Direct Discovery of High Utility Itemsets without Candidate Generation

Junqgiang Liu
Information & Electronic Engineering
Zhejiang Gongshang University
Hangzhou, China
Email: jjliu@alumni.sfu.ca

Abstract—Utility mining emerged recently to address the
limitation of frequent itemset mining by introducing interest-
ingness measures that reflect both the statistical significance
and the user’s expectation. Among utility mining problems,
utility mining with the itemset share framework is a hard one
as no anti-monotone property holds with the interestingness
measure. The state-of-the-art works on this problem all employ
a two-phase, candidate generation approach, which suffers
from the scalability issue due to the huge number of candidates.

This paper proposes a high utility itemset growth approach
that works in a single phase without generating candidates. Our
basic approach is to enumerate itemsets by prefix extensions, to
prune search space by utility upper bounding, and to maintain
original utility information in the mining process by a novel
data structure. Such a data structure enables us to compute a
tight bound for powerful pruning and to directly identify high
utility itemsets in an efficient and scalable way. We further
enhance the efficiency significantly by introducing recursive
irrelevant item filtering with sparse data, and a lookahead
strategy with dense data. Extensive experiments on sparse
and dense, synthetic and real data suggest that our algorithm
outperforms the state-of-the-art algorithms over one order of
magnitude.

Keywords-Utility mining; high utility itemsets; frequent item-
sets; pattern mining

I. INTRODUCTION

Data mining is a process of discovering interesting pat-
terns, such as itemsets, subsequences, associations, or clas-
sifiers, where interestingness measures [8][16][19] play an
important role. With frequent itemset mining [2], an itemset
is regarded as interesting if its occurrence frequency exceeds
a user-specified threshold. Frequent itemset mining has been
a research area for decades with tremendous progress having
been made, among which are Apriori [2] and FP-growth
[9]. Both Apriori and FP-growth employ an anti-monotone
property to prune search space: A superset of an infrequent
itemset is also infrequent.

However, a user’s interest may relate to many factors
that can not be expressed in terms of the occurrence fre-
quency. Utility mining [19] emerged recently to address
the limitation of frequent itemset mining by considering
the user’s expectation or goal as well as the raw data,
which can be further categorized into utility mining with the
itemset share framework [10][18], weighted itemset mining

Ke Wang
Computing Science
Simon Fraser University
Burnaby, Canada
Email: wangk@cs.sfu.ca

Benjamin Fung
Information Systems Engineering
Concordia University
Montreal, Canada
Email: fung@ciise.concordia.ca

Table 1
DATABASE D AND EXTERNAL UTILITY TABLE XUT

(a) D: shopping transactions (b) XUT: prices

aNtem item | eu
i alblc|d]le|]f] g 2 I
t |1 1 1 b 3

L 622 5 ¢ >

d 2

ty I {11 6 5 B 7

ty 301 3 f 1

G |21 2 2 . T

[5][12][14], and objective-oriented utility-based association
mining [15][6]. Utility mining with the itemset share frame-
work can be explained by the following example.

Running example: Consider a supermarket manager who
wants to identify every combination of products with high
sales revenue, i.e., high utility itemset. An itemset has high
utility if the revenue on the itemset in the transactions that
contain the itemset is no less than an expected level. Given
shopping transactions and price per product in Table I, the
revenue of {a,b} is 27 as customers who buy {a,b} spend
a total of 27 on {a,b}, the revenue of {ab,c} is 31, the
revenue of {a,b,c,d} is 13, and so on. Suppose the expected
revenue is 30, {a,b,c} is a high utility itemset, but {a,b} and
{a,b,c,d} are not. Clearly, the anti-monotone property does
not hold with the utilities (revenues) of itemsets.

Utility mining with the itemset share framework is more
challenging than frequent itemset mining, due to the lack of
the anti-monotone property with the interestingness measure,
while it is not the case with the other two categories of utility
mining [19]. Subsequently, the existing algorithms with
the itemset share framework [13][11][7][3][17] all employ
an anti-monotone property with TWU, namely transaction
weighted utilization. TWU of an itemset is the sum of the
transaction utilities of all the transactions containing the
itemset. For the running example, TWU of {ab} is the
sum of the transaction utilities of to ~ ts5, i.e., 88, TWU
of {a,b,c} is that of ¢2 ~ ts, i.e., 57, and TWU of {a,b,c,d}
is that of ¢3, i.e., 30. Obviously, an itemset with a high TWU
may not be a high utility itemset.

Consequently, all the existing algorithms work in two
phases: run an Apriori [2] based or FP-growth [9] based
algorithm to find high TWU itemsets, i.e., candidates of
high utility itemsets, in the first phase, and scans the raw
data one more time to identify high utility itemsets from the
candidates in the second phase.

The challenge is that the number of candidates can be
huge, which is the scalability and efficiency bottleneck. Al-
though FP-growth based utility mining algorithms [7][3][17]
achieve a better performance than Apriori based utility
mining algorithms [13][11], which is similar to the situation
with frequent itemset mining, the existing FP-growth based
algorithms [7][3][17] do not address this challenge when
there are long transactions in raw data or the minimum utility
threshold is small.

To address the challenge, this paper proposes a novel al-
gorithm for utility mining with the itemset share framework,
which directly discovers high utility itemsets in a single
phase without generating candidates. The major contribu-
tions are as follows:

e A high utility itemset growth approach is proposed,
which enumerates an itemset as a prefix extension of
another itemset with powerful pruning. It efficiently
computes the utility of each enumerated itemset and an
upper bound on the utilities of prefix extensions of the
itemset in order to directly identify high utility itemsets
and to prune the search space. Our utility upper bound
is much tighter than TWU [13], and is further tightened
by recursively filtering out items irrelevant in growing
high utility itemsets with sparse data.

« A lookahead strategy is incorporated with our approach,
which tries to identify high utility itemsets earlier
without enumeration. Such a strategy is based on a
closure property and a singleton property, and enhances
the efficiency in dealing with dense data.

« A novel data structure is proposed to represent orig-
inal utility information in raw data, which enables
efficient computation of utilities and upper bounds
for enumerated itemsets. It targets the root cause of
candidate generation with the existing FP-growth based
algorithms [3][7][17]. Moreover, it uses less memory
space than tree structures used by these algorithms.

The rest of the paper is organized as follows. Section II

surveys the related works. Section III defines the problem
and introduces our approach. Section IV proposes our prun-
ing techniques. Section V discusses how to maintain utility
information for efficient computation. Section VI presents
our algorithm. Section VII evaluates our algorithm and
individual techniques. Section VIII concludes the paper.

II. RELATED WORKS

Yao et al. [18] and Hilderman et al. [10] proposed the
itemset share framework that takes into account weights on
both attributes and attribute-value pairs. This paper falls into

the same category where no anti-monotone property holds
with the interestingness measure.

All existing high utility itemset algorithms with the item-
set share framework employ the anti-monotone property
with TWU, generate candidates, and work in two phases, ex-
cept that Yao et al. [18] presented an upper bound property,
i.e., the utility of a size-k itemset is no more than the average
utility of its size £ — 1 subsets, which is however looser than
the TWU property. They also proposed a prediction method
that however may miss some high utility itemsets.

Liu et al. [13] proposed the anti-monotone property with
TWU (transaction weighted utilization), and developed the
TwoPhase algorithm by adapting Apriori [2] to generate
a complete set of candidates with high TWUs in the first
phase. Li et al. [11] improved the level-wise, multi-pass
candidate generation process in the first phase by discarding
isolated items to reduce the number of candidates and to
shrink the database scanned in each pass.

Erwin et al. [7] proposed the CTU-PROL algorithm that
uses the TWU property with FP-growth [9]. Ahmed et al.
[3] proposed the IHUPy ¢y algorithm that also adapts FP-
growth [9] by using a tree to maintain the TWU informa-
tion of transactions. The latest, FP-growth based algorithm,
UPy pa, was proposed by Tseng et al. [17], which uses an
UP-tree to maintain the revised TWU information, improves
the TWU property based pruning, and thus generates less
candidates in the first phase.

This paper proposes a new approach that mines high util-
ity itemsets in a single phase without candidate generation,
which fundamentally differs from and addresses the effi-
ciency and scalability challenge with [18][13][11][7][3][17].

III. UTILITY MINING PROBLEM AND OUR APPROACH
A. Utility Mining with Itemset Share Framework

Let I be the universe of items. Let D be a database of
transactions {¢1,---,t,}, where each transaction ¢; C I.
Each item in a transaction is assigned a non-zero share. Each
distinct item has a weight independent of any transaction,
given by a table XUT'. The research problem is to discover
all high utility itemsets as formally defined as follows.

DEFINITION /: The utility of an item ¢ in a transaction ¢,
denoted (4, t), is a function f of the share of 7 in ¢, du(i,t),
and the weight of i independent of any transaction, ew(%).
That is, u(i,t) = f(iu(i, t), eu(i)). We also call iu(i,t) the
internal utility of ¢ in ¢, and eu(i) the external utility of . We
assume that the range of f is non-negative, i.e., u(i,t) > 0.

Although the utility function f may not be non-negative
in an application, it is generally agreed that we can trans-
form the utility function f into a non-negative function as
discussed by Yao et al. [19].

DEFINITION 2: (a) A transaction ¢ contains an itemset X
if X is a subset of ¢, i.e., X C ¢, which means that every
item ¢ in X has a non-zero share in t, i.e., iu(i,t) # 0.
(b) The transaction set of an itemset X, denoted T'S(X),

is the set of transactions that contain X. The number of
transactions in 7°S(X) is the support of X, denoted s(X).

For the running example, the database D and the external
utility table XUT are shown in Table I, and the utility func-
tion f is instantiated as the product of iu(i,t) and eu(i). For
transaction ¢; = {a,c,e}, we have iu(a, t1) = 1,iu(c,t1) = 1,
iu(e,t1) = 1, eu(a) = 1,eu(c) = 5, and eu(e) = 2. Thus,
u(a, t1) =1, u(c,t1) =5, and u(e, t1) = 2.

DEFINITION 3: (a) For an itemset X contained in a
transaction ¢, the utility of X in ¢, denoted u(X,t), is the
sum of the utility of every constituent item of X in ¢, i.e.,

u(X,t) = Z u(i,t).

iEXCt

(b) The utility of X, denoted u(X), is the sum of the utility
of X in every transaction containing X, i.e.,

u(X) = Z u(X,t) = Z Zu(i,t).

teTS(X) teTS(X)i€X

DEFINITION 4: An itemset X is a high utility itemset,
abbreviated as HUP, if the utility of X is no less than a user-
defined minimum utility threshold, denoted menUtil. High
utility itemset mining is to discover the set, HU Pset, of all
high utility itemsets from a database D given an external
utility table XUT and minUtil, i.e., HUPset = {X|X C
I, u(X) > minUtil}

For the running example, minUt:l is set to 30, and we
have T'S({a,c}) = {t1,t2,t3}, s({ac}) = 3, u({ac}) =
u({a,c},t1) + u({ac},t2) + u({ac}t,ts) = wu(a,t1) +
’U,(C,tl) + u(a, lfg) + ’U,(C,tg) + u(a, f,g) + ’U,(C,tg) = 28.
Thus, {a,c} is not a high utility itemset while {a,b,c} is
as u({a,b,c}) = 31. Consequently, HU Pset is { {a,b,c},
{a,b,d}, {a.d,e}, {a,b,d,e}, {b.d,e}, {de}, {ab,c,de,g} }.

B. High Utility Itemset Growth Approach

We propose a high utility itemset growth approach. The
basic idea is to enumerate an itemset as a prefix extension
of another itemset, to determine if the enumerated itemset
is a high utility itemset by efficiently computing its utility,
and to prune the prefix extensions of the enumerated itemset
if an upper bound on the utilities of the prefix extensions is
less than minUtil.

In order to avoid repetitive enumeration of itemsets, an
ordering of items is imposed, with which an itemset can
also be represented as an ordered sequence. For brevity, we
use the set notation, e.g., {a,b,c}, in place of the sequence
notation, e.g., <a,b,c>.

DEFINITION 5: The imposed ordering of items, denoted
), is a pre-determined, ordered sequence of all the items
in I. Accordingly, for items 7 and j, ¢ < j denotes that
i is listed before j; ¢ < X denotes that ¢ < j for every
7€ X,and W < X denotes that ¢+ < X for every i € W,
in accordance with €.

3a S5a 6b 9a 10.b 12.c 17.a 18.b 20.c 24.d

7.a 11.a 13.a 14.b 19.a 2l.a 22.b

15.a 23.a 127.a

Figure 1. Prefix extension tree where each node is numbered in the order
of depth-first search and is referred to by such a number.

DEFINITION 6: Given an ordering (2, an itemset Y is a
prefix extension of an itemset X, if X is a suffix of Y, i.e.,
if Y =W UX for some W with W < X in Q.

Our basic approach can be thought of as growing or
searching a prefix extension tree in a depth-first manner
[1][4]. On the prefix extension tree, the root is labelled by
no item, each node N other than the root is labelled by
an item, denoted item(N), the path from N to the root
represents an itemset, denoted pat(N), and the child nodes
of N are labelled by items listed before item(N) in the
imposed ordering (2. Consequently, any prefix extension of
pat(N) is represented by a node in the subtree rooted at N.
Note that only the branch currently searched is materialized
in memory.

For the running example, Q = {ab,c,d,e,f,g}, and the
prefix extension tree is shown in Figure 1 where {} is
enumerated by the root, i.e., Node 0, {a} and {b} are
enumerated as prefix extensions of {} by the children of
the root, i.e., Node 1 and Node 2 respectively, {a,b} is
enumerated as a prefix extension of {b} by Node 3, and
so on. The whole tree is made of 27 = 128 nodes.

The construction of our prefix extension tree differs from
the regular set enumeration tree employed by [?][1][9][4]
in that our prefix extension tree maintains a property: An
itemset is always enumerated before its supersets in a depth-
first search, e.g., {a} and {b} before {a,b}, and {a,b} and
{c} before {a,b,c}, as shown in Figure 1. The regular set
enumeration tree does not observe such a property, e.g.,
{a,b} before {b}, and {a,b,c} before{b,c} and {c}.

Most importantly, the construction of our prefix extension
tree has two benefits. First, it enables the efficient and
scalable computation of the transaction set supporting each
enumerated itemset as in Section V. Second, it increases the
likelihood for strong pruning proposed in the next section.

IV. PRUNING ITEMSETS IN ENUMERATION PROCESS

This section proposes strong pruning techniques, which
lays the theoretical foundation for our approach and is
critical to the efficiency.

A. Pruning by Utility Upper Bounding

We estimate an upper bound on utilities of prefix ex-
tensions of an itemset X based on original utility infor-

mation. Such a bound is tighter than bounds based on
TWU [13][11][7]1[3][17]. If the upper bound is less than
minUtil, all the prefix extensions of X are not high utility
itemsets and can be pruned without enumeration.

DEFINITION 7: Given an ordering (2, an itemset Y is the
full prefix extension of an itemset X w.r.t. a transaction ¢
containing X, denoted Y = fpe(X,t), if Y is a prefix
extension of X derived by adding exactly all the items in
t that are listed before X in €, ie., if Y = W U X with
W={ilicthi<XANX Ct}.

For the running example, the full prefix extensions of {c}
w.r.t. t1 and to are fpe({c},t1) = {a,c} and fpe({c},t2) =
{a,b,c} respectively.

THEOREM [: (Basic upper bounds) For an itemset X, the
sum of the utility of the full prefix extension of X w.r.t. each
transaction in 7°S(X), denoted uBp.(X), is no less than
the utility of any prefix extension Y of X, that is,

uBppe(X) = > u(fpe(X,t),t) > u(Y) (1)
teTS(X)

Proof: The premise, Y is a prefix extension of X,
means X C Y, and thus has two implications. First,
TS(Y) C TS(X). Second, Vt € TS(Y), Y C fpe(X,t).
As the utility function is non-negative, we have

Upre(X) = Z u(fpe(X,t),t)

teTS(X)

> 3 u(fpe(X, 002 S u(¥it) = u(y)
teTS(Y) teTS(Y)
|

For example, when enumerating {} by Node 0 in Figure 1,
we get T'S({a}) = D and uByp.({a}) = u({a}) = 15 <
minUtil, TS({b}) = {t2,t3,t4,t5} and uByp.({b}) =
u({ab}) = 27 < minUtil, TS({c}) = {t1,t2,t3} and
uBppe({c}) = u({ac}, t1) + u({ab.c}, t2) + u({ab.c}, t3)
= 37 > minUtil, and so on. Thus, we prune Nodes 1 and
2 (with Node 3), and create Nodes 4, 8, 16, 32, and 64.

Clearly, the tighter the upper bound, the stronger the
pruning. An observation is that many items never occur in
high utility itemsets when raw data are sparse. It is possible
to exclude them to tighten the upper bound.

COROLLARY 2: (Relevance of an item) For an itemset
X and an item ¢ < X, the sum of the utility of the full
prefix extension of X w.r.t. every transaction in T'S({i} UX),
denoted uBjtem (4, X), is no less than the utility of a prefix
extension Y of X that contains 7, that is,

uBitem (1, X) = Z u(fpe(X,t),t) > u(¥) (2)
teTS({i}uX)

Proof: The extra premise in addition to Theorem 1 is
that ¢ C Y, which results in that {i} U X C Y. In the light
of Theorem 1, we get this corollary. [|

Corollary 2 states that an item ¢ < X is irrelevant
to any high utility itemset that is a prefix extension of

X if uBitem(i,X) < minUtil, and can be ignored in
enumerating prefix extensions of X.

For example, when enumerating {d,e} by Node 24 in
Figure 1, we have uBjtem(a, {d,e}) = uBitem(b, {de}) =
u({ab,c.d,e}, ts) + u({ab,d,e}, ts) = 45 > minUtil, and
uBitem (¢, {d,e}) = u({ab,c,de}, t3) = 25 < minUtil.
Thus, items a and b are relevant, and item c is irrelevant in
growing prefix extensions of {d,e}.

Furthermore, we can apply Corollary 2 recursively as
excluding an irrelevant item may decrease uBjen, and
uBpe of other items.

COROLLARY 3: (Tighter upper bounds) For an itemset X
and its prefix extension Y that is relevant in growing high
utility itemsets, a tighter upper bound on the utility of Y is

> ulfpe (X, 6),t) > u(Y) (3

teTS(X)

B, (X) =

where fpe'(X,t) is derived from fpe(X,t) by excluding all
irrelevant items ¢ < X by Corollary 2.

For example, as item c is irrelevant in growing prefix
extensions of {d,e} enumerated by Node 24 in Figure 1,
we compute uBjten, the second time by excluding item
¢, which yields uBijtem(a, {d,e}) = uBjtem (b, {d,e}) =
u({a,b.d,e},t3) + u({a,b,de},t4) = 40. The bounds get
tighter though the set of relevant items does not shrink.

B. Lookahead with Closure and Singleton Properties

In addition to pruning by upper bounding, we look ahead
to the supersets of the itemset currently enumerated in order
to identify high utility itemsets earlier without enumeration,
which is made possible with the construction of the prefix
extension tree. Concretely, our lookahead strategy covers the
following two cases.

Case 1: Similar to closed frequent itemsets [20], it is
possible that every prefix extension (superset) of an itemset
has a utility over minUtil. Identifying such closed high
utility itemsets without enumeration improves the efficiency.

THEOREM 4: (Closure property) For an itemset X and a
set W of items with X "W = 0, if s({i} UX) = s(X) and
u({i} U X) > minUtil for all ¢ € W, then

w(SUX) > minUtil,¥S CW A S # (. 4)

For example, when enumerating {d,e} by Node 24 in
Figure 1, we get s({a} U {d,e}) = s({b} U {d,e}) =
s({d,e}) = 2, and u({a} U {d,e}) = 34 > minUtil and
u({b} U {d,e}) = 36 > minUtil while items a and b are
relevant items and item c is not. Therefore, we know that all
the prefix extensions of {d,e} with relevant items a and b,
enumerated by Nodes 24-27, are high utility itemsets without
creating the rest of the subtree rooted at Node 24.

Case 2: A supplement to the closure property is that
although many items are relevant to prefix extensions of
an itemset, there is only one high utility itemset among

5 u uBi.m"qu.W

13196 | 13
15[88 | 27
20) 65 | 37
16| 61 | 36
20| 58 | 53
7138138
513030

N

gG o =mom an TR
Ll L S ST

Figure 2. T'S.qu1({}): CAUL representing transaction set 7°S({})

all the prefix extensions. Identifying such a case without
enumeration also enhances the efficiency.

THEOREM 5: (Singleton property) For an itemset X and
a set W of items with X N W =0, if s({i} U X) = s(X)
for all 7 € W and

i < S . .
minUtil < u(WUX) < mmUtzl—i—;reu% Z u({j},t)
teTS(X)

then
u(SUX) <minUtil,¥S C W. 5)

For example, when enumerating {g} by Node 64 in
Figure 1, we know items a, b, c, d, and e are relevant,
and s({a} U {g}) = s({b} U {g}) = s({c} U{eg}) =
s({d} U {g})) = s({e} U{g}) = s({g}) = 1, and
u({a,b,c,d,e}U{g}) = 30 = minUtil. Clearly, the condition
of Theorem 5 holds. Thus, we know that {a,b,c,d,e,g} is a
high utility itemset and all its proper subsets are not without
creating the rest of the subtree rooted at Node 64.

V. ENABLING TECHNIQUE

What facilitates our approach is a novel yet simple
structure, CAUL, namely a Chain of Accurate Utility Lists.
CAUL maintains the utility information in the transaction
set T'S(X) of each enumerated itemset X, denoted as
T'Scqu(X), by utility lists and a summary table.

For each transaction ¢ € T'S(X), all relevant items in ¢
with their utilities are stored in a utility list. The summary
table maintains an entry for each distinct item ¢ relevant in
growing prefix extensions of X, which consists of 4 fields:

e s for s({i} UX), i.e., the support of {i} U X;

o u for u({i} U X), i.e., the utility of {i} U X;

o uBjtem for uBjtem (i, X) by Corollary 2;

o uBjpe for uBgpe({i}UX) by Theorem 1, Corollary 3.

For the running example, Figure 2 shows T'S;q.,;({}) for
the empty itemset {} represented by Node 0 in Figures 1.
The first list represents ¢; with its first element storing item
a and u(a,t;) = 1, its second element storing item ¢ and
u(c,t1) = 5, and so on. The occurrences of item a in all
the five lists are threaded by the chain starting from the first
entry of the summary table. The first summary entry also
stores s({a}), u({a}), uBitem(a,{}), and uBype({a}).

CAUL keeps original utility information for each trans-
action, which targets the root cause with the existing FP-
growth based algorithms [3][7][17], that is, they all employ

Algorithm 1 d>HUP(D, XUT. minUtil)

create the root of prefix extension tree

1

2 build T'S.qu({}) with € in descending order of uBjem
3 N « the root

4 W — {i|li < pat(N) A uBjtem(i, pat(N)) > minUtil}
5 ifYie W s(pat(N)) = s({i} U pat(N)) »

u({i} U pat(N)) = minUtil
then output each non-empty subset of WU pat(V), goto step 12
6 A «— minimum of u({j}Upat(N))—u(pat(N)).¥j €W
7 if Vi e W, s(pat(N)) = s({i} Upat(N)) /
minUtil < u(W U pat(N)) < minUtil + A,
then output W U pat(N'), goto step 12
8 foreach item i € IV do
9 if u({i}Upat(N)) > minUtil, then output {i}Upat(N)
10 if uBjpe({i} U pat(N)) = minUtil, then create a child for i
11 end foreach
12 while N is not null and has no child do
13 P « parent(N), delete N, N — P
14 end while
15 if N is null, then stop, else P—N K N—firstChild(N)
16 build TS (pat(N)) by projection, goto Step 4

a tree structure to maintain the TWU information instead,
and thus can only determine the candidacy of an itemset but
not the actual utility of the itemset in the first phase.

More importantly, when depth-first searching the prefix
extension tree, for any node N and its parent node P,
T'Scoul(pat(N)) is embedded in and can be derived from
T'Scaul(pat(P)) by a pseudo projection.

The detail can be found in the full version of the paper.

VI. UTILITY MINING ALGORITHM

This section presents our algorithm, d?HUP, namely Di-
rect Discovery of High Utility Patterns.

d?HUP searches the prefix extension tree in a depth-
first manner. When visiting a node NN, it first computes
utilities and upper bounds for the children of N by building
a pseudo CAUL, make a materialized copy of CAUL if a
space-time tradeoff is beneficial, outputs each child whose
utility is no less than minUtil as a high utility itemset,
depth-first searches each child whose upper bound is no less
than minUtil, and then purges the subtree rooted at N and
continues with the next sibling of N.

The pseudo code of dHUP is shown in Algorithm 1.

First, d2HUP creates the root of prefix extension tree
(line 1), builds T'S¢qui({}) by scanning the database D and
the external utility table XUT to compute s({i}), u({i}),
UBitem (4, {}), and uBsp({i}) for each item ¢ (line 2), and
starts the depth-first search from the root node (line 3).

Second, d2HUP makes the set W of relevant items by
Corollary 2 for the node N currently being visited (line 4).
If the closure property holds, d2HUP outputs every prefix
extension of pat(N) with relevant items as a high utility
itemset (line 5). If the singleton property holds, d?HUP
outputs the union of all the relevant items and pat(N) as a
high utility itemset (lines 6 - 7).

Third, for each relevant item i € W, d2HUP outputs
{i} Upat(N) as a high utility itemset if u({i} Upat(N)) >
minUtil, and creates a child node C' of N with item(C') «—
¢ and pat(C) «— {i} Upat(N), if uBype({i} U pat(N)) >
minUtil (lines 8 - 11).

Fourth, d?HUP continues by purging the branch that has
been searched and making N to represent the next node
in the depth-first order (lines 12 - 15), and by computing
s({jYUpat(N)), u({j} Upat(N)), uBitem(j, pat(N)), and
uBfpe({j} Upat(N)) for each item j in T'Scqui({pat(N)})
by projection from T'Scqyi(pat(P)) (line 16).

For the running example, d?HUP only enumerates the
nodes 0, 4, 6, 8, 10, 16, 24, 32, and 64 in Figure 1 to find
all the high utility itemsets.

VII. EXPERIMENTAL EVALUATION

We evaluate the efficiency and scalability of our d?HUP
algorithm by comparing with the state-of-the-art algorithms,
TwoPhase [13], IHUPrw [3], and UPypg [17].

Extensive experiments on sparse and dense, synthetic and
real data suggest that our d?HUP is up to 1 order, up to
2 orders, and up to 3 orders of magnitude more efficient
than UP, b, IHUPS;;;, and TwoPhase respectively. This
is because each latter algorithm generates a large number
of candidates, its first phase already takes more time than
d2HUP, and it needs a second phase while d2HUP does not.

The detail can be found in the full version of the paper.

VIII. CONCLUSION

This paper proposes a new algorithm, d?HUP, for utility
mining with the itemset share framework, which directly
discovers high utility itemsets without candidate generation.
d?HUP outperforms the state-of-the-art algorithms over one
order of magnitude. The novelty lies in the following.

e A linear data structure, CAUL, is proposed, which
targets the root cause of candidate generation with the
existing approaches, and is our enabling technique.

o A high utility itemset growth approach is presented,
which integrates an itemset enumeration strategy by
prefix extensions, and strong pruning based on utility
upper bounding.

o The efficiency of our approach is enhanced significantly
by recursive irrelevant item filtering with sparse data,
and by the lookahead strategy with dense data.

ACKNOWLEDGEMENTS

This work was supported in part by the National Nat-
ural Science Foundation of China (61272306), the Zhe-
jiang Provincial Natural Science Foundation of China
(LY12F02024), and the Zhejiang Provincial Human Re-
sources and Social Security Bureau of China (2011-443-3).

REFERENCES

[1] R. Agarwal, C. Aggarwal, V. Prasad. Depth first generation of
long patterns. In SIGKDD, pp.108-118, 2000.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In VLDB, pp.487-499, 1994.

[3] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, Y.-K. Lee. Efficient
tree structures for high utility pattern mining in incremental
databases. IEEE TKDE, 21(12):1708-1721, 2009.

[4] D. Burdick, M. Calimlim, J. Gehrke. MAFIA: A maximal
frequent itemset algorithm for transactional databases. In
ICDE, pp. 443-452, 2001.

[5] C. H. Cai, A. W. C. Fu, C. H. Cheng, W. W. Kwong. Mining
association rules with weighted items. In Int’l Database Engi-
neering & Applications Symposium. IEEE, pp.68-77, 1998.

[6] R. Chan, Q. Yang, Y. Shen. Mining high utility itemsets. In
ICDM, pp.19-26. IEEE, 2003.

[7]1 A. Erwin, R. P. Gopalan, N. R. Achuthan. Efficient mining of
high utility itemsets from large datasets. In PAKDD, 2008.

[8] L. Geng and H. J. Hamilton. Interestingness measures for data
mining. ACM Computing Surveys, 38(3):9, 2006.

[9] J. Han, J. Pei, Y. Yin. Mining frequent patterns without
candidate generation. In SIGMOD, pp.1-12. ACM, 2000.

[10] R. J. Hilderman, C. L. Carter, H. J. Hamilton, N. Cercone.
Mining market basket data using share measures and charac-
terized itemsets. In PAKDD, pp.72-86, 1998.

[11] Y.-C. Li, J.-S. Yeh, C.-C. Chang. Isolated items discarding
strategy for discovering high utility itemsets. Data & Knowl-
edge Engineering, 64(1):198-217, 2008.

[12] T. Y. Lin, Y. Y. Yao, E. Louie. Value added association rules.
In PAKDD, pp.328-333, 2002.

[13] Y. Liu, W. Liao, A. Choudhary. A fast high utility itemsets
mining algorithm. In Utility-Based Data Mining in KDD, 2005.

[14] S. Lu, H. Hu, F. Li. Mining weighted association rules.
Intelligent Data Analysis, 5(3):211-225, 2001.

[15] Y. Shen, Q. Yang, Z. Zhang. Objective-oriented utility-based
association mining. In ICDM, pp.426-433, 2002.

[16] P. N. Tan, V. Kumar, J. Srivastava. Selecting the right ob-
Jective measure for association analysis. Information Systems,
29(4):293-313, 2004.

[17] V. S. Tseng, C.-W. Wu, B.-E. Shie, P. S. Yu. Up-growth: An
efficient algorithm for high utility itemset mining. In SIGKDD,
pp.253-262. ACM, 2010.

[18] H. Yao, H. J. Hamilton, C. J. Butz. A foundational approach
to mining itemset utilities from databases. In SDM, 2004.

[19] H. Yao, H. J. Hamilton, L. Geng. A unified framework for
utility-based measures for mining itemsets. In Utility-Based
Data Mining in SIGKDD, pp.28-37. ACM, 2006.

[20] M. J. Zaki and C. Hsiao. Charm: An efficient algorithm for
closed itemset mining. In SDM, pp.457-473. SIAM, 2002.

