over the less speci®c `generalized
ensemble’.

The type of simulation described above should theor-
etically result in the correct values for the coexistence
properties of a system at a given temperature, avoiding
unstable states. If, for example, in a pure component
system the initial conditions are chosen so that the den-
sity is in the unstable region (where @P=@V > 0) the
system should rearrange itself to result in two stable
phases (with @P=@V < 0). An initial state in a meta-
stable region, however, would be thermodynamically
stable, and we cannot expect to be able to observe a
phase split during a simulation of reasonable length,
unless random ¯uctuations bring one of the regions
past the stability limit.

The equilibrium density of each region is uniquely
determined by the condition of phase equilibrium and
the temperature. This, by simple mass balance, results in
a speci®ed average number of molecules in each region.
The extent of each region, however, is only well de®ned
in a two-phase region.

In the previous discussion, we did not specify the size
of each region, but implicitly assumed it was macro-
scopic. In a simulation of ®nite length, we can only
have a microscopic number of molecules of each species
in each region. The solution to this is to consider each
region as composed of a large number of identical sub-
cells with a microscopic number of molecules and apply
conventional periodic boundary conditions.

3. Computational aspects
In the implementation of the theory described above,

several choices need to be made concerning the compu-
tational method. We have used the following procedures
for the calculations.

Initial conditions. The choice of initial densities and
number of molecules in each region a� ects the equilib-
rium values of the number of molecules in the way
described in the previous section. In a simulation with
a limited number of molecules (of the order of 102±103)
one needs to select an initial state that, after equilibra-
tion, would have a large enough number of molecules in
each subcell to ensure appropriate sampling of the equi-
librium properties of that phase. In the case of the pure
LJ ¯uid the phase diagram is reasonably well known
from previous investigations and we were able to select
initial conditions that would always result in a su� cient
number of molecules in each region, as shown in the
next section. The initial conditions were intentionally
chosen to deviate from the previously obtained equilib-
rium values for the gas and liquid densities, so as to
verify that the results are not in¯uenced by these initial
conditions. In a case where no information is available
on the phase behaviour of a ¯uid, a small number of
short exploratory calculations would give the approxi-
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mate densities (and compositions, in the case of a multi-
component system) of the coexisting phases.

The initial con®guration in each cell was a face-
centred cubic lattice appropriate for the initial density
in each region. The initial number of molecules was
allowed to be di� erent from the number that would
completely ®ll such a lattice (4K3, where K is an integer).
In this case, a lattice with the next highest number of
sites was selected and the molecules placed at random
positions in the lattice, thus leaving potentially empty
spaces (the lattice spacing would have to be decreased in
this case to result in the desired actual density). The
initial lattice was observed to `melt’ in a matter of a
few tens of thousands of con®gurations even at the
lowest temperature and highest liquid density investi-
gated (T ˆ 0:75; » 0:8).

Displacement steps. It was decided to perform a
number of random displacements of the molecules of
each phase before attempting to change the volume or
number of molecules in each region. Every molecule in
turn in each region was moved by adding a random
value from a uniform distribution to the molecular coor-
dinates. The maximum displacement was adjusted so as
to give, if possible, an average acceptance ratio of the
attempted moves equal to 50 per cent. The average value
of the energy and pressure and the (constant) value of
the density over the displacement steps were recorded.

Volume change steps. At the end of the displacement
period, a single volume change attempt was performed.
The interval ¢V was again chosen from a uniform
distribution of sizes ‰¡¬V min 4 ¢V 4 ¬V minŠ, where
V min is the minimum value of the volumes of the two
regions, and the factor ¬ was adjusted to give an accep-
tance ratio for the volume changes equal on the average
to 50 per cent. The calculation of the energy and press-
ure after the volume change steps was performed by
utilizing the scaling properties of the LJ potential, as
described in [6]. A long range correction, as described
below, was taken into account in calculating the energy
change of the two regions for use in equations (3) and
(5).

Particle interchange steps. First, it was decided at
random and with equal probabilities which of the two
regions would be the receiving end for the particle inter-
change. The other region would then be the supplying
end. Then, a test position was chosen at random in the
receiving region, and the distances from the molecules of
this region were calculated. As a time-saving measure, if
the minimum distance was lower than a cuto� value,
rcutoff (selected so as to give exp…¡Ecutoff =kT † ˆ 10¡15†,
the attempted move was immediately rejected. If no sig-
ni®cant overlap was found, the test particle energy,
including long-range corrections, was calculated and a
random molecule from the supplying region was selected

to be interchanged into the trial position. The new con-
®guration was accepted with a probability given by
equations (3) and (7).

It was observed that at higher reduced temperatures,
where the probability of accepting an interchange
is relatively high, erroneous results (with average pres-
sures higher than the ones corresponding to equilib-
rium NVT calculations) resulted for the liquid side if
a large number of attempts was performed at a single
instance. This can be explained from the fact that after a
large change of the average number of molecules in one
region, some equilibration is necessary. The problem
was alleviated by selecting the number of attempted
interchanges for a given run so as to result, on the
average, to a small percentage (maximum 1±3 per
cent) of the number of molecules in each cell being
interchanged at any given instance. Another possible
solution to this problem, namely adjusting the number
of attempted interchanges or terminating the attempt
after a given number of successful interchanges, would
bias the sequence of con®gurations and should not be
performed.

The interaction energies calculated during the particle
interchange steps are precisely the test and real particle
energies and can be used (although we did not imple-
ment this step in our simulations) for the determination
of the chemical potential of the two regions without any
increase in the computational time required.

Long-range corrections. For the number of molecules
we have been using in the simulations, the minimum
edge length, L, of each periodic cell is always greater
than 5¼, and normally in the vicinity of 6±8¼ for the
liquid regions. The normal practice in previous simula-
tions, truncating the LJ potential at a distance equal to
L =2, half the box edge length, was not followed in this
work. All interactions between the molecules in a cell
and their minimum-image neighbours were included in
the energy calculation. The minimum image neighbours
can be at distances ranging from 0 (in practice, the mini-
mum distance of approach cannot be less than 0:8¼)
to …

p3=2†L . The ideas underlying this treatment of the
interactions stem from a recent work by Theodorou and
Suter [21] that demonstrated that it is possible to obtain
structural information for a simulated system with per-
iodic boundary conditions for distance up to the maxi-
mum …

p3=2†L . They provide equations that describe
how the radial distribution function g…r† should be cor-
rected for distances between L =2 and …

p3=2†L (equation
(13) in [21]). In essence, by allowing the calculations to
proceed for distances between L =2 and …

p
3=2†L , one

does not take into account a fraction of possible inter-
acting pairs (in addition to the minimum-image pairs),
that smoothly changes from 0 for r ˆ L =2 to 1 at

…
p3=2†L . The advantage from this treatment is that it
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e� ectively increases the range of the potential that is

explicitly taken into account, and thus decreases (by
about 50 per cent) the long-distance corrections, without
increasing the computation time required. The long dis-

tance corrections were calculated by integrating the
potential in two parts, from L =2 to …

p3=2†L using the
expression mentioned above for the corrected radial dis-

tribution function, and from …
p

3=2†L to ‡1 by using

g…r† ˆ 1.

One possible complication that may arise in a Gibbs
ensemble simulation (but also for any ensemble such as
NPT or ·VT that entail di� erent types of steps) is the
e� ect on the calculated system properties of potential

interactions between the various types of steps taken.
A simple veri®cation of the absence of such interactions
is to perform an NVT calculation (by not allowing any

changes in volume or number of molecules of each
region) at the set of average conditions obtained from

a Gibbs ensemble run, and compare the corresponding
results for the energy and pressure. We performed such
checks for all runs presented in the following section.

For the set of simulation parameters reported in table
1, no signi®cant di� erence was found between Gibbs-
ensemble calculations and NVT calculations at the
same conditions.

The calculations were performed on a fast vector
processor (CRAY 1S) using automatic vectorization.

All internal loops were made vectorizable. The time
required for the calculations depends on the total
number of molecules and the number of attempted inter-

changes, but is typically less than 5 CPU minutes for 106

con®gurations generated with N ˆ 500 molecules.

4. Results and discussion

In table 1, we present a summary of the simulations
performed for the calculation of the coexistence proper-
ties of the pure LJ ¯uid. The table gives details for the

simulations performed at each temperature, including
information about the initial conditions, the number
of con®gurations Meq that were performed in order to

equilibrate the state of the systems (Meq initial con®g-
urations were discarded for each run) and the total

number Mt of con®gurations generated. Note that the
number of interchange attempts, fI, was determined
from preliminary runs (not included in the table) so as
to obey the limitations discussed in the previous section.

A rapidly increasing number of attempted interchanges
was necessary at lower reduced temperatures where the
probability of successful interchange is small. In most

cases, the ®nal (equilibrium) number averages and den-
sities in each region were signi®cantly di� erent from

their initial values.
A typical plot of the evolution of density of each

region for the length of a simulation is presented in

®gure 2 for the N ˆ 500 run at T ˆ 1:00. As can be
observed, the initial densities change very rapidly (over
a few tens of thousands of con®gurations generated)
from their initial values, and subsequently ¯uctuate

around a mean value, assumed to be the equilibrium
value. 0:5 106 con®gurations for this run were rejected

to ensure that the results are not in¯uenced by the initial
conditions. Some long-period oscillations in the number
of molecules in each region are evident, but we feel that

a reasonably good estimate of the number of molecules
in each region can be obtained over the length of the
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Table 1. Details of the simulations performed.

Initial conditions Average values

T N NI NII
»

;I
»

;II Meq=106 Mt=106 fI NI NII

1.30 500 250 250 0.35 0.35 0.5 1.3{ 20 49.7 450.3
1.30 300 150 150 0.25 0.25 0.3 1.2{ 10 70.5 229.5

1.25 500 250 250 0.30 0.30 0.5 1.5 10 67.0 433.0

1.25 300 150 150 0.20 0.20 0.5 2.0 10 85.5 214.5
1.15 300 150 150 0.20 0.20 0.5 1.5 50 73.1 226.9

1.15 500 250 250 0.20 0.20 0.5 3.0{ 50 113.2 386.8

1.00 500 150 350 0.06 0.60 0.5 1.9 150 64.0 436.0
1.00 300 150 150 0.06 0.60 0.6 1.9 100 60.4 239.6

0.90 300 150 150 0.03 0.60 0.6 1.9 400 55.0 245.0

0.75 500 50 400 0.001 0.60 1.5} 3.5 2000 129.4 370.6
0.75 300 100 200 0.005 0.60 0.9} 2.3 2000 53.7 246.3

{ Run failed at this number of con®gurations because one region became empty; see text.
{ The density in the two regions showed long-period oscillations.
} An equilibration period of 100 000 steps with no particle interchange was performed initially to allow for `melting’ of the lattice

for the dense phase.



simulation run. The average properties of the two

regions were found to be stable (with small random

¯uctuations) after the initial equilibrium period. Similar
results for the stability of the average properties calcu-

lated in each region were obtained for the other simula-

tion runs, except as noted below. Longer equilibration
times were required for the lowest temperature

…T ˆ 0:75†, as shown in table 1, but the average den-

sities in each region were constant after the equilibration
period. The slow convergence at the low temperatures is

due to the high density of the liquid that results in low

probability of successful interchanges.
In ®gure 3, a case is presented where the initial con-

ditions in the two regions were identical, and correspond

to a point of material instability …T ˆ 1:15; » ˆ 0:20†.
As expected, the system evolves away from the unstable

region and forms two distinct phases apparently stable

over the length of the simulation. Since the two regions
are indistinguishable at the initial conditions of the run,

which of the two regions will become the gas and which

the liquid phase is decided by random ¯uctuations.

As the critical point is approached (previously esti-
mated at T ˆ 1:35 [16]), the ¯uctuations in number

density of the two coexisting phases increase and it
becomes more di� cult to obtain a stable long simula-

tion. For the runs at T ˆ 1:25, some drifting of the

average values of the densities in the two regions was

observed even after 2 106 con®gurations, and thus the
calculated results (table 2) have high estimated uncer-

tainties. In addition, for T ˆ 1:30, the two simulations

failed after the number of con®gurations indicated in

table 1, because one of the two regions was left with
no molecules. That this is possible, was indicated in
the previous section; close to the point of phase homo-
geneity, the numbers of molecules in each region are not
well de®ned. It was felt, however, that stable phases
were observed over a large enough number of con®gura-
tions to permit calculation of their average properties
(with correspondingly large estimated uncertainties) .

The results obtained for the coexistence properties of
the pure LJ ¯uid and comparisons with available litera-

ture direct calculations are summarized in table 2. The
table gives the average density, pressure and energy for
each region, as obtained from the simulations (excluding
the initial equilibration period). The estimated errors for
the various properties are shown in parentheses: the
numbers indicate the standard deviation in units of the
last decimal digit of the corresponding quantity. The
estimated errors were obtained by averaging over
blocks of 0.15 to 0:25 106 con®gurations, a procedure

that has been commonly followed in the past.
For the second temperature listed in table 2,

T ˆ 1:25, there are signi®cant deviations between our
calculated results and the only set of previously avail-
able data by Adams [9]. Adams does not give the esti-
mated errors for the coexistence densities, but the
intersection procedure he employed for the calculations
is liable to large errors at the vicinity of a critical point.
At conditions so close to the critical point it is expected
that any method that uses a small number of molecules

would give results dependent on the system size, and the
equilibrium would be very slow (critical slowing-down).
The results at this temperature, and also at T ˆ 1:30,
the temperature closest to the critical point, verify both
expectations in terms of the slow drifting in the proper-
ties of the two regions observed during the simulations
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Figure 2. Density in each of the two regions versus con®g-
uration number for the run at T ˆ 1:00; N ˆ 500.

Figure 3. Density in each of the two regions versus con®g-
uration number for the run at T ˆ 1:15; N ˆ 300.



and an apparent e� ect of system size. As expected, the

system with the smallest number of molecules appears to

have the highest critical temperature [9]. The di� erences

however are not large, and this suggests that the N ˆ 500

results may be close to the in®nite system properties.
In ®gure 4, we plot the coexistence curve for the pure

LJ ¯uid as obtained from our simulations and compare

graphically the results from the available literature

sources. The line corresponding to the law of rectilinear

diameters [22] is also shown in ®gure 4. The points from

our simulations follow a straight line to within their
respective accuracy. The T ˆ 1:25 results from Adams

[9] deviate signi®cantly from the line, and are probably

suspect. The critical temperature from the plot for

the N ˆ 500 system appears to be slightly below the

accepted [16] value of 1.35. An extrapolation of the

line of rectilinear diameters to the critical region gives

an estimate of the critical density as »c ˆ 0:31 0:02,
again below the previously accepted value of 0.35.

At the intermediate range of temperatures (T ˆ 1:15

to T ˆ 0:90), the results are in satisfactory agreement

with those of previous investigations. The agreement is

within our estimated error limits. There is little depen-

dence on system size for the results at T ˆ 1:15, 1.00 or

0.75. The deviations among the di� erent sets of results
for the gas phase density appear to be random. Some

systematic deviations for the liquid phase density are

possible, but the di� erences are small (our results are

on the average lower by 0.5 per cent). The uncertainties

in the energy and pressure of the two phases result

almost entirely from ¯uctuations in density observed

during the Gibbs ensemble simulations. If no attempts

to interchange or move molecules are made (NVT
ensemble operation), then the computer program that

we are using gives the energy and pressure at a given

density in close agreement with literature values [16].

Pressures of the gas and liquid regions obtained from

the simulations generally agree to within their corre-

sponding standard deviations, thus verifying that the
simulations reach equilibrium for the pressure. The stan-

dard errors for the pressure on the gas region are, as

expected, signi®cantly lower than the corresponding

values for the liquid and can thus be more usefully

identi®ed as the equilibrium vapour pressure at the cor-

responding temperature.

A di� erence of 30 per cent for the gas phase density
was obtained at T ˆ 0:75 between our results and the

two available literature estimates. Runs with di� erent

initial conditions and number of molecules in each

region (N ˆ 300 and N ˆ 500) gave virtually identical

results. The calculated values of Adams [8] are from an

extrapolation of the equation of McDonald and Singer

[4] over a large range of reduced temperatures (from
T ˆ 1:00 to T ˆ 0:75), and the estimated error is not

reported. The results from Hansen and Verlet [3] were

obtained by integrating the pressure-density relationship
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Table 2. Results for the coexistence properties of the pure LJ (6, 12) ¯uid and comparison with literature.

Source T N »G PG EG »L PL EL

This work 1.30 500 0.24 (2) 0.125 (7) 71.74 (13) 0.45 (3) 0.114 (7) 73.10 (12)

This work 1.30 300 0.17 (1) 0.119 (5) 71.30 (8) 0.47 (3) 0.121 (17) 73.22 (19)
Adams [9] 1.30 0.22 (2) 0.127 0.43 (2)

This work 1.25 500 0.123 (14) 0.091 (9) 70.95 (14) 0.505 (23) 0.091 (14) 73.47 (15)
This work 1.25 300 0.110 (17) 0.089 (9) 70.88 (4) 0.533 (40) 0.105 (32) 73.66 (24)

Adams [9] 1.25 0.19 0.111 71.54 0.544 73.73

This work 1.15 500 0.076 (7) 0.061 (7) 70.657 (12) 0.606 (12) 0.062 (11) 74.17 (8)

This work 1.15 300 0.082 (5) 0.064 (4) 70.706 (4) 0.610 (2) 0.081 (16) 74.20 (10)

Hansen and Verlet [3] 1.15 0.073 0.0597 0.606
Adams [9] 1.15 0.077 0.0630 70.673 0.609 74.20

This work 1.00 500 0.0281 (32) 0.0239 (23) 70.255 (31) 0.698 (3) 0.007 (15) 74.87 (3)

This work 1.00 300 0.0271 (37) 0.0233 (27) 70.249 (33) 0.695 (5) 70.006 (18) 74.86 (5)
Adams [8] 1.00 0.0261 0.0227 70.237 0.703 74.91

This work 0.90 300 0.0115 (14) 0.0096 (11) 70.113 (14) 0.753 (14) 0.002 (32) 75.32 (3)
Adams [8] 0.90 0.0131 0.0108 70.126 0.756 75.35

This work 0.75 500 0.0028 (2) 0.0019 (2) 70.030 (2) 0.820 (6) 0.004 (20) 75.90 (5)
This work 0.75 300 0.0027 (4) 0.0019 (3) 70.030 (4) 0.820 (5) 0.009 (22) 75.90 (5)

Hansen and Verlet [3] 0.75 0.0035 0.0025 0.825

Adams [8] 0.75 0.0033 0.0024 70.038 0.826 75.96



through the unstable region (by constraining density
¯uctuations) and this procedure may introduce some
systematic error. Even if we accept that the deviation
is entirely due to error resulting from our proposed
method, the prediction of the coexistence curve at a
temperature close to the triple point from a single simu-

lation may still be an attractive alternative to the long
thermodynamic integration through the unstable region.
For comparison, if one were to obtain similar results
from a chemical potential calculation, one would need

to calculate the chemical potential to within 0:2
reduced units (this being the di� erence in chemical
potential between » ˆ 0:0027 and » ˆ 0:0035 at
T ˆ 0:75) for a liquid density of » ˆ 0:82. This
appears not to be possible with the conventional test
particle method without full umbrella sampling [23].

In summary, we have demonstrated that the proposed

method for the calculation of phase coexistence proper-
ties of ¯uids gives results in reasonable agreement with
literature values for the properties of the pure LJ ¯uid.
The method was applied for reduced temperatures from

close to the triple point to the vicinity of the critical
point and shown to give consistent results throughout
this range.

The proposed method has signi®cant advantages in
terms of speed and simplicity over currently available
techniques even for the simple case of one-component

systems. A possible area of the application of the tech-
nique that needs to be considered is the calculation of
coexistence curves for multicomponent systems. The

principle of the method may prove valid for direct cal-
culation of equilibria between ¯uid phases (liquid±gas,
liquid±liquid or ¯uid±¯uid) in a system with an arbitrary
number of components. In such a system, the currently
available techniques are clearly impractical due to
the very large number of simulations required and
the uncertainties associated with the calculation of the
chemical potential for dense phases. The proposed tech-
nique has the potential of accomplishing the same task
in a single simulation. The application of the technique
to multicomponent systems will be the subject of future
work in this area.

The author gratefully acknowledges Professor J. S.
Rowlinson and Professor K. E. Gubbins for many
helpful discussions related to this work. Computing
resources were provided by the Oxford University Com-
puter Services and the computations were performed
using a CRAY 1S at the University of London Com-
puter Centre.

Note added in proof.ÐAfter this work was completed,
Panagiotopoulos et al. [24] obtained a di� erent
derivation of the acceptance criteria for the volume
change and particle interchange steps. The interchange
criterion given in [24] di� ers from equation (7) by
a factor of order O…1=N†, resulting from the use of
Stirling’s approximation for the ideal-gas entropy
expression in this work. For the set of conditions
given in table 1, the two interchange criteria give
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Figure 4. Liquid-vapour phase coexistence curve (ÐÐÐÐ) and line of rectilinear diameters (± ± ± ± ± ±) for the pure LJ (6, 12)
¯uid. ( ) this work, N ˆ 500; (‡) this work, N ˆ 300; (*) Adams [8, 9]; (&) Hansen and Verlet [3]. The continuous line is
drawn through the N ˆ 500 results for visual clarity.



virtually identical results. However, if the number of
molecules of a species in one region is small, the inter-
change criterion given in [24] should be substituted for
equation (7).
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