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Abstract: The cholinergic efferent network from the medial septal nucleus to the hippocampus is
crucial for learning and memory. This study aimed to clarify whether hippocampal cholinergic
neurostimulating peptide (HCNP) has a rescue function in the cholinergic dysfunction of HCNP
precursor protein (HCNP-pp) conditional knockout (cKO). Chemically synthesized HCNP or a
vehicle were continuously administered into the cerebral ventricle of HCNP-pp cKO mice and
littermate floxed (control) mice for two weeks via osmotic pumps. We immunohistochemically
measured the cholinergic axon volume in the stratum oriens and functionally evaluated the local field
potential in the CA1. Furthermore, choline acetyltransferase (ChAT) and nerve growth factor (NGF)
receptor (TrkA and p75NTR) abundances were quantified in wild-type (WT) mice administered
HCNP or the vehicle. As a result, HCNP administration morphologically increased the cholinergic
axonal volume and electrophysiological theta power in HCNP-pp cKO and control mice. Following
the administration of HCNP to WT mice, TrkA and p75NTR levels also decreased significantly.
These data suggest that extrinsic HCNP may compensate for the reduced cholinergic axonal volume
and theta power in HCNP-pp cKO mice. HCNP may function complementarily to NGF in the
cholinergic network in vivo. HCNP may represent a therapeutic candidate for neurological diseases
with cholinergic dysfunction, e.g., Alzheimer’s disease and Lewy body dementia.

Keywords: hippocampal cholinergic neurostimulating peptide; hippocampal cholinergic neurostimulating
peptide precursor protein; hippocampal HCNP-pp conditional KO mouse model; choline acetyltransferase;
local field potential; theta oscillation; nerve growth factor

1. Introduction

Hippocampal glutamatergic neuronal activity plays a crucial role in episodic and
learning memory [1]. Hippocampal function is modified via the communication of af-
ferent and efferent neural networks from associated areas [2]. The timing-dependent
synchronized neural firing of multiple efferent fibers as a group in the hippocampus is
involved in the encoding of memory [3]. In this way, the local field potential (LFP) can
be generated by summating the electrical activity from a number of neurons in the local
field [4]. Theta oscillation (4–12 Hz) and gamma oscillation (25–100 Hz), as synchronized
rhythmic activities, are inextricably involved in hippocampal function [4]. In particular,
the theta power in the hippocampus plays a crucial role in working memory, decision
making, and memory consolidation [5–7]. Theta oscillation is created by the interaction
of the GABAergic and cholinergic projection from the medial septal nucleus (MSN) to
the hippocampus [8–11].

Hippocampal cholinergic neurostimulating peptide (HCNP), which induces acetyl-
choline (Ach) synthesis in MSN, was originally isolated and purified from the soluble frac-
tion of the hippocampus of juvenile–adult rats [12]. HCNP is formed at the N-terminal re-
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gion of the 21-kD HCNP precursor protein (HCNP-pp) and comprises 186 amino acids [13].
Recently, we reported that HCNP-pp conditional knockout (HCNP-pp cKO) mice ex-
hibit reduced theta activity via a decrease in choline acetyltransferase (ChAT)-positive
axonal volume in the stratum oriens of the hippocampal CA1 [14], as well as ra educed
Ach concentration in the hippocampus [15]. The dysfunction of glutamatergic neural
activation was consequently observed in the hippocampus of HCNP-pp cKO mice [16].
Hence, HCNP might serve as a regulator of hippocampal cholinergic function. Moreover,
HCNP-pp cKO mice represent an appropriate genetic model for cholinergic functional
impairment in septo-hippocampal interactions. When considering the development of
a novel therapy using HCNP against septo-hippocampal cholinergic dysfunction, the ef-
fect of extrinsic HCNP administration on cholinergic dysfunction should be tested in this
genetic model.

Accordingly, the current study seeks to test the involvement of HCNP reduction in
cholinergic dysfunction in HCNP-pp cKO mice and to verify its potential as a therapeutic
candidate for diseases with cholinergic impairment, including Alzheimer’s disease (AD)
and Lewy body dementia.

2. Results
2.1. HCNP Administration Recovers ChAT-Positive Axons in HCNP-pp cKO Mice

Based on a semi-quantitative analysis of ChAT-positive axonal volume using IMARIS
9.2.0 software, we previously reported that cholinergic projections from the MSN to
the hippocampus were regionally diminished in the stratum oriens of HCNP-pp cKO
mice [14]. Therefore, in the current study, to assess whether extrinsic HCNP administration
could counteract cholinergic impairment in the hippocampi of HCNP-pp cKO mice, we
continuously administered HCNP or vehicle–PBS into the ventricles of HCNP-pp cKO
mice or HCNP-pp floxed (Control) mice for 2 weeks. Following the treatment period,
the ChAT-positive axonal volume in the stratum oriens was significantly decreased in
the vehicle-treated KO mice (KO-Vehicle) compared to the vehicle-treated control mice
(Control-Vehicle; Figure 1a,b, Control-Vehicle: 1296.2 ± 43.6 µm3, n = 36 vs. KO-Vehicle:
1014.3 ± 55.7 µm3, n = 48, p < 0.001, two-way ANOVA with the Holm post-hoc test), which
is consistent with our previous report [14]. In contrast, the ChAT-positive axonal volume in
the stratum oriens of the HCNP-treated KO mice (KO-HCNP) significantly recovered to a
level similar to the level found in the Control-Vehicle mice (Figure 1a,b, Control-Vehicle:
1296.2 ± 43.6 µm3, n = 36 vs. KO-HCNP: 1193.6 ± 44.6 µm3, n = 48, p = 0.155). A similar en-
hancement effect for ChAT-positive axons was observed in the stratum oriens of the HCNP-
treated control mice (Control-HCNP) compared to the Control-Vehicle group (Figure 1a,b,
Control-Vehicle: 1296.2 ± 43.6 µm3, n = 36 vs. Control-HCNP: 1505.0 ± 46.1 µm3,
n = 47, p < 0.05).

To further assess the effect of HCNP administration on cholinergic axon volume, we
analyzed the length, cross-sectional area, and number of branching points of the cholinergic
axons. Although there was no significant change in the cross-sectional area of the choliner-
gic axon terminal, HCNP administration significantly increased the length (Control-Vehicle:
1774.2 ± 56.4 µm, n = 36 vs. Control-HCNP: 1998.1 ± 60.5 µm, n = 47, p < 0.05, KO-Vehicle:
1313.7 ± 63.1 µm, n = 48, vs. KO-HCNP: 1579.3 ± 56.0 µm, p < 0.01) and the number of
branching points (Control-Vehicle: 163.1 ± 6.9, n = 36 vs. Control-HCNP: 200.7 ± 7.9,
n = 47, p < 0.05, KO-Vehicle: 113.6 ± 7.6, n = 48, vs. KO-HCNP: 141.9 ± 6.9, p < 0.05) in the
Control-HCNP and KO-HCNP groups compared to the Control-Vehicle and KO-Vehicle
groups, respectively (Figure 1c).
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Figure 1. Quantification of ChAT-positive CA1 axons. (a) Representative images of ChAT immuno-
histochemistry in the stratum oriens of control (upper) and HCNP-pp cKO (lower) mice following
administration of vehicle (left) and HCNP (right). (b) Statistical analysis of ChAT-positive axonal
volume in the stratum oriens. (c) Statistical analyses of the length, cross-sectional area, and the
number of branching points of the cholinergic axons in the stratum oriens. Control-Vehicle: n = 36,
KO-Vehicle: n = 48, KO-HCNP: n = 48, Control-HCNP: n = 47. Data are presented as mean ± standard
error of the mean (SEM); two-way ANOVA with Holm post-hoc test. NS = not significant, * p < 0.05,
** p < 0.01, and *** p < 0.001. Scale bar = 10 µm.

2.2. HCNP Administration Recovers Hippocampal Theta Power

We previously reported that theta oscillations related to septo-hippocampal choliner-
gic function were significantly inhibited in the hippocampus of HCNP-pp cKO mice [3].
Therefore, we herein assessed theta power in a functional cholinergic assay as a recov-
ery effect of HCNP administration. Two weeks after the administration of the vehicle or
HCNP, we carefully inserted the silicon probes stereotactically into the CA1 pyramidal
layer, recorded the LFP for 3 min, and analyzed the theta power (total theta: 3–12 Hz).
The KO-Vehicle mice showed a significantly lower total theta power than the Control-
Vehicle mice (Figure 2a,b, Control-Vehicle: 9.44 ± 0.99 × 10−4 mV2/Hz, n = 20 trials vs.
KO-Vehicle: 6.26 ± 0.78 × 10−4 mV2/Hz, n = 20 trials, p < 0.05, two-way ANOVA with
the Holm post-hoc test), which was consistent with our previous work [14]. The Control-
HCNP mice showed a significantly higher total theta power than the Control-Vehicle mice
(Figure 2a,b, Control-Vehicle: 9.44 ± 0.99 × 10−4 mV2/Hz, n = 20 trials vs. Control-HCNP:
13.4 ± 0.54 × 10−4 mV2/Hz, n = 17 trials, p < 0.01). Unexpectedly, the KO-HCNP mice
did not have a higher total theta power than the KO-Vehicle mice. However, HCNP ad-
ministration significantly enhanced the type 2 theta (theta2; Figure 2c, Control-Vehicle:
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8.74 ± 1.37 × 10−4 mV2/Hz, n = 20 trials vs. Control-HCNP: 20.7 ± 1.15 × 10−4 mV2/Hz,
n = 17 trials, p < 0.001; KO-Vehicle: 4.59 ± 0.65 × 10−4 mV2/Hz, n = 20 trials vs. KO-HCNP:
9.07 ± 0.16 × 10−4 mV2/Hz, n = 20 trials, p < 0.05)—a subtype of theta ranging from 4 to
9 Hz which more strongly reflects cholinergic activity [17]—in the control and KO mice.
Notably, the KO-HCNP mice exhibited a relatively similar level of theta2 power to that of
the Control-Vehicle mice (Figure 2c).

Figure 2. Analysis of local field potential (LFP) in the hippocampus. (a) Representative power
spectrum of LFP in Control (upper) and HCNP-pp cKO (lower) following administration of vehicle
(left) and HCNP (right). (b) The power spectral density (PSD) of LFP in the CA1 pyramidal layer.
The theta range was defined as 3–12 Hz (total theta). (c) The PSD of LFP in the CA1 pyramidal layer.
The type 2 theta (theta2) range was defined as 4–9 Hz. Control-Vehicle: n = 20 trials, KO-Vehicle:
n = 20 trials, Control-HCNP: n = 17 trials, KO-HCNP: n = 20 trials. Data are presented as the
mean ± SEM; two-way ANOVA with Holm post-hoc test. NS = not significant, * p < 0.05, ** p < 0.01,
and *** p < 0.001.

2.3. HCNP Administration Decreases the Abundance of Nerve Growth Factor (NGF) Receptors,
TrkA, and p75NTR

Many researchers have reported that NGF is involved in the maintenance and preser-
vation of cholinergic axonal terminals [18–24]. We also reported that HCNP and NGF
might have cooperative roles in the biochemical differentiation of cholinergic neurons in
the MSN [25]. Therefore, to screen the relative function of NGF in the observed enhance-
ment effect, we evaluated the levels of ChAT and NGF receptors, TrkA, and p75NTR,
following HCNP or vehicle administration to wild-type (WT) mice. The administration
of HCNP tended to increase the ChAT level; however, the increase was not significant
(WT-Vehicle: 0.396 ± 0.014, n = 5 vs. WT-HCNP: 0.541 ± 0.064, n = 5, p = 0.0584, Student’s
t-test). In contrast, TrkA (WT-Vehicle: 1.27 ± 0.056, n = 5 vs. WT-HCNP: 0.721 ± 0.076,
n = 5, p < 0.01) and p75NTR (WT-Vehicle: 0.969 ± 0.060, n = 5 vs. WT-HCNP: 0.675 ± 0.074,
n = 5, p < 0.05) levels were significantly lower in the WT-HCNP mice than in the WT-Vehicle
mice (Figure 3).
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Figure 3. Evaluation of ChAT (left), TrkA (middle), and p75NTR (right) levels following HCNP
or vehicle administration in wild-type (WT) mice. WT-Vehicle: n = 5; WT-HCNP: n = 5. Data are
presented as mean ± SEM; Student’s t-test. NS = not significant, * p < 0.05, ** p < 0.01.

3. Discussion

This study confirmed three new findings. First, the direct administration of HCNP
into the cerebral ventricles might increase the volume of ChAT-positive axonal terminals in
the stratum oriens of CA1 in HCNP-pp cKO and Control mice. Second, type 2 theta is also
induced by HCNP administration in the hippocampus of HCNP-pp cKO and Control mice.
Third, HCNP administration into the ventricles may significantly reduce the amounts of
both NGF-related receptors, TrkA and p75NTR, whereas ChAT tends to increase them,
although not significantly.

Cholinergic neurons in the basal forebrain, including the MSN, undergo selective de-
generation and gradually disappear in the early stages of AD [26–31], Parkinson’s disease
with dementia (PDD) [27,32–34], and dementia with Lewy bodies (DLB) [27,34,35]. Mean-
while, cholinesterase inhibitors (ChE-Is) clinically ameliorate the pathological symptoms
in patients with AD or DLB [27,34,35]. However, the effect of ChE-Is is short-lived as the
enhancing effect of ChE-Is on Ach within neuronal clefts is dependent on Ach production in
cholinergic neuronal terminals. Hence, the gradual neurodegeneration of cholinergic neu-
rons in the MSN may reduce the therapeutic response to ChE-Is. Therefore, research efforts
have been made to maintain cholinergic neurons from the point of view of neurotrophic
factors, such as NGF [19], brain-derived neurotrophic factor [36], and bone morphogenetic
protein-9 [37]. In the current study, the administration of the functional peptide, HCNP, was
found to neurophysiologically counteract cholinergic impairment by inducing a regional
increase in ChAT-positive neuronal terminals within the hippocampi of HCNP-pp cKO
mice. However, the trophic effect of HCNP has not yet been directly confirmed in an animal
model [15]. In fact, HCNP was initially isolated from embryonic day 14 rat hippocampi [12]
as a peptide for enhancing neurite outgrowth [13]. The increase in cholinergic axonal length
and branching points but not thickness observed in this experiment is likely consistent with
previous work [13]. In particular, the increase in theta 2 power in the hippocampus with
cholinergic projection may suggest that the administration of HCNP morphologically and
electrophysiologically enhances the specific cholinergic function in the septo-hippocampal
interaction [17]. Notably, these cholinergic parameters in the KO-HCNP mice improved
to a similar extent as in the Control-Vehicle mice. Thus, these data, in combination with
our previously reported findings, further support the hypothesis that HCNP serves as a
functional regulator of neural cholinergic activity in septo-hippocampal interactions.

We previously reported that HCNP might induce acetylcholine synthesis comple-
mentarily with NGF in WT explant culture tissue of the MSN [25]. Considering that NGF
is a typical neurotrophic factor for cholinergic neurons in the hippocampus [18–24,38],
we investigated NGF receptor expression (TrkA and p75NTR) to elucidate the direct in-
volvement of HCNP administration in NGF receptor expression. NGF and NGF receptors
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have also been reported to change owing to a compensatory reaction against cholinergic
dysfunction [39]. Considering that the expression of NGF receptors might primarily change
in the hippocampus of HCNP-pp cKO mice, we used WT mice, not HCNP-pp cKO mice, to
assess the pure effect of HCNP administration in this study. Interestingly, both NGF-related
receptors were significantly decreased in the mice that received HCNP, suggesting that the
increased ChAT in this model was induced independently of NGF signals. These findings
support our previous report that HCNP enhanced cholinergic function by regulating ChAT
synthesis with NGF in an explant culture using rat MS [25]. Accordingly, the HCNP-
induced reduction in NGF receptor expression may result from negative feedback against
excessively increased cholinergic function, as HCNP and NGF can function in cholinergic
neurons in parallel.

When considering the development of a novel therapy using HCNP against septo-
hippocampal cholinergic dysfunction in humans, it is necessary to design an appropriate
method for effectively administrating the 11-amino-acid peptide without requiring direct
injection into the cerebral ventricles. One potential option is a transnasal formula [40] or the
oral administration of the HCNP agonist. Nevertheless, to generate HCNP agonists, it is
necessary to first characterize and isolate HCNP receptors, which has not yet been reported;
however, it might exist in the crude P2 membrane fraction [41]. NGF or its metabolic
pathway have also been proposed as potential targets for arresting the degeneration of the
cholinergic system by boosting trophic influence; however, the intracerebral and exogenous
application of NGF has not yet been proven successful [38].

Certain limitations were noted in this study. First, we performed all experiments with
old mice. Thus, if the phenotype changes with age in the HCNP-pp cKO mice, as in our
previous report [16], different effects may be generated following HCNP administration in
younger mice. Second, the LFP was measured one day after suspending HCNP adminis-
tration. We could not rule out the possibility that removing the osmotic pump may have
affected the baseline brain activity, including the total theta power. Third, the possibility
that urethane anesthesia affected theta oscillation cannot be excluded. Urethane anesthe-
sia may diminish type 1 theta, mainly through the inhibition of glutamatergic neuronal
activity [42], activating type-2-theta-related cholinergic neuronal activity. As type 2 theta is
inhibited by atropine or scopolamine [43,44], it reflects cholinergic activity and is widely
used as an indicator of cholinergic activity [10,45,46]. We must constantly consider any
influence of urethane anesthesia on type 2 theta via any neurotransmitter, including nico-
tinic receptors. Fourth, the amount of NGF was not measured in this study. We could not
show the involvement of NGF alteration in the downregulation of NGF receptors by HCNP
administration. The possibility that HCNP directly affected NGF receptors cannot be ruled
out. Fifth, we confirmed the enhancement effect of HCNP administration on cholinergic
neurons in the same strains of HCNP-pp cKO mice compared to the control-HCNP-pp
littermate floxed mice. Meanwhile, WT mice were used in the NGF-related receptor study;
hence, the change in the number of NGF receptors might be derived from differences
between the WT and HCNP-pp littermate floxed mice. To investigate the potential of
HCNP as a therapeutic target for dementia, additional studies are required, including the
assessment of NGF receptor kinetics in HCNP-pp cKO mice, to better characterize the
features of HCNP.

4. Materials and Methods
4.1. Animals

In this study, we used the same strain of HCNP-pp cKO mice as described previously [14].
Briefly, HCNP-pp knockout was achieved following the Cre-loxP system with the Cre-
ERT gene, which was excised between the middle portion of exon 1 and the intron that
lies between exons 3 and 4via Cre recombinase. Tamoxifen was injected three months
after birth into floxed HCNP-pp mice (CreERT/+, fHCNP-pp+/+), called HCNP-pp cKO
mice, and littermate control mice (CreERT/, fHCNP+/+ or/+). We used 24 male mice
for LFP measurement and the immunohistochemical analyses; data were obtained from
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15 mice (87–91 weeks old) divided into four groups: Control-Vehicle (n = 4), Control-HCNP
(n = 3), KO-Vehicle (n = 4), and KO-HCNP (n = 4). Additionally, ten WT (C57BL/6) male
mice (23 weeks old; WT-Vehicle (n = 5), WT-HCNP (n = 5)) were used for the Western blot
experiments. The animals were housed under specific-pathogen-free conditions with a 12 h
light/dark cycle (with the lights on from 08:00 to 20:00) and provided with free access to
food and water.

4.2. HCNP Administration

We chemically synthesized human HCNP (PVDLSKWSGPL). Under anesthesia with
1% isoflurane, a midsagittal incision was made on the scalp, and a subcutaneous tunnel
was opened between the shoulder blades, where the Alzet osmotic pumps (model 1002;
pumping rate 0.25 µL/h, DURECT Corporation, Cupertino, CA, USA) were implanted.
Subsequently, a craniotomy at 0.6 mm posterior and 1.2 mm lateral from the bregma was
performed stereotactically. The tip of the pump was carefully inserted into the craniotomy
site and was angled at 8◦. The cannula was fixed in place using dental cement. The
incision was closed with silk sutures and dabbed with Vetbond (3M, St Paul, MN, USA).
Intraventricular infusion of the vehicle (bicarbonate buffer) or 0.75 pg/h of HCNP was
then performed for 14 d.

4.3. Quantification of Hippocampal Cholinergic Axons

The protocol for quantifying hippocampal cholinergic axons was performed in ac-
cordance with our previous report [14]. Briefly, after fixation in 4% paraformaldehyde/
phosphate buffer (PB, pH 7.4), the mouse brains were equilibrated in a 30% sucrose so-
lution/PB and sectioned at thicknesses of 20 µm using a cryostat (Leica Microsystems,
Bensheim, Germany).

We calculated the cholinergic axonal volume in 20 µm thick coronal brain sections
at −2.3 mm from the bregma, focusing on the stratum oriens of CA1. Before performing
ChAT immunofluorescence, each section was treated with the TrueBlack Lipofuscin Aut-
ofluorescence Quencher (Biotium Inc., Fremont, CA, USA). The sections were incubated
for 24 h with a primary goat anti-ChAT (polyclonal) antibody (catalog number AB144P,
1:100; Merck-Millipore, Billerica, MA, USA) at 20 ◦C. The sections were then incubated
with a secondary Alexa Fluor-594 donkey anti-goat IgG antibody (1:500; Thermo Fisher
Scientific, Waltham, MA, USA) for 1 h at 20 ◦C. Fluorescence imaging of cholinergic fibers
was carried out using an A1Rsi laser confocal microscope (Nikon, Tokyo, Japan). Eight-
micron-thick Z-stacks were acquired at 0.4 µm intervals for each section within the stratum
oriens layer of the CA1 field. Two sections of each mouse hippocampal slice were prepared
at a given location, while three regions of interest were selected per side in the stratum
oriens. The images were transferred to IMARIS 9.2.0 (Bitplane, Zurich, Switzerland), and
the ChAT-positive axonal volume, length, cross-sectional area, and the number of branch
points were calculated using an empirically optimized batch protocol. IMARIS enables
the 3D reconstruction of neurons and arborization analysis. It is a technique that enables
visualizing various structures, such as axons and dendrites, somas, and dendritic spines.
Further, IMARIS automatically calculates a range of neuron-specific measurements, such
as the volume of specific structures, dendrite or segment length, branch level, diameter,
and cross-sectional area (https://imaris.oxinst.com/products/imaris-for-neuroscientists
accessed on 28 February 2023). The total axonal volume (µm3), length (µm), cross-sectional
area (µm2), and the number of branch points were summed per image/subject and then
exported to an Excel spreadsheet.

4.4. Electrophysiological Recordings

The technique used in this experiment was described in our previous report [14].
Briefly, all mice were anesthetized via an intraperitoneal injection of ketamine (74 mg/kg)
and xylazine (10 mg/kg). During surgery, the mice were placed on a heating pad, and
eye ointment (Tarivid ophthalmic ointment 0.3%; Santen Pharmaceutical Co., Ltd., Osaka,

https://imaris.oxinst.com/products/imaris-for-neuroscientists
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Japan) was used to prevent corneal drying. After removing the osmotic pump for the
administration of HCNP or the vehicle, a head plate was firmly attached to the dental
cement (Fuji lute BC; GC, Tokyo, Japan, Bistite II; Tokuyama Dental, Tokyo, Japan). The
mice were allowed to recover for one day before LFP recording.

For the LFP experiments, dexamethasone sodium phosphate (1.32 mg/kg) was ad-
ministered intraperitoneally 1 h before surgery to prevent cerebral edema. Under anes-
thesia with 1.6 g/kg urethane, a ~2 mm diameter circular craniotomy (AP: −2.0 mm,
ML: −1.3 mm) was performed. To prevent the exposed brain surface from drying and to
reduce noise during recording, we applied artificial CSF (NaCl, 125 mM; KCl, 3.5 mM;
NaH2PO4, 1.25 mM; NaHCO3, 26 mM; CaCl2, 2 mM; MgCl2, 2 mM; D-glucose, 15 mM) to
the surface of the exposed brain. A 16-channel silicon probe (A1-16-25-177, NeuroNexus
Technologies, Ann Arbor, MI, USA) was stereotactically inserted and advanced stepwise
to the target position using a microcontroller. The neural activity of the pyramidal layer
in the left CA1 was recorded at depths of 1100–1500 µm from the pia. The stereotactic
coordinates were determined by referring to the Paxinos and Franklin atlas (2008) [47].
All in vivo LFP recordings were digitally downsampled to 1 kHz using the Omniplex
system (Plexon, Dallas, TX, USA) and filtered at a bandpass of 0.05–200 Hz. Proximity
to the hippocampal pyramidal cell layer was determined by (1) the depth of the probe,
(2) the presence of action potential discharge, and (3) phase reversal of the LFP at theta
frequencies above and below the recording site [48]. Each LFP, which was presumed to
be in the pyramidal layer, was recorded for 3 min. The recorded LFP data were extracted
using an offline sorter (Plexon), and the power spectral density (PSD) of each LFP dataset
was analyzed using NeuroExplorer (Plexon). The average PSD of the LFPs recorded at
different electrodes at the same time was analyzed to calculate the PSD of the theta range
(theta power). The theta (total theta) and theta2 ranges were defined as 3–12 Hz [49] and
4–9 Hz [17], respectively.

4.5. Western Blot Analyses

Western blotting was performed as previously described [14]. Briefly, under deep
pentobarbital anesthesia, each mouse was transcardially perfused with PBS. After their
brains were removed and placed on ice, the bilateral hippocampi were dissected, immedi-
ately frozen in liquid nitrogen, and stored at −80 ◦C until use. Frozen hippocampi from
each of the five WT-Vehicle mice and five WT-HCNP mice were homogenized in a lysis
buffer. The homogenates were centrifuged at 15,000× g for 3 min at 4 ◦C. After measuring
the protein content using the Bradford assay (Pierce, Rockford, IL, USA), 10 µg of each
supernatant fraction was loaded onto each lane of a 10% SDS-PAGE gel. After electrophore-
sis, the samples were transferred to Hybond-P membranes (GE Healthcare, Tokyo, Japan)
and incubated with 1:500 goat polyclonal anti-ChAT antibody (catalog number AB144P;
Merck-Millipore, Billerica, MA, USA), 1:1000 rabbit polyclonal anti-TrkA antibody (catalog
number 2505; Cell Signaling Technology, Danvers, MA, USA), 1:4000 polyclonal rabbit anti-
p75NTR antibody (catalog number 55014-1-AP; Proteintech, Chicago, IL, USA), or 1:100,000
mouse monoclonal anti-β-actin antibody (catalog number A5441; Sigma-Aldrich, St. Louis,
MO, USA). The membranes were then probed with horseradish peroxidase-conjugated
anti-goat, anti-rabbit, or anti-mouse IgG antibodies. Immunoreactive bands were visual-
ized using the ECL Prime Western Blotting Detection kit (GE Healthcare, Tokyo, Japan)
and recorded using an ImageQuant LAS 4000 (GE Healthcare, Tokyo, Japan). Western
blots were quantified using the Amersham Imager 600 Analysis Software (GE Healthcare,
Tokyo, Japan).

4.6. Data Analysis

Data, presented as the mean ± SEM, were analyzed using a two-way ANOVA with
the Holm post-hoc test except for Figure 3 (in which Student’s t-test was used) to analyze
differences between groups.



Int. J. Mol. Sci. 2023, 24, 8916 9 of 11

5. Conclusions

Extrinsic HCNP administration into the cerebral ventricles can morphologically in-
crease cholinergic projections into the hippocampus, in addition to the electrophysiological-
function-ameliorating functions of the cholinergic network in HCNP-pp cKO mice. HCNP
may function complementarily to NGF in vivo in the cholinergic network. Thus, HCNP
could be a potential therapeutic candidate for neurological diseases with cholinergic dys-
function, such as AD and DLB.
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