
 Open access  Journal Article  DOI:10.1086/422673

Direct determination of the kinematics of the universe and properties of the dark
energy as functions of redshift — Source link 

Ruth A. Daly, S. G. Djorgovski

Institutions: Pennsylvania State University, California Institute of Technology

Published on: 10 Sep 2004 - The Astrophysical Journal (American Astronomical Society)

Topics: Deceleration parameter, Dark energy, Redshift, Cosmological constant and Physical cosmology

Related papers:

 Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant

 
Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and
constraints on dark energy evolution

 Measurements of Omega and Lambda from 42 High-Redshift Supernovae

 
A Model-Independent Determination of the Expansion and Acceleration Rates of the Universe as a Function of
Redshift and Constraints on Dark Energy

 New dark energy constraints from supernovae, microwave background, and galaxy clustering.

Share this paper:    

View more about this paper here: https://typeset.io/papers/direct-determination-of-the-kinematics-of-the-universe-and-
5eo2qg7tf1

https://typeset.io/
https://www.doi.org/10.1086/422673
https://typeset.io/papers/direct-determination-of-the-kinematics-of-the-universe-and-5eo2qg7tf1
https://typeset.io/authors/ruth-a-daly-4rryo0ljz1
https://typeset.io/authors/s-g-djorgovski-3dnux32voy
https://typeset.io/institutions/pennsylvania-state-university-14gcuxm7
https://typeset.io/institutions/california-institute-of-technology-3qpga2aa
https://typeset.io/journals/the-astrophysical-journal-3hg9sdkf
https://typeset.io/topics/deceleration-parameter-1nncg4p0
https://typeset.io/topics/dark-energy-1d2adqx6
https://typeset.io/topics/redshift-219dxi4x
https://typeset.io/topics/cosmological-constant-5ci567r0
https://typeset.io/topics/physical-cosmology-2uehgwn4
https://typeset.io/papers/observational-evidence-from-supernovae-for-an-accelerating-2hxji77uix
https://typeset.io/papers/type-ia-supernova-discoveries-at-z-1-from-the-hubble-space-2dypo50ta3
https://typeset.io/papers/measurements-of-omega-and-lambda-from-42-high-redshift-z1htxv5kgf
https://typeset.io/papers/a-model-independent-determination-of-the-expansion-and-46em77fvyi
https://typeset.io/papers/new-dark-energy-constraints-from-supernovae-microwave-2fqemar8ct
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/direct-determination-of-the-kinematics-of-the-universe-and-5eo2qg7tf1
https://twitter.com/intent/tweet?text=Direct%20determination%20of%20the%20kinematics%20of%20the%20universe%20and%20properties%20of%20the%20dark%20energy%20as%20functions%20of%20redshift&url=https://typeset.io/papers/direct-determination-of-the-kinematics-of-the-universe-and-5eo2qg7tf1
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/direct-determination-of-the-kinematics-of-the-universe-and-5eo2qg7tf1
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/direct-determination-of-the-kinematics-of-the-universe-and-5eo2qg7tf1
https://typeset.io/papers/direct-determination-of-the-kinematics-of-the-universe-and-5eo2qg7tf1


DIRECT DETERMINATION OF THE KINEMATICS OF THE UNIVERSE AND PROPERTIES
OF THE DARK ENERGY AS FUNCTIONS OF REDSHIFT

Ruth A. Daly

Department of Physics, Berks-Lehigh Valley College, Pennsylvania State University, Reading, PA 19610; rdaly@psu.edu

and

S. G. Djorgovski

Division of Physics, Mathematics, and Astronomy, California Institute of Technology,

MS 105-24, Pasadena, CA 91125; george@astro.caltech.edu

Receivved 2004 March 29; accepted 2004 May 18

ABSTRACT

Understanding the nature of dark energy, which appears to drive the expansion of the universe, is one of
the central problems of physical cosmology today. In an earlier paper we proposed a novel method to determine
the expansion rate E(z) and the deceleration parameter q(z) in a largely model-independent way, directly from the
data on coordinate distances y(z). Here we expand this methodology to include measurements of the pressure of
dark energy p(z), its normalized energy density fraction f (z), and the equation-of-state parameter w(z). We then
apply this methodology to a new, combined data set of distances to supernovae and radio galaxies. In evaluating
E(z) and q(z), we make only the assumptions that the FRW metric applies and that the universe is spatially flat (an
assumption strongly supported by modern cosmic microwave background radiation measurements). The deter-
minations of E(z) and q(z) are independent of any theory of gravity. For evaluations of p(z), f (z), and w(z), a
theory of gravity must be adopted, and general relativity is assumed here. No a priori assumptions regarding
the properties or redshift evolution of the dark energy are needed. We obtain trends for y(z) and E(z) that are
fully consistent with the standard Friedmann-Lemaı̂tre concordance cosmology with �0 ¼ 0:3 and �0 ¼ 0:7.
The measured trend for q(z) deviates systematically from the predictions of this model on a �1–2 � level but
may be consistent for smaller values of �0. We confirm our previous result that the universe transitions from
acceleration to deceleration at a redshift zT � 0:4. The trends for p(z), f (z), and w(z) are consistent with being
constant at least out to z � 0:3 0:5 and broadly consistent with being constant out to higher redshifts, but with
large uncertainties. For the present values of these parameters we obtain E0 ¼ 0:97 � 0:03, q0 ¼ �0:35 � 0:15,
p0 ¼ �0:6 � 0:15, f0 ¼ �0:62� (�0 � 0:3) � 0:05, and w0 ¼ �0:9� �(�0 � 0:3) � 0:1, where �0 is the
density parameter for nonrelativistic matter and �� 1:5 � 0:1. We note that in the standard Friedmann-Lemaı̂tre
models p0 ¼ ��0, and thus we can measure the value of the cosmological constant directly and obtain results in
agreement with other contemporary results.

Subject headinggs: cosmological parameters — cosmology: observations — cosmology: theory —
dark matter — equation of state

On-line material: machine-readable table

1. INTRODUCTION

Observations of supernovae (SNe; Riess et al. 1998, 2004;
Perlmutter et al. 1999; Tonry et al. 2003; Knop et al. 2003;
Barris et al. 2004) indicate that the universe is accelerating in
its expansion. Precision measurements of cosmological param-
eters from cosmic microwave background radiation (CMBR)
experiments confirm this remarkable finding (e.g., Bennett
et al. 2003; Spergel et al. 2003 and references therein). Results
similar to those obtained using SNe are also obtained using
radio galaxies (RGs; Guerra & Daly 1998; Guerra et al. 2000;
Daly & Guerra 2002; Podariu et al. 2003). The acceleration of
the universe at the present epoch is one of the key results of
modern cosmology, with potentially significant implications
for fundamental physics as well. The nature of the ‘‘dark en-
ergy,’’ which apparently drives the cosmic acceleration, is un-
known, and it is crucially important to extract information
about it from the data in a manner that is as direct and model-
independent as possible.

In Daly & Djorgovski (2003, hereafter Paper I), we showed
how the data could be used to study the dimensionless

expansion rate of the universe E(z) and the deceleration param-
eter of the universe q(z) directly from combinations of the first
and second derivatives of the coordinate distance. These de-
terminations only depend on the Friedmann-Robertson-Walker
(FRW) metric and an assumption of spatially flat geometry,
which is now very well established by the CMBR experiments.
The evaluations do not require the specification of anything
else, including a theory of gravity, and thus are direct and
model-independent.
The use of model-independent methods to derive informa-

tion about the dark energy are also discussed, for example, by
Huterer & Turner (1999, 2001), Saini et al. (2000), Tegmark
(2002), Sahni et al. (2003), Huterer & Starkman (2003), Wang
& Freese (2004), Wang & Tegmark (2004), Wang et al. (2004),
and Daly & Djorgovski (2004). The work of Huterer & Turner
focuses on determinations of w(z), as does that of Huterer &
Starkman (2003). Wang & Freese (2004) focus on the deter-
mination of the energy density of the dark energy and use an
approach that is complementary to that used here, by inte-
grating over shells in redshift space to obtain the energy
density as a function of redshift, while we differentiate the
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data to obtain this function. The approach taken by most
authors to extract the redshift behavior of the dark energy is to
integrate over an assumed functional form of the redshift
evolution of the dark energy, having first adopted a theory of
gravity (e.g., Starobinsky 1988; Huterer & Turner 1999, 2001;
Saini et al. 2000; Chiba & Nakamura 2000; Maor et al.
2001; Golaith et al. 2001; Wang & Garnavich 2001; Astier
2001; Gerke & Efstathiou 2002; Weller & Albrecht 2002;
Padmanabhan & Choudhury 2003; Tegmark 2002; Huterer &
Starkman 2003; Sahni et al. 2003; Alam et al. 2003, 2004;
Wang & Freese 2004; Wang et al. 2004; Wang & Tegmark
2004; Nessier & Perivolaropoulos 2004; Gong 2004; Zhu et al.
2004; Elgaroy & Multamaki 2004; Huterer & Cooray 2004).
However, it can be difficult to extract information about the
redshift behavior of the dark energy using these ‘‘integral’’
approaches (Maor et al. 2001; Barger & Marfatia 2001). Thus,
we continue to follow the complementary approach of differ-
entiating the data, as described in Paper I.

Here the approach presented in Paper I is taken a step further
to obtain the pressure, energy density, and equation of state of
the dark energy directly from combinations of the first and
second derivatives of the coordinate distance with respect to
redshift. This approach is complementary to the standard ap-
proach of assuming a theory of gravity, assuming a parame-
terization for the dark energy and its redshift evolution, and
obtaining the best-fit model parameters.

We apply this methodology to an improved set of distances
to SNe from Riess et al. (2004), supplemented with the data on
high-redshift RGs from Paper I.

2. THEORY

This work builds on Paper I, and we refer the reader to it for
more details and discussion. It is well known that the dimen-
sionless expansion rate E(z) can be written as the derivative of
the dimensionless coordinate distances y(z) (e.g., Weinberg
1972; Peebles 1993; Peebles & Ratra 2003); the expression is
particularly simple when the space curvature term is equal to
zero. In this case,

ȧ

a

� �

H�1
0 � E(z) ¼

dy

dz

� ��1

; ð1Þ

where a is the cosmic scale factor and H0 ¼ (ȧ=a)j0 evaluated
at a redshift of zero is the Hubble constant. This representation
follows directly from the FRW line element and does not re-
quire the use of a theory of gravity. Similarly, it was shown in
Paper I that the dimensionless deceleration parameter

�
äa

ȧ2

� �

� q(z)¼� 1þ (1þ z)
dy

dz

� ��1
d 2y

dz2

" #

ð2Þ

also follows directly from the FRW line element and does not
rely on a theory of gravity. Thus, measurements of the di-
mensionless coordinate distance to sources at different red-
shifts can be used to determine dy/dz and d2y/dz2, which can
then be used to determine E(z) and q(z).

In addition, if a theory of gravity is specified, the mea-
surements of dy/dz and d2y/dz2 can be used to determine the
pressure, energy density, and equation of state of the dark
energy as functions of redshift. Thus, we can use the data to
determine these functions directly, which provides an ap-
proach that is complementary to the standard one of assuming

a functional form a priori and then fitting the parameters of the
chosen function. To determine the pressure, energy density,
and equation of state of the dark energy as functions of red-
shift, the theory of gravity adopted is general relativity.

In a spatially flat, homogeneous, isotropic universe with
nonrelativistic matter and dark energy, Einstein’s equations are

ä

a
¼ �

4�G

3
�m þ �DE þ 3PDEð Þ; ð3Þ

ȧ

a

� �2

¼
8�G

3
(�m þ �DE); ð4Þ

where �m is the mean mass-energy density of nonrelativistic
matter, �DE is the mean mass-energy density of the dark en-
ergy, and PDE is the pressure of the dark energy. Combining
these equations, we find ä=a ¼ �0:5½(ȧ=a)2 þ (8�G )PDE�.

Using the standard definition of the critical density at the
present epoch �0c ¼ 3H 2

0=(8�G), it is easy to show that

p(z) �
PDE(z)

�0c
¼

E2(z)

3
½2q(z)� 1�: ð5Þ

Equations (1) and (2) can be used to obtain the pressure of the
dark energy as a function of redshift

p(z) ¼ �
dy

dz

� ��2

1þ
2

3
(1þ z)

dy

dz

� ��1
d 2y

dz2

" #

: ð6Þ

Thus, the pressure of the dark energy can be determined directly
from measurements under the same assumptions as above.
Moreover, for the standard Friedmann-Lemaı̂tre models, it can
be shown that p ¼ ���, giving us a way to measure the value
of the cosmological constant directly.

Similarly, the energy density of the dark energy can be
obtained directly from the data using equations (1) and (4):

f (z) �
�DE(z)

�0c
¼

dy

dz

� ��2

��0(1þ z)3; ð7Þ

where �0 ¼ �0m=�0c is the fractional contribution of non-
relativistic matter to the total critical density at zero redshift,
and it is assumed that this nonrelativistic matter evolves as
(1þ z)3.

The equation of state parameter w(z) is defined to be the
ratio of the pressure of the dark energy to its energy density
w(z) � PDE(z)=�DE(z). Combining equations (6) and (7), it is
easy to show that

w(z) ¼
� 1þ (2=3)(1þ z)(dy=dz)�1(d2y=dz2)
� �

1� (dy=dz)2�0(1þ z)3
: ð8Þ

3. DATA ANALYSIS AND RESULTS

Our method is based on a robust numerical differentiation
of data on coordinate distances y(z), which is described in
detail in Paper I. One of the advantages of our method is
that distances from different types of measurements (e.g., SN
standard candles and RG standard rulers) can be combined,
separating the astrophysical questions (how standard are these
sources, what are the selection effects, etc.) from analyses
dealing with pure geometry and kinematics.
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Two data samples are included in this study: the RG sample
presented and described by Guerra et al. (2000), Daly &
Guerra (2002), Podariu et al. (2003), and in Paper I, and the
latest cosmological SN sample from Riess et al. (2004). The
RG sample consists of 20 RGs with redshifts between zero
and 1.8 (Guerra et al. 2000). The SN sample that we use
here consists of the ‘‘gold’’ SNe, with redshifts between zero
and 1.7 (Riess et al. 2004). We refer to the original papers
for the description of the measurements and other pertinent
information.

The dimensionless coordinate distances y(z) to RGs were
determined in Paper I for normalizations obtained using RGs
alone (referred to as ys) and using a joint sample of RGs and
SNe (referred to as yj). The current SN sample is used to
obtain new values of yj by using them to determine a new
normalization for the RGs, and these are listed in Table 1.
These values are nearly identical to those in Paper I.

The dimensionless coordinate distances to SNe are listed in
Table 2. To determine these from the distance moduli pub-
lished by Riess et al. (2004), the value of H0 adopted by Riess
et al. (2004) must be known. This was not given explicitly in
the Riess et al. paper, as it was not needed for their analysis.
Since we essentially need to remove the value and uncertainty
of H0 put in by Riess et al. (2004), we determine the effective
value of H0 applicable to that SN sample by using the sub-
sample of SNe with z < 0:1, where the expansion must be
close to linear and the Hubble relation H0 ¼ v(1þ z)=dL is
valid. Using the luminosity distance dL obtained directly from
the distance moduli tabulated by Riess et al. (2004), we get
H0 ¼ 66:4 � 0:8 km s�1 Mpc�1. This value is used simply
to obtain the dimensionless coordinate distances y(z) from
the published luminosity distances using the relation y(z) ¼
(H0=c)dL(1þ z)�1, but it does not affect our analysis in any
other way. It is not meant as a measurement of H0 per se, but
just as an internally consistent scaling factor, and the error
quoted above is just statistical and does not include any other
components due to calibrations, etc. The values of y(z) given
in Tables 1 and 2 can then be easily converted to distances in
parsecs for any desired value of H0.

We test for the consistency between the distance measure-
ments from SNe and RGs in the redshift interval where they
overlap (Fig. 1). Reassuringly, we find no significant sys-
tematic offset, which indicates that the joint sample is suf-
ficiently homogeneous for our purposes. We note that we
repeated our analysis for the SN sample alone and got essen-
tially the same results, but with larger error bars at the high-
redshift end, where the sample of SNe is still very sparse and
RGs provide valuable supplementary data. At the low red-
shifts, SNe dominate the results.
Our methodology is described in detail in Paper I, which also

includes extensive tests using simulated data. To summarize
briefly, we perform a statistically robust numerical differenti-
ation of the y(z) data, in order to obtain the first and second
derivatives, dy/dz and d2y/dz2, used in equations (1)–(8). While
differentiation of noisy and sparse data is generally inadvis-
able, it is possible and may be useful if one keeps careful track
of the errors and other limitations posed by the data.
The procedure is based on properly weighted second-order

least-squares fits at a closely spaced grid of redshift points in
a sliding redshift window, which is generally chosen to be
sufficiently large (�z ¼ 0:4 or 0.6) to have enough data points
for meaningful measurements of the three fit coefficients. The
fit coefficients and their errors essentially correspond to the
best-fit values for y(z), dy/dz, and d 2y/dz2. We are effectively
doing a Taylor series expansion for the expansion law as a
function of redshift. Statistical errors, including all covariance
terms, are propagated in the standard manner. While the large
values of �z are needed in order to obtain stable fits, that also
means that there are very few independent intervals: we are
essentially mapping the trends rather than to trying to bin the
data. We find that the derived mean trends for all quantities
of interest described below do not depend significantly on the
value of �z used, i.e., that the results are robust with respect
to this parameter. However, the statistical errors increase
dramatically for lower values of �z because of the smaller
numbers of enclosed data points.
While the fitting procedure generates statistically rigorous

errors at every point, that does not include any effects of the
uneven data sampling and sample variance (see the discus-
sion in Paper I). The 1 � error intervals plotted in the figures
reflect only the statistical errors. The apparent ‘‘bumps and
wiggles’’ are presumably indicative of the sparse sampling,
especially at higher redshifts. Any systematic errors in y(z)
measurements that may be present in the data are also ab-
sorbed there. Thus, one should not believe any such features in
the plots, but only look at the global trends. We also regard the
values for all derived quantities at lower redshifts to be fairly
reliable, since the data are best and the sampling is densest
as z ! 0.
As in Paper I, we perform a test of the procedure using a

simulated data set that mimics the anticipated SN measure-
ments from the SNAP/JDEM satellite1 with a known assumed
cosmology, namely the standard Friedmann-Lemaı̂tre model
with �0 ¼ 0:3 and �0 ¼ 0:7 (see Paper I for more details on
this simulated data set). The results for the dark energy pa-
rameters as functions of redshift are shown in Figure 2. We
see that our method can recover robustly the assumed param-
eters, at least out to z� 0:9. Reassured by this test, we turn
to the analysis of actual data.
We do not endeavor here to examine or advocate the pri-

mary measurements of distances we use in our analysis; that

TABLE 1

Radio Galaxy Dimensionless Coordinate Distances

Source Redshift y �(y)

3C 405 ....................... 0.0560 0.0556 0.0095

3C 244.1 .................... 0.4300 0.4559 0.0700

3C 330 ....................... 0.5490 0.4019 0.0637

3C 427.1 .................... 0.5720 0.3193 0.0488

3C 337 ....................... 0.6300 0.6094 0.0687

3C 55 ......................... 0.7200 0.5986 0.0678

3C 247 ....................... 0.7490 0.6255 0.0665

3C 265 ....................... 0.8110 0.6757 0.0787

3C 325 ....................... 0.8600 0.8180 0.1489

3C 289 ....................... 0.9670 0.6809 0.1030

3C 268.1 .................... 0.9740 0.7679 0.1186

3C 280 ....................... 0.9960 0.7108 0.1073

3C 356 ....................... 1.0790 0.8284 0.1421

3C 267 ....................... 1.1440 0.7526 0.1206

3C 194 ....................... 1.1900 1.1412 0.1975

3C 324 ....................... 1.2100 0.9730 0.2350

3C 437 ....................... 1.4800 0.8211 0.1895

3C 68.2 ...................... 1.5750 1.4770 0.3690

3C 322 ....................... 1.6810 1.1406 0.2309

3C 239 ....................... 1.7900 1.2144 0.2376

1 See http://snap.lbl.gov.
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TABLE 2

SN Ia Dimensionless Coordinate Distances

Source Redshift y �( y) Sample

1990T ......................... 0.040 0.040 0.0035 Gold

1990af ........................ 0.050 0.049 0.0048 Gold

1990O......................... 0.031 0.033 0.0030 Gold

1991S ......................... 0.056 0.061 0.0050 Gold

1991U......................... 0.033 0.027 0.0025 Gold

1991ag........................ 0.014 0.015 0.0017 Gold

1992J .......................... 0.046 0.039 0.0038 Gold

1992P ......................... 0.027 0.029 0.0027 Gold

1992aq........................ 0.101 0.112 0.0103 Gold

1992ae ........................ 0.075 0.074 0.0065 Gold

1992au........................ 0.061 0.060 0.0061 Gold

1992al......................... 0.014 0.015 0.0017 Gold

1992ag........................ 0.026 0.022 0.0025 Gold

1992bl ........................ 0.043 0.043 0.0038 Gold

1992bh........................ 0.045 0.052 0.0043 Gold

1992bg........................ 0.036 0.037 0.0032 Gold

1992bk........................ 0.058 0.056 0.0049 Gold

1992bs ........................ 0.063 0.071 0.0062 Gold

1992bc........................ 0.019 0.021 0.0022 Gold

1992bp........................ 0.079 0.079 0.0066 Gold

1992br ........................ 0.088 0.084 0.0108 Gold

1992bo........................ 0.018 0.019 0.0020 Gold

1993B......................... 0.071 0.074 0.0065 Gold

1993H......................... 0.025 0.023 0.0022 Gold

1993O......................... 0.052 0.057 0.0047 Gold

1993ah........................ 0.029 0.027 0.0027 Gold

1993ac ........................ 0.049 0.051 0.0047 Gold

1993ag........................ 0.050 0.055 0.0048 Gold

1993ae ........................ 0.018 0.016 0.0017 Gold

1994B......................... 0.089 0.102 0.0080 Silver

1994C......................... 0.051 0.045 0.0033 Silver

1994M........................ 0.024 0.023 0.0021 Gold

1994Q......................... 0.029 0.030 0.0026 Gold

1994S ......................... 0.016 0.017 0.0019 Gold

1994T ......................... 0.036 0.034 0.0031 Gold

1995E ......................... 0.012 0.009 0.0011 Silver

1995K......................... 0.478 0.469 0.0497 Gold

1995M........................ 0.053 0.057 0.0039 Silver

1995ap........................ 0.230 0.220 0.0467 Silver

1995ao........................ 0.300 0.242 0.0668 Silver

1995ae ........................ 0.067 0.067 0.0105 Silver

1995az ........................ 0.450 0.407 0.0394 Gold

1995ay........................ 0.480 0.445 0.0410 Gold

1995ax........................ 0.615 0.509 0.0539 Gold

1995aw....................... 0.400 0.405 0.0354 Gold

1995as ........................ 0.498 0.648 0.0716 Silver

1995ar ........................ 0.465 0.551 0.0558 Silver

1995ac ........................ 0.049 0.042 0.0039 Gold

1995ak........................ 0.022 0.019 0.0019 Gold

1995ba........................ 0.388 0.414 0.0362 Gold

1995bd........................ 0.015 0.014 0.0017 Gold

1996C......................... 0.028 0.033 0.0030 Gold

1996E ......................... 0.425 0.340 0.0626 Gold

1996H......................... 0.620 0.572 0.0790 Gold

1996I .......................... 0.570 0.514 0.0592 Gold

1996J .......................... 0.300 0.271 0.0312 Gold

1996K......................... 0.380 0.407 0.0412 Gold

1996R......................... 0.160 0.125 0.0230 Silver

1996T ......................... 0.240 0.244 0.0483 Silver

1996U......................... 0.430 0.453 0.0709 Gold

1996V......................... 0.025 0.025 0.0029 Silver

1996ab........................ 0.124 0.136 0.0138 Gold

1996bo........................ 0.017 0.013 0.0016 Gold

1996bv........................ 0.017 0.015 0.0016 Gold

1996bl ........................ 0.035 0.037 0.0032 Gold

TABLE 2—Continued

Source Redshift y �( y) Sample

1996cg........................ 0.490 0.487 0.0426 Silver

1996cm....................... 0.450 0.501 0.0438 Silver

1996cl......................... 0.828 0.750 0.1589 Gold

1996ci......................... 0.495 0.417 0.0365 Gold

1996cf ........................ 0.570 0.505 0.0442 Silver

1997E ......................... 0.013 0.014 0.0017 Gold

1997F ......................... 0.580 0.568 0.0549 Gold

1997H......................... 0.526 0.472 0.0391 Gold

1997I .......................... 0.172 0.171 0.0142 Gold

1997N......................... 0.180 0.186 0.0154 Gold

1997P ......................... 0.472 0.467 0.0408 Gold

1997Q......................... 0.430 0.387 0.0321 Gold

1997R......................... 0.657 0.602 0.0555 Gold

1997Y......................... 0.017 0.018 0.0019 Gold

1997ai......................... 0.450 0.401 0.0425 Gold

1997ac ........................ 0.320 0.327 0.0271 Gold

1997aj......................... 0.581 0.470 0.0411 Gold

1997aw....................... 0.440 0.502 0.0925 Gold

1997as ........................ 0.508 0.312 0.0503 Gold

1997am....................... 0.416 0.411 0.0360 Gold

1997ap........................ 0.830 0.712 0.0623 Gold

1997af ........................ 0.579 0.523 0.0458 Gold

1997bh........................ 0.420 0.351 0.0371 Gold

1997bb........................ 0.518 0.537 0.0742 Gold

1997bj ........................ 0.334 0.253 0.0350 Gold

1997ck........................ 0.970 0.753 0.1317 Silver

1997cn........................ 0.018 0.017 0.0020 Gold

1997cj......................... 0.500 0.521 0.0480 Gold

1997ce ........................ 0.440 0.401 0.0350 Gold

1997dg........................ 0.030 0.036 0.0033 Gold

1997do........................ 0.010 0.012 0.0019 Gold

1997ez ........................ 0.778 0.720 0.1160 Gold

1997ek........................ 0.860 0.761 0.1052 Gold

1997eq........................ 0.538 0.490 0.0406 Gold

1997ff ......................... 1.755 1.025 0.1653 Gold

1998I .......................... 0.886 0.448 0.1672 Gold

1998J .......................... 0.828 0.638 0.1793 Gold

1998M........................ 0.630 0.454 0.0502 Gold

1998V......................... 0.017 0.017 0.0018 Gold

1998ac ........................ 0.460 0.352 0.0649 Gold

1998ay........................ 0.638 0.618 0.1024 Silver

1998bi ........................ 0.740 0.595 0.0822 Gold

1998be........................ 0.644 0.484 0.0580 Silver

1998ba........................ 0.430 0.459 0.0528 Gold

1998bp........................ 0.010 0.010 0.0014 Gold

1998co........................ 0.017 0.019 0.0021 Gold

1998cs ........................ 0.033 0.035 0.0031 Gold

1998dx........................ 0.053 0.052 0.0043 Gold

1998ef ........................ 0.017 0.015 0.0016 Gold

1998eg........................ 0.023 0.026 0.0024 Gold

1999Q......................... 0.460 0.493 0.0613 Gold

1999U......................... 0.500 0.524 0.0458 Gold

1999X......................... 0.026 0.026 0.0024 Gold

1999aa ........................ 0.016 0.018 0.0020 Gold

1999cc ........................ 0.032 0.032 0.0028 Gold

1999cp........................ 0.010 0.011 0.0016 Gold

1999da........................ 0.012 0.014 0.0021 Silver

1999dk........................ 0.014 0.017 0.0020 Gold

1999dq........................ 0.014 0.012 0.0015 Gold

1999ef ........................ 0.038 0.046 0.0038 Gold

1999fw ....................... 0.278 0.274 0.0518 Gold

1999fk........................ 1.056 0.762 0.0807 Gold

1999fm ....................... 0.949 0.713 0.0821 Gold

1999fj......................... 0.815 0.689 0.1047 Gold

1999ff ......................... 0.455 0.437 0.0563 Gold

1999fv ........................ 1.190 0.696 0.1090 Gold



was done in the original papers from which they came. Our
purpose here is to illustrate the methodology and seek some
early hints about the possible cosmological trends in the data,
assuming that the data are sound. Better and larger data sets
in the future can be explored using this methodology with a
much greater potential.

Figure 3 shows the data from the combined RG+SN (gold)
sample and the representative fits for y(z) for window func-
tion widths �z of 0.4 and 0.6. Figure 4 shows the corre-
sponding results for the dimensionless expansion rate E(z).
We obtain the present value of E0 ¼ 0:97 � 0:03. Both trends,
y(z) and E(z), are fully consistent with the standard concordance
model, which assumes w ¼ �1, �0 ¼ 0:3, and �0 ¼ 0:7.
Figure 5 shows the trend for the deceleration parameter

q(z). This is an update of our result from Paper I, which we
believe was the first direct demonstration of the transition
from a decelerating to an accelerating universe. This was
subsequently seen by Riess et al. (2004), and is further con-
firmed here, and by Alam et al. (2004). We see a clear trend of
an increase in q(z) with redshift out to z � 0:6, but the fits
become noisy and unreliable beyond that because of the still
limited number of data points at higher redshifts. The present
value is estimated at q0 ¼ �0:35 � 0:15.
The zero crossing is seen at zT � 0:4; specifically, for the

window function with�z ¼ 0:6, it is zT ¼ 0:35 � 0:07. While
the value of zT does not depend significantly on the value
of �z used, the size of the uncertainty does, and we are
reluctant to quote one particular case. While the lower limit is
relatively robust, the upper bound is very uncertain because of
the sparse sampling at higher redshifts. We note that in the
simple Friedmann-Lemaı̂tre models, zT ¼ (2��=�0)

1=3 � 1.
For the standard concordance model with w ¼ �1, �0 ¼ 0:3,
and �� ¼ 0:7, we would expect zT ¼ 0:67. If zT ¼ 0:35, then
the implied value is �� ¼ 0:55 for a k ¼ 0 model. Indeed, the
evaluated trend for q(z) is closer to the �� ¼ 0:5 model than
to the �� ¼ 0:7 case, which seems systematically low at a 1–
2 � level (statistical errors only). However, given the limi-
tations presented by the available data sample, we are unsure
about the significance of this effect.
For the subsequent measurements, the assumption that

general relativity is the correct theory of gravity is made (see
the previous section).
Equation (6) is used to obtain the pressure of the dark energy

as a function of redshift, and the results are shown in Figure 6
for a window function with �z ¼ 0:6. The present value is
p0 ¼ �0:6 � 0:15. The results are consistent with the pressure
remaining constant to z � 0:5 and possibly beyond; the strong

TABLE 2—Continued

Source Redshift y �( y) Sample

1999fh........................ 0.369 0.341 0.0487 Silver

1999fn ........................ 0.477 0.448 0.0434 Gold

1999gp........................ 0.026 0.029 0.0026 Gold

2000B......................... 0.019 0.018 0.0019 Gold

2000bk........................ 0.027 0.025 0.0025 Gold

2000cf ........................ 0.036 0.041 0.0034 Gold

2000cn........................ 0.023 0.023 0.0022 Gold

2000ce ........................ 0.016 0.017 0.0018 Silver

2000dk........................ 0.016 0.017 0.0018 Gold

2000dz........................ 0.500 0.524 0.0579 Gold

2000eh........................ 0.490 0.451 0.0519 Gold

2000ee ........................ 0.470 0.532 0.0563 Gold

2000eg........................ 0.540 0.354 0.0669 Gold

2000ea ........................ 0.420 0.224 0.0330 Silver

2000ec ........................ 0.470 0.539 0.0521 Gold

2000fr ......................... 0.543 0.493 0.0431 Gold

2000fa ........................ 0.022 0.022 0.0022 Gold

2001V......................... 0.016 0.015 0.0015 Gold

2001fs......................... 0.873 0.665 0.1163 Gold

2001fo ........................ 0.771 0.526 0.0412 Gold

2001hy........................ 0.811 0.761 0.1226 Gold

2001hx........................ 0.798 0.735 0.1049 Gold

2001hs ........................ 0.832 0.620 0.0827 Gold

2001hu........................ 0.882 0.709 0.0979 Gold

2001iw........................ 0.340 0.229 0.0285 Gold

2001iv ........................ 0.397 0.239 0.0330 Gold

2001iy ........................ 0.570 0.531 0.0758 Gold

2001ix ........................ 0.710 0.527 0.0777 Gold

2001jp ........................ 0.528 0.519 0.0597 Gold

2001jh ........................ 0.884 0.824 0.0721 Gold

2001jb ........................ 0.698 0.604 0.0890 Silver

2001jf ......................... 0.815 0.802 0.1034 Gold

2001jm ....................... 0.977 0.678 0.0811 Gold

2001kd........................ 0.935 0.718 0.1257 Silver

2002P ......................... 0.719 0.567 0.0679 Silver

2002ab........................ 0.422 0.395 0.0309 Silver

2002ad........................ 0.514 0.439 0.0546 Silver

2002dc........................ 0.475 0.402 0.0352 Gold

2002dd........................ 0.950 0.736 0.0882 Gold

2002fw ....................... 1.300 1.090 0.0953 Gold

2002fx ........................ 1.400 0.961 0.1992 Silver

2002hr ........................ 0.526 0.580 0.0721 Gold

2002hp........................ 1.305 0.836 0.0847 Gold

2002kc........................ 0.216 0.212 0.0176 Silver

2002kd........................ 0.735 0.529 0.0463 Gold

2002ki ........................ 1.140 0.961 0.1327 Gold

2003az ........................ 1.265 1.071 0.0987 Gold

2003ak........................ 1.551 0.996 0.1009 Gold

2003bd........................ 0.670 0.576 0.0743 Gold

2003be........................ 0.640 0.555 0.0537 Gold

2003dy........................ 1.340 0.968 0.1114 Gold

2003es ........................ 0.954 0.813 0.1161 Gold

2003eq........................ 0.839 0.712 0.0721 Gold

2003eb........................ 0.899 0.623 0.0717 Gold

2003lv ........................ 0.940 0.678 0.0624 Gold

Note.—Table 2 is also available in machine-readable form in the electronic
edition of the Astrophysical Journal.

Fig. 1.—Difference between the dimensionless coordinate distances and
those expected in a spatially flat universe with a cosmological constant and
�0 ¼ 0:3. SNe and RGs are plotted with different symbols as indicated. There
is no significant systematic offset between them in the redshift range where
there is an overlap.
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Fig. 2.—Application of our methods to the simulated (pseudo-SNAP) data set, obtained with equations (2), (6), (7), and (8), respectively, as described in the text,
using a window function with �z ¼ 0:4. The hatched regions show the recovered trends for the quantities of interest. The assumed cosmology is a standard
Friedmann-Lemaı̂tre model with �0 ¼ 0:3 and �0 ¼ 0:7, and the theoretical (noiseless) values of the measured quantities are shown as dashed lines. There is a good
correspondence (typically well within �1 �) up to z � 0:9, except in the case of f (z), where a small systematic bias is present and the formally evaluated errors
may be too small as an artifact of the numerical procedure.

Fig. 3.—Dimensionless coordinate distances y(z) to 20 RGs and the gold
sample SNe as a function of z. The smoothed values of y, along with their
1 � error bars obtained for window function widths �z ¼ 0:4 (dashed lines)
and 0.6 (dotted line and hatched error range) are also shown. Note again
that the new high-redshift SN values agree quite well with those of the high-
redshift RGs.

Fig. 4.—Derived values of the dimensionless expansion rate E(z) �
(ȧ=a)H�1

0 ¼ (dy=dz)�1 obtained with window functions of width�z ¼ 0:4 and
their 1 � error bars (dashed lines) and 0.6 (dotted line and hatched error range).
At a redshift of zero, the value of E is E0 ¼ 0:97 � 0:03. The value of E(z)
predicted in a spatially flat universe with a cosmological constant and �0 ¼ 0:3
is also shown and provides a reasonable match to the data.



fluctuations at higher redshifts, due to a sparser sampling of
data, preclude any stronger statements at this point.

Note that �DE0 ¼ PDE0=w0, so the value of p0 can be used
to determine w0 if �DE0 is known, or vise versa; for �DE0 ¼
0:7, our determination of p0 implies w0 ¼ �0:86 � 0:21, or
for w0 ¼ �1, our determination of p0 implies �DE0 ¼ 0:6�
0:15, which is fully consistent with other measurements of the
cosmological constant and our own estimate from the zT given
above.

Equation (7) is used to obtain the energy density of the
dark energy as a function of redshift, as shown in Figure 7 for
the window function width �z ¼ 0:6, assuming that the mean

mass density in nonrelativistic matter at zero redshift is �0 ¼
0:3 (implementing different choices for �0 is trivial). The
present value is f (z) ¼ 0:62 � 0:05. The data are consistent
with constant mean dark energy density out to z � 0:5 and
possibly beyond.
Equation (8) is used to study the equation-of-state param-

eter w(z) as a function of redshift, and the results are shown in
Figure 8. The present value w0 ¼ �0:9 � 0:1 is fully consis-
tent with the interpretation of the dark energy as a cosmo-
logical constant (w ¼ �1). However, the trend out to z � 0:6
is intriguing. We are uncertain at this point whether this is
simply due to a sampling-induced fluctuation (as is obviously
the case at higher redshifts), or whether there may be a real
evolution of w(z). Clearly, to invoke the standard cosmologi-
cal truism, more data are needed.
In all of our analyses, we have also considered different

samples and subsamples of data, such as including a sample of

Fig. 5.—Derived values of deceleration parameter q(z) (see eq. [2]) and
their 1 � error bars obtained with window function of width �z ¼ 0:6 ap-
plied to the RG plus gold SN sample. The universe transitions from accel-
eration to deceleration at a redshift zT � 0:4. The value of the deceleration
parameter at zero redshift is q0 ¼ �0:35 � 0:15. Note that this determination
of q(z) only depends upon the assumptions that the universe is homogenous,
isotropic, expanding, and spatially flat, and that it does not depend on any
assumptions about the nature of the dark energy or the correct theory of
gravity. The solid and dashed lines show the expected dependence in the
standard Friedmann-Lemaı̂tre models with zero curvature for two pairs of
values of �0 and �0.

Fig. 6.—Derived values of dark energy pressure p(z) (see eq. [6]), obtained
with window function of width �z ¼ 0:6. This derivation of p(z) requires a
choice of theory of gravity, and general relativity has been adopted here. The
value at zero redshift is p0 ¼ �0:6 � 0:15.

Fig. 7.—Derived values of the dark energy density fraction f (z) (see
eq. [7]), obtained with window function of width �z ¼ 0:6. This derivation of
f (z) requires a choice of theory of gravity and the value of �0 for the non-
relativistic matter; general relativity has been adopted here, and �0 ¼ 0:3 is
assumed. The value at zero redshift is 0:62 � 0:05.

Fig. 8.—Derived values of the dark energy equation-of-state parameter w(z)
(see eq. [8]), obtained with window function of width�z ¼ 0:6. This derivation
of w(z) requires a choice of theory of gravity and the value of �0; general
relativity has been adopted here, and �0 ¼ 0:3 is assumed. The value at zero
redshift isw0 ¼ �0:9 � 0:1, consistent with the cosmological-constant models.
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just the silver and gold SNe (Riess et al. 2004), the gold SNe
alone, and the sample of RGs plus silver and gold SNe; the
results are effectively the same as those shown here. However,
we note that since the SNe dominate the joint sample, all of
our results are just as vulnerable to any hidden systematic
errors that may be present in the data as the more traditional
analysis presented by Riess et al.

4. SUMMARY

We have expanded and used the method developed in
Paper I on a new sample of coordinate distances to SNe and
RGs to evaluate the trends of the expansion rate E(z), de-
celeration parameter q(z), pressure of the dark energy p(z), its
fractional energy density f (z), and its equation-of-state pa-
rameter w(z) as functions of redshift. We make an assumption
that the FRW metric is valid, and we make the observation-
ally supported assumption of the spatially flat universe. This
enables us to derive the trends for E(z) and q(z), which are
otherwise model-independent, and thus can help discriminate
at least some proposed models of the dark energy. By as-
suming that the standard general relativity is the correct the-
ory of gravity on cosmological scales, we can also produce
trends of p(z), f (z), and w(z) without any additional assump-
tions about the nature of dark energy. These trends may also
be used to discriminate between different physical models of
the dark energy.

We find that the data are generally but perhaps not entirely
consistent with the standard Friedmann-Lemaı̂tre concordance
cosmology with w ¼ �1, �0 ¼ 0:3, and �0 ¼ 0:7, although
somewhat lower values of �0 may be preferred.

We confirm the result Paper I and that of Riess et al. (2004)
that there is a clear increase in q(z) with redshift, with the

present value q0 ¼ 0:35 � 0:1 and the transition from decel-
erating to accelerating universe at zT � 0:4.

Functions p(z), f (z), and w(z) are consistent with being
constant at least out to z � 0:5 and possibly beyond; the
existing data are inadequate to constrain their evolution be-
yond z � 0:5, but there are some hints of increase with redshift
for f (z) and w(z).

At lower redshifts, the data are consistent with cosmological-
constant models. We obtain for the present values w0 ¼ �0:9�
0:1 and p0 ¼ �0:6 � 0:15 (=��0 for the Friedmann-Lemaı̂tre
models).

Even with the currently available data, these results repre-
sent new observational constraints for models of the dark
energy. We believe that this methodology will prove increas-
ingly useful in determining the nature and evolution of the
dark energy as better and more extensive data sets become
available. Clearly, this method works best when redshift space
is densely sampled. Our current results suggest that redshift
space is sufficiently sampled at redshifts less than about 0.4.
More accurate results could be obtained by increasing the
sampling of data points with redshifts greater than 0.4, par-
ticularly in the redshift range from 0.4 to 1.5.
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