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Direct electrochemical oxidation of alcohols with
hydrogen evolution in continuous-flow reactor
Dan Wang1, Pan Wang1, Shengchun Wang1, Yi-Hung Chen 1, Heng Zhang1 & Aiwen Lei1

Alcohol oxidation reactions are widely used for the preparation of aldehydes and ketones.

The electrolysis of alcohols to carbonyl compounds have been underutilized owing to low

efficiency. Herein, we report an electrochemical oxidation of various alcohols in a continuous-

flow reactor without external oxidants, base or mediators. The robust electrochemical oxi-

dation is performed for a variety of alcohols with good functional group tolerance, high

efficiency and atom economy, whereas mechanistic studies support the benzylic radical

intermediate formation and hydrogen evolution. The electrochemical oxidation proves viable

on diols with excellent levels of selectivity for the benzylic position.
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A
ldehydes or ketones are not only essential functionalities
of various biologically active compounds, but also
important reagents in modern organic synthesis1,2. In

fact, the high frequently used of alcohol oxidations to carbonyl
compounds leading to a ranking of 3rd of strongly prefer better
reagents for pharmaceutical manufacturers3. So, developing
oxidation of alcohols under environmentally benign and eco-
nomic conditions is highly demanded4–7 for pharmaceutical and
chemical industries. Stoichiometric oxidants such as chromium,
manganese, and ruthenium salts8–15 are relatively not environ-
mental friendly (Fig. 1a). Molecular oxygen, air, or hydrogen
peroxide in combination with appropriate transition metal cat-
alysts (Cu, Ru, Pd, Au, Fe, V, or Ir)16–22 represent superior
alternatives according to the principles of green and sustainable
chemistry. However, the oxidation remains challenging for a
broad group of alcohols. In contrast, oxidant-free alcohol oxi-
dation with hydrogen evolution is apparently an ideal process to
reach the higher atom economy (Fig. 1b). This concept has been
achieved with transition metal catalysis23–30, which normally
involves expensive transition metals, sophisticated ligands, and
generally requires high reaction temperatures. On the other
hand, alcohol oxidation with hydrogen release via
photocatalysis31,32 or electrocatalysis33–40 have the merit of
running reactions under mild conditions.

Direct electrolysis of alcohols to carbonyl compounds is an
idealized goal, which produces only hydrogen without product
contamination. The direct electro-oxidation of alcohol can be
tracked back to the pioneering work of Lund and Mayeda
et al.41–43 using undivided electrolysis cells. However, prior
attempts gave only the desired aldehydes or ketones in low
selectivity and efficiency. We envisioned that electrolysis in a
continuous-flow set-up would be a sustainable method to replace

stoichiometric oxidants and improve both energy efficiency and
productivity. Large surface-to-volume ratio, enhanced mass
transfer, operation at quasi-isothermal condition, and lower
resistances are the advantages of using flow electrochemistry set-
up, which often make it superior than batch mode44–46. In
addition, the electrode surface can be regenerated efficiently to
avoid low conductivity for the transformations with gas evolution.
Furthermore, flow cells are easy to scale up and employed in
industry47–49. Recently, electrochemical flow cells have been
successfully used in a variety of organic transformations50–64.
Herein, we report the direct electrolysis of alcohols to afford the
aldehydes or ketones with high efficiency without any mediators
or catalysts under neutral conditions by using a flow reactor
(Fig. 1c and Supplementary Fig. 1).

Results
Investigation of reaction conditions. Our studies commenced
with benzyl alcohol (1aa), which was subjected to a batch con-
dition in an undivided cell (Table 1, entry 1), yielding 37% of
benzaldehyde (2aa) at 100 mA constant current electrolysis for 1
h (Supplementary Fig. 2). In order to improve the solubility of
the starting material, CH3CN and water (1:1) were used as sol-
vents in the continuous-flow set-up, and benzaldehyde (2aa) was
isolated in 93% yield under the same current (10 mA, 10 h,
Table 1, entry 2). Encouraged by these results, we investigated
the magnitude of current from 10 mA to 1000 mA (entries 2–8).
When 50 mA was applied for the oxidation, 92% of benzaldehyde
was isolated in 2 h (Table 1, entry 3). Among a set of studies, 800
mA enabled effective oxidation up to 99% yield in 10 min
(Table 1, entry 7). However, when the current was increased to
1000 mA, 2aa was provided in lower yield (81%, entry 8). The
flow rate was another parameter, which was evaluated at the
current of 800 mA. Accordingly, 0.10 mL s−1 was the optimum
flow rate (Table 1, entries 9–11). Then the reaction conditions of
800 mA, 10 min and 0.10 mL s−1 were employed for the further
researches.

At the flow rate of 0.10 mL s−1, the solution passed through the
flow cell multiple times by using peristaltic pump. We think that
it would be possible to achieve full conversion by employing large
current and small flow rate. By using this strategy, the 2 mmol
benzyl alcohol in 30 mL mixed solvent could be quantitatively
transformed to benzyaldehyde at 800 mA and 0.02 mL s−1 in
25 min (Fig. 2a and Supplementary Fig. 3). Furthermore, the
reaction scale can be extended to 100.0 mmol at the same current
and the flow rate still in quantitative yield (Fig. 2b and
Supplementary Fig. 4). These results illustrated the potential
applicability of this method.

Substrate scope. With the optimized reaction conditions in hand,
we next explored various benzylic and allylic alcohols 1ab-1ap
(2.0 mmol) under galvanostatic conditions (Fig. 3). Electron-rich
benzylic alcohols with ortho-, meta-, and para-substitution could
be converted to the corresponding aldehydes 2ab-2ah in nearly
quantitative yields (96–99%) without over oxidation. Halogenated
benzylic alcohols could be oxidized to afford the corresponding
aldehydes 2ai-2ak in excellent yield (98–99%), which could be
further functionalized. Owing to weak C–I bond, 10 mA cell
current had to be adapted and 4-iodo benzaldehyde (2al) was
obtained in moderate yield (60%). Moreover, electron-deficient
benzylic alcohols gave less satisfactory results. For example,
compound 2am was obtained in only 35% yield. On the other
hand, 1-naphthyl methanol (1an) was converted to the corre-
sponding aldehyde 2an in 88% yield. The flow conditions could
also be applied to thiophene derivative 1ao to afford aldehyde 2ao
in 76% yield without significant side product formation.

OH

H

R R′

OH

H
R R′

[M] or or

OH

H
R

R = aryl, allyl, alkyl

R′ = H, aryl, alkyl

Pump

Flow cell

C(+)|Ni(–)

undivided cell

spacer(d 1.0 mm)

- External oxidant free

- Neutral condition

- Room temperature

- High efficiency in flow

+ –

R′

Electrochemical oxidation

O
OxH2

H2

H2

R R′

O

R R′

O

R R′

+

+

Catalyst or not

[Ox]

a

b

c
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Additionally, we explored the possibility of electrolysis of allylic
alcohol 1ap, thus obtaining the corresponding unsaturated alde-
hyde 2ap in 64% yield.

The reaction conditions were subsequently employed to oxidize
a range of secondary alcohols (Fig. 4). Excellent results were
observed for oxidation of alcohols 1ba-1bf to the corresponding
ketones 2ba-2bf in 83–97% yield. There was no significant
difference in the reactivity of primary and secondary alcohols in
the continuous-flow reactor. The oxidation of heterocyclic alcohol
1bg proceeded smoothly under 10mA cell current condition to
afford ketone 2bg in 70% yield. Oxidation of allylic alcohols 1bh
−1bi afforded the desired ketones in 50–75% yield. However,
aliphatic alcohol was not oxidized smoothly under electrochemical
oxidation condition and gave 2bj in 25% yield.

This observation led us to explore the selective oxidation of
diols 3 and 5 as shown in Fig. 5. For both substrates, benzylic
hydroxyl groups were oxidized selectively in the presence of
aliphatic primary or secondary hydroxyl groups to afford hydroxyl
ketones 4 and 6 in 78% and 85% yields, respectively. This
oxidation could be complementary to Swern oxidation, which is
selective for primary or less steric hindered alcohols 65–67.
The continuous-flow electrolysis was further extended to

pharmaceutical relevant substrates (Fig. 6). Rosuvastatin pre-
cursor 1aq68 could be oxidized to the corresponding aldehyde in

76% yield within only 10 min, which presented the potential
application prospect of this protocol. Fluorenol (1bk)69 was
oxidized to the corresponding ketones in good yields (86%).

The possibility of using water as solvent was also estimated.
However, benzaldehyde was obtained in only 82% yield due to the
poor solubility of alcohols in water. Thus, the surfactant was
employed and we noted that the ionic surfactant could also be the
supporting electrolyte. By using this strategy, benzaldehyde could
be prepared in quantitative yield in water (Fig. 7). Six primary
alcohols in Fig. 3 and four secondary alcohols in Fig. 4 have been
chosen to re-evaluate the yields in the presence of surfactant in
pure water. In general, aqueous conditions provided the desired
products in comparable yields with our standard conditions,
which showed that the combination of water and surfactant
would be a good choice for this protocol.

Since the oxidation of alcohol in the anode means the loss of
electron, the existence of radical intermediate is highly probable. To
gain insight into the reaction mechanism, electron paramagnetic
resonance (EPR) experiments were performed by adding the radical
spin trapping agent DMPO (5, 5-dimethyl-1-pyrroline N-oxide). No
radical signal was detected in the absence of 1aa (Fig. 8a, blank line).
When DMPO was added to the reaction under constant current
conditions, a radical signal (g= 2.0069, AN= 14.82, AH= 21.42) was
identified (Fig. 8a, red line). According to the fitting result, this
radical signal came from benzyl radical captured by DMPO.

No deuterium or 18O was incorporated into benzaldehyde
when H2O was substituted with D2O or H2

18O in the reaction
system (Fig. 8b and Supplementary Figs. 5 and 6). This result
indicated that water did not react with the intermediate under the
reaction conditions. This was in accordance with no over
oxidation to benzoic acid was observed even when benzaldehyde
was used as starting material for this electrolysis (Supplementary
Fig. 8). In addition, no over oxidation of the aldehyde products
may also benefit from the fact that no extra base was added in our
reaction system.

The influence of the concentration, current, and flow rate to
the electrochemical oxidation of benzyl alcohol have been
evaluated as shown in Fig. 8. Reaction rate increased with the
increasing of the concentration of benzyl alcohol (Fig. 8c). It was

Table 1 Optimization of electrochemical oxidation of benzyl alcohol 1aa

OH O

H
H2

H H
+

C(+)Ni(–)

+ –

1aa 2aa

Entry Current Reaction time Current density Flow rate Yield (%)a

1b 100mA 1 h 44.44mA cm−2 Undivided cell 37

2 10mA 10 h 0.64mA cm−2 0.10mL s−1 93

3 50mA 2 h 3.19 mA cm−2 0.10mL s−1 92

4 100mA 1 h 6.38mA cm−2 0.10mL s−1 89

5 500mA 12min 31.89mA cm−2 0.10mL s−1 90

6 800mA 8min 51.02mA cm−2 0.10mL s−1 91

7 1000mA 6min 63.78mA cm−2 0.10mL s−1 81

8 800mA 10min 51.02mA cm−2 0.10mL s−1 99

9 800mA 10min 51.02mA cm−2 0.05mL s−1 67

10 800mA 10min 51.02mA cm−2 0.15mL s−1 95

11 800mA 10min 51.02mA cm−2 0.20mL s−1 84

Reaction conditions: carbon paper (93 × 93 × 0.2 mm) anode (contact area 1.6 cm2), Ni plate (93 × 93 × 0.3 mm) cathode (contact area 1.6 cm2), 1aa (2.0 mmol), nBu4NBF4 (0.20mmol), CH3CN/H2O

(1:1, 30 mL), N2, room temperature, flow cell (2.49 F mol−1)
aIsolated yield
bCarbon cloth (15 × 15 × 0.2 mm) anode, Ni plate (15 × 15 × 0.5 ) cathode, 1aa (2.0 mmol), nBu4NBF4 (0.20 mmol), CH3CN/H2O (1:1, 30 mL), N2, room temperature, undivided cell (1.86 F mol−1)

OH O

H H2
H C(+)|Ni(–) H

+
800 mA, 0.02 mL s–1

flow cells

2.0 mmol

Reaction scale Time Yield

100.0 mmol 20 h 

25 min 99%

99%

1aa 2aa

a

b

Fig. 2 Slow flow rate of electrochemical oxidation of benzyl alcohol 1aa. a

The amount of 1aa is 2.0 mmol. b The amount of 1aa is 100.0mmol
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the same that large current meant high reaction rate (Fig. 8d).
The reaction rate kept unchanged when the flow rate was larger
than 0.10 mL s−1 (Supplementary Fig. 7). These results suggested
that the electrochemical oxidation was likely to be the rate-
limiting step during electrolysis.

On the basis of our mechanistic studies and literature
reports41–43, a possible mechanism for the oxidation of alcohols
to carbonyl functionality is depicted in Fig. 9. The oxidation of
benzyl alcohol was initiated by anodic oxidation to afford
intermediate B. The consequent deprotonation of the radical
cation B resulted in the formation of benzylic radical C, which
has been detected by EPR. The following fast single-electron

oxidation and deprotonation of D produce the desired benzalde-
hyde (2aa). Lower efficiency of oxidation with electron deficient
benzylic alcohols could be explained by considering that electron
withdrawing groups destabilized intermediates. In the meantime,
water underwent cathodic reduction to generate hydroxide
accompanied by releasing hydrogen70. The in situ formed
hydroxide acted as base to trap the protons. For the whole
reaction, no external oxidant was needed, which is in accordance
with the idea of green chemistry.

In summary, a direct electrochemical oxidation of alcohols to the
corresponding carbonyl compounds has been accomplished
efficiently by the continuous-flow reactor just using carbon anode.
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Reactions were performed without external oxidant, mediator or
additive and no over oxidation was observed, which make this
method an ideal transformation from alcohols to aldehydes or
ketones. Even water can be used as solvent in the presence of
surfactant. The reaction conditions have been applied for selective
oxidation and biologically relevant substrates. The reaction can be
adjusted conveniently from milligram to gram scale based
on demand by using the flow set-up. Further research to broaden
the substrate scope of alcohol oxidation will be reported in due
course.

Methods
General procedures for the electrolysis in acetonitrile and water. In an oven-
dried schlenck tube (100mL) equipped with a stir bar, alcohol 1a (2.0mmol),
nBu4NBF4 (65.9mg, 0.2mmol) and CH3CN/H2O (1:1, 30 mL) were added. The flow
cell was equipped with carbon paper (9.3 cm× 9.3 cm× 0.2mm) as the anode
(contact area 1.6 cm2) and nickel plate (9.3 cm× 9.3 cm× 0.3mm) as the cathode

(contact area 1.6 cm2). In order to preclude the possibility that air was involved in the
oxidation of alcohol, we flushed the whole system with nitrogen before the direct
electrolysis. The reaction mixture was pumped into the electrochemical reactor at the
flow rate of 0.10mL s−1 (Supplementary Fig. 1). Method A: A constant current of
800mA was employed during the electrolysis under room temperature for 10min.
(Method B: A constant current of 10mA was employed during the electrolysis under
room temperature for 10 h. Method C: A constant current of 10mA was employed
during the electrolysis under room temperature for 20 h.) When the reaction was
finished, the reaction mixture was washed with water and extracted with dichlor-
omethane (10mL x 3). The organic layers were combined, dried over Na2SO4, and
concentrated. The pure product was obtained by flash column chromatography on
silica gel using petroleum ether and ethyl acetate as the eluent.

General procedures for the electrolysis in water with surfactant. Method D: In
an oven-dried schlenck tube (100 mL) equipped with a stir bar, alcohol 1a (2.0
mmol), N,N,N-trimethylhexadecan-1-ammonium sulfate (69.6 mg, 0.10 mmol) and
H2O (15 mL) were added. The flow cell was equipped with carbon paper (9.3 cm ×
9.3 cm × 0.2 mm) as the anode (contact area 1.6 cm2) and nickel plate (9.3 cm ×
9.3 cm × 0.3 mm) as the cathode (contact area 1.6 cm2). In order to preclude the
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possibility that air was involved in the oxidation of alcohol, we flushed the whole
system with nitrogen before the direct electrolysis. The reaction mixture was
pumped into the electrochemical reactor in a flow rate of 0.10 mL s−1 (Supple-
mentary Fig. 1). A constant current of 800 mA was employed during the electro-
lysis under room temperature for 10 min. When the reaction was finished, the
reaction mixture was washed with water and extracted with dichloromethane
(10 mL x 3). The organic layers were combined, dried over Na2SO4, and

concentrated. The pure product was obtained by flash column chromatography on
silica gel using petroleum ether and ethyl acetate as the eluent.

Data availability
The authors declare that the data supporting the findings of this study are available

within the article and its Supplementary Information files.
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