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Single-index modeling is widely applied in, for example, economet-
ric studies as a compromise between too restrictive parametric models
and flexible but hardly estimable purely nonparametric models. By such
modeling the statistical analysis usually focuses on estimating the index
coefficients. The average derivative estimator (ADE) of the index vector
is based on the fact that the average gradient of a single index function
f�x�β� is proportional to the index vector β. Unfortunately, a straightfor-
ward application of this idea meets the so-called “curse of dimensionality”
problem if the dimensionality d of the model is larger than 2. However,
prior information about the vector β can be used for improving the qual-
ity of gradient estimation by extending the weighting kernel in a direc-
tion of small directional derivative. The method proposed in this paper
consists of such iterative improvements of the original ADE. The whole
procedure requires at most 2 log n iterations and the resulting estimator
is

√
n-consistent under relatively mild assumptions on the model indepen-

dently of the dimensionality d.

1. Introduction. Suppose that the observations �Yi�Xi�� i = 1� 
 
 
 � n,
are generated by the regression model

Yi = f�Xi� + εi�(1.1)

where Yi are scalar response variables, Xi ∈ �0�1	d are d-dimensional
explanatory variables, εi are random errors and f�·� is an unknown
d-dimensional function f� �d → �. We assume that f�x� has the following
structure:

f�x� = g0�x�θ∗�
(1.2)

Here g0�·� is an unknown univariate link function, that is, g0�·�� � → � and θ∗

is an unknown index vector. In the statistical literature the relations as in (1.1)
and (1.2) are referred to as single-index regression models. These models are
often used in econometrics as a reasonable compromise between fully paramet-
ric and fully nonparametric modeling. See, for example, McCullagh and Nelder
(1989). They are also extensively used in projection pursuit regression; see
Friedman and Stuetzle (1981) and Hall (1989).

Two estimation problems in single-index models are intensively discussed
in the literature. The first consists of estimation of the unknown function f�x�.
The objective of the second is to recover the index-vector θ∗. In this paper we
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focus on the second one. Note first that the vector θ∗ in the representation (1.2)
is not uniquely defined. Indeed, the use of the vector cθ∗ and of the rescaled
link function gc�u� = g0�u/c� with some c > 0 leads to the same regression
function f. To ensure the uniqueness of the vector θ∗, one should impose some
identifiability condition on θ∗. Usually it is supposed that the Euclidean norm
of θ∗ is equal to 1; that is, θ∗ is a unit vector in �d.

Several methods for estimating θ∗ has been developed in the theory of
semiparametric estimation. For instance, in the M-estimation approach the
unknown link function g is considered as an infinite-dimensional nuisance
parameter. Then the estimator θ̂ of θ∗ is constructed by minimization of an M-
functional with respect to θ, when replacing g by its nonparametric estimator,

θ̂ = arg min
θ

n∑
i=1

ψ
(
Yi� ĝθ�h�X�

i θ�
)
�

where ĝθ� h�·� is a nonparametric estimator (with smoothing parameter h) of
gθ�·� = E�Yi�X�

i θ = ·� and ψ is a contrast function. Typical examples are the
semiparametric maximum likelihood estimator (SMLE), with −ψ being the
log-likelihood of the errors εi, and the semiparametric least squares estima-
tor (SLSE), with ψ�y� r� = �y−r�2 being the Euclidean norm of y−r squared.
Klein and Spady (1993) have shown that the SMLE is asymptotically efficient
in the so-called binary response model. Ichimura (1993) studied the proper-
ties of SLSE in a general single-index model. The problem of the choice of
bandwidth for the nonparametric estimation of the link function has been
considered in Härdle, Hall and Ichimura (1993) and Delecroix, Hristache and
Patilea (1999). Delecroix and Hristache (1999) studied a rather general type
of M-estimator, and the asymptotic efficiency of the general semiparamet-
ric maximum-likelihood estimator has been proved in Bonneu, Delecroix and
Hristache (1997) and Delecroix, Härdle and Hristache (1997) for particular
classes of single-index models.

In spite of their nice theoretical properties, M-estimators are rarely imple-
mented in practice. The main reason for this is that the computation of these
estimators leads to a hard optimization problem in a high-dimensional space.

As an alternative to M-estimators, the so-called average derivative method
(ADE) has been introduced in Stoker (1986) and Powell, Stock and Stoker
(1989). The idea of this method is to estimate the expected value of the
(weighted) gradient �∂/∂x�f�x� = θ∗g′�x�θ∗� of the regression function f,
which is obviously proportional to θ∗. This method leads to a

√
n-consistent

estimator of the index vector; see also Härdle and Tsybakov (1993). An advan-
tage of this approach is that it allows estimation of the vector θ∗ “directly” and
does not require solving a hard optimization problem. A generalization of the
average derivative estimate for the case where the components of Xi are con-
tinuous and/or discrete has been provided in Horowitz and Härdle (1996).
However, the conditions required for the average derivative estimator to work
are rather restrictive. In particular, the rate n−1/2 can be attained only for
the random design with a very smooth design density and only if a high-order
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kernel is used for its pilot estimation, as in Härdle and Tsybakov (1993) or
Samarov (1993). In practical applications of the estimator for data samples of
a reasonable size, a kernel estimator of the design density using a high-order
kernel has very poor performance because of data sparseness (the so-called
“curse of dimensionality” problem).

Another direct method of index coefficient estimation, called “sliced inverse
regression” has been proposed in Li and Duan (1989), Duan and Li (1991) and
Li (1991). The inverse regression method, however, requires the distribution
of covariates to be elliptically symmetric.

In the present paper we introduce a new type of direct estimator of the
index coefficient θ∗. It can be regarded as an iterative improvement of the
average derivative estimator. We show that the proposed estimator is

√
n-

consistent. The results are valid under rather mild conditions on the design
Xi� i = 1� 
 
 
 � n. Another important feature of this procedure is that it is fully
adaptive with respect to unknown smoothness properties of the link function.
Though we do not address the problem of its asymptotic efficiency, we note
that a

√
n-estimator can be used as a departure point for a so-called “one-

step efficient estimator” as discussed, for example, in Delecroix, Härdle and
Hristache (1997).

The paper is organized as follows. In the following section we describe the
estimation algorithm. The properties of the proposed algorithm are studied in
Section 3. In Section 4 we consider details of implementation of the proposed
estimator and present some simulation results. The proofs are collected in
Section 5.

2. Estimation procedure. We start with the informal description of the
proposed estimator. Our approach (as in the case of the average derivative
estimator) is based on the obvious fact that under the model (1.2), the gradient
∇f�x� = ∂f�x�/∂x = θ∗g′

0�X�
i θ

∗� of the regression function f at every point x
is proportional to θ∗. This leads to the idea of estimating the average gradient,

β∗ �= 1
n

n∑
i=1

∇f�Xi� = θ∗ 1
n

n∑
i=1

g′
0�X�

i θ
∗�
(2.1)

Clearly β∗ is a linear functional of the unknown regression function f, so that
one can apply here the well-developed theory of estimation of linear func-
tionals [see, e.g., Ibragimov and Khasminski (1987) and references therein].
The main problem which arises when implementing this approach is that the
gradient function is not smooth and some rather restrictive assumptions on
the design and on the link function g0 must hold to ensure the desirable

√
n-

consistency of the corresponding estimator [Samarov (1991, 1993), Härdle and
Tsybakov (1993)]. The vectors β∗ and θ∗ can be estimated naturally using the
expression

β̂1 = 1
n

n∑
i=1

∇̂f�Xi� and θ̂1 = β̂1

�β̂1� �(2.2)
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where ∇̂f�Xi� is the pilot estimator of the gradient ∇f�Xi� of f w.r.t. x at the
point Xi. A standard way to estimate both the value f�Xi� and the gradient
vector ∇f�Xi� [cf. Fan and Gijbels (1996)] is to use the local least squares
algorithm,

(
f̂�Xi�

∇̂f�Xi�

)
= arginf

c∈�� β∈�d

n∑
j=1

[
Yj − c − β��Xj − Xi�

]2
K

( �Xj − Xi�2
h2

)
�

where a kernelK�·� is positive and supported on �−1�1	, so that the weights of
all points Xj outside a neighborhood Uh�Xi� of diameter h around Xi vanish.
The solution to this quadratic optimization problem can be represented as

(
f̂�Xi�

∇̂f�Xi�

)
=
{ n∑
j=1

(
1
Xij

)(
1
Xij

)�
K

( �Xij�2
h2

)}−1

×
n∑

j=1

Yj

(
1
Xij

)
K

( �Xij�2
h2

)
�

(2.3)

where Xij = Xj − Xi. One can show (see Proposition 1 below) that the loss
�β̂ − β∗� of this estimator (which is the Euclidean norm of the vector β̂ − β∗)
can be bounded as follows:

�β̂1 − β∗� ≤ C1h + �ξ�
h

√
n

(2.4)

Here ξ is a Gaussian random vector in �d with Eξ = 0 and E�ξ�2 ≤ C2, and
C1�C2 are some fixed constants. The right-hand side of (2.4) consists of two
terms. The first term bounds the deterministic error (the bias), which is due
to the error of local approximation of f by a linear function. This error is
proportional to h. The second term is the stochastic error �ξ�/�√nh� which is
independent of f; this term is typically of order �√nh�−1. The balance of these
two terms leads to the choice of h of order n−1/4 and hence to the error

�β̂1 − β∗� = O�n−1/4�

andsimilarly for �θ̂−θ∗� [provided that thequantity �β∗� = ��1/n�∑n
i=1 g

′�X�
i θ

∗��
is separated away from zero]. The situation becomes even worse if the dimen-
sion d > 4. The reason for this lies in the data sparseness. Indeed, in order to
provide d + 1 design points which are necessary to compute the local linear
approximation (2.3) in a ball of radius h, one should take h of order n−1/d.
This leads to the bias O�n−1/d� in (2.4). Therefore, for d > 4 the accuracy of
such an estimator would be order n−1/d. This rate of convergence (n−1/�4∨d�)
is, of course, much worse than n−1/2 that can be attained for this problem.
Fortunately, the simple estimator θ̂1 can be significantly refined. The idea is
to employ the structural assumption (1.2) for improving the quality of the
gradient estimation.
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We use the following observation. To recover the vector θ∗ we do not need to
know the vector β∗ entirely. Only the direction of β∗ is important and therefore,
if β̂ estimators β∗, it suffices to ensure that the difference between β̂ and its
projection �β̂�θ∗�θ∗ on the vector θ∗ is small. If, in addition, �β∗� is separated
away from zero, then β̂/�β̂� estimates reasonably the unit vector θ∗. Therefore,
our intention is to modify the simple estimators (2.3) in a way that the quality
of estimation improves in the direction orthogonal to θ∗.

Suppose for a moment that we know θ∗ and estimate ∇f�Xi� = θ∗g′
0�X�

i θ
∗�.

Note that the regression function f�x� and, hence, the gradient function ∇f�x�
do not vary within the subspace which is orthogonal to θ∗. This implies that
within the strip S = �x� ��x − Xi��θ∗� ≤ ρ�, where ρ is small, the function
f can be nicely approximated with a linear function. Let now ∇̂f�Xi� be the
estimator of ∇f�Xi� based [in the same way as in (2.3)] on the local linear
approximation of f over the strip S�Xi�; that is,

(
f̂�Xi�

∇̂f�Xi�

)
= arginf

c∈�� β∈�d

n∑
j=1

[
Yj − c − β��Xj − Xi�

]2

× K

( ��Xj − Xi��θ∗�2
ρ2

)



(2.5)

When applying the averaging we obtain the correspondent estimators β̂ and θ̃,

β̂ = 1
n

n∑
i=1

∇̂f�Xi� and θ̃ = β̂/�β̂�


The parameter ρ in (2.5) can be selected small, for example, n−1/3, inde-
pendently of the dimensionality d and one still has enough design points in
(almost) every strip S�Xi�. One can also show that the bias of the so-defined
gradient estimators ∇̂f�Xi� in the direction orthogonal to θ∗ is of order ρ2.
Moreover, for a properly selected ρ and under some regularity conditions, the
estimator θ̂ is asymptotically normal with the rate of convergence O�n−1/2�.
Unfortunately, this estimator cannot be implemented since it involves explic-
itly the target vector θ∗. A natural idea here is to replace θ∗ in this construction
by its pilot estimator θ̂1 as in (2.2). This leads to the following iterative proce-
dure; compare Carroll, Fan, Gijbels and Wand (1997). We start with the usual
estimator β̂1 from (2.2) and (2.3) with some h = h1. Although this estima-
tor is very rough, it delivers some useful information about θ∗. At the next
step we update the gradient estimators ∇̂f2�Xi�, using the elliptic windows
�x� �S2�x−Xi�� ≤ h2�, with S2 = �I+ ρ−2

2 β̂1β̂
�
1 �−1/2 for some ρ2 < ρ1 = 1 and

h2 > h1 instead of the spherical windows �x� �x − Xi� ≤ h1�. In other words,
we shrink the original windows in the direction β̂1 (since ρ2 < 1) and stretch
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them in all the orthogonal directions (since h2 > h1):(
f̂2�Xi�

∇̂f2�Xi�

)
= arginf

c∈�� β∈�d

n∑
j=1

[
Yj − c − β��Xj − Xi�

]2
K

( �S2�Xj − Xi��2
h2

2

)

=
{ n∑
j=1

(
1
Xij

)(
1
Xij

)�
K

( �S2Xij�2
h2

2

)}−1 n∑
j=1

Yj

(
1
Xij

)
K

( �S2Xij�2
h2

2

)



This leads to the estimator β̂2 = �1/n�∑n
i=1 ∇̂f2�Xi� of β∗. We continue this

way each time compressing the averaging windows in the direction of the
current estimator β̂k and expanding them in the hyperplane orthogonal to β̂k,
so that the final windows look very much like flat layers orthogonal to β∗. After
k = k�n� iterations, the algorithm delivers the estimator θ̂ = β̂k�n�/�β̂k�n��.

Now we present the formal description of the estimator.

2.1. Iterative procedure. The procedure involves input parameters ρmin <
ρ1 and h1 < hmax, so that ρ decreases geometrically from ρ1 to ρmin by the
factor aρ and h increases geometrically from h1 to hmax by the factor ah during
iterations. The choice of these parameters will be discussed in the next section.
The algorithm reads as follows:

1. Initialization: specify parameters ρ1� ρmin� aρ� h1� hmax� ah� k = 1� β̂0 =
0.

2. Compute Sk = �I + ρ−2
k β̂k−1β̂

�
k−1�1/2.

3. For every i = 1� 
 
 
 � n, compute ∇̂fk�Xi� from the expression(
f̂k�Xi�

∇̂fk�Xi�

)
=

{ n∑
j=1

(
1
Xij

)(
1
Xij

)�
K

( �SkXij�2
h2
k

)}−1

×
n∑

j=1

Yj

(
1
Xij

)
K

( �SkXij�2
h2
k

)
�

where Xij = Xj − Xi.

4. Compute the vector β̂k = �1/n�∑n
i=1 ∇̂fk�Xi�.

5. Set hk+1 = ahhk, ρk+1 = aρρk. If ρk+1 > ρmin, then set k = k + 1 and
continue with step 2; otherwise terminate.

By k�n� we denote the total number of iterations. The last iteration esti-
mator β̂ = β̂k�n� will be used for constructing the estimator of θ∗� θ̂ = β̂/�β̂�.

It is worth mentioning that the number of iterations in the proposed
algorithm is always finite (logarithmic in n) and hence one cannot speak of
convergence of the estimator during iterations.

2.2. Choice of parameters of the algorithm. It is obvious that the quality of
estimation by the proposed method strongly depends on the rule for changing
the parameters h and ρ, and, in particular, on their values at the initial and
final iteration. The values hk increase during iteration from h1 to hmax while
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ρk decrease from ρ1 = 1 to ρmin. The value h1 is to be selected in such a
way that for every (or almost every) point Xi, the estimator ∇̂f�Xi� is well
defined. A necessary (and usually sufficient) condition is that every ball �x� �x−
Xi� ≤ h1� contains at least d + 1 design points (see the modified procedure
in the next section for more discussion). The values of h and ρ at the last
iteration k�n� can be obtained by minimizing the risk of the estimator θ̂ (see
Corollary 1 in Section 3.3). It leads to the following recommendation: the value
hk�n� at the last iteration should be as large as possible, that is, about 1; in
opposition, the value ρmin should be selected as small as possible, but still
providing enough design points in every (or almost every) local ellipsoidal
neighborhood Ek�Xi� = �x� �Sk�x − Xi�� ≤ hk�. We propose the following
empirical rule:

ρ1 = 1� ρmin = n−1/3� aρ = e−1/6�

h1 = C0n
−1/4∨d� hmax = C0� ah = e1/2�4∨d��

(2.6)

where C0 ≥ 1 is to be defined depending on the design; see the modified proce-
dure for a proposal. The rule (2.6) obviously leads to the number of iterations
k�n� ≈ logaρ�ρ1/ρmin� = 2 log n providing hk�n� ≈ hmax.

Note also that every neighborhood Ek�Xi� is stretched at each iteration
step by factor ah in all directions and is shrunk by factor aρ in direction of the
estimator θ̂k. Therefore, the Lebesgue measure of every such neighborhood is
changed each time by the factor ed/�2�4∨d�−1/6� which is larger or equal to 1 for
all d ≥ 2. Under the assumption of a random design with a positive density,
this would lead to an increase of the mean number of design points inside
each Ek�Xi�.

3. Theoretical properties of the index estimator. In this section we
present some results describing the properties of the estimator θ̂. First we
introduce another model representation which seems to be more convenient
for our purposes.

Let the average gradient vector β∗ be defined by (2.1). Clearly β∗ is propor-
tional to θ∗. Therefore, if �β∗� > 0, we may rewrite the model assumption (1.2)
in the form

f�x� = g�x�β∗��(3.1)

where the new link function g is defined by g�u� = g0�u/�β∗��.

3.1. Assumptions. We consider the following assumptions.

Assumption 1 (Kernel). The kernel K�·� is a continuously differentiable
decreasing function on �+ with K�0� = 1 and K�x� = 0 for all �x� ≥ 1.

Assumption 2 (Errors). The random variables εi in (1.1) are independent
and normally distributed with zero mean and variance σ2.
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Assumption 3 (Link function). The function g from (3.1) is twice differen-
tiable with a bounded second derivative, so that, for some constant Cg and for
all u� v ∈ �, it holds

�g�v� − g�u� − �v − u�g′�u�� ≤ Cg�u − v�2


Our last assumption concerns the design properties. In what follows we
assume that the design is deterministic. That is, X1� 
 
 
 �Xn are nonrandom
points in �d. Note, however, that the case of a random design can be consid-
ered as well, supposing X1� 
 
 
 �Xn independent and identically distributed
random points in �d with a design density p�x�. Then all the results should
be understood conditionally on the design.

In order for Algorithm 1 to work, we have to suppose that the design points
�Xi� are “well diffused” and, as a consequence, all the matrices

Vk�Xi� =
n∑

j=1

(
1
Xij

)(
1
Xij

)�
K

( �SkXij�2
h2
k

)
�

i = 1� 
 
 
 � n� k = 1� 
 
 
 � k�n�
are nondegenerated. Here Sk = �I + ρ−2

k β̂k−1β̂
�
k−1�1/2 with β̂k−1 being the

estimator of the vector β∗ constructed at the preceding iteration step. We also
introduce an “ideal” matrix S∗

k = �I + ρ−2
k β∗�β∗���1/2 and define the matrix

Uk = �S∗
k�−1S2

k�S∗
k�−1


This matrix Uk characterizes the accuracy of estimating the vector β∗ by β̂k−1.
If β̂k−1 = β∗, then Uk = I. We shall see that these matrices Uk are typically
close to I. Given a matrix U and k ≤ k�n� we define

Ni�k�U� =
n∑

j=1

K
(
Z�

ij� kUZij�k

)
� i = 1� 
 
 
 � n�

�i� k�U� =
n∑

j=1

(
1
Zij

)(
1
Zij

)�
K
(
Z�

ij� kUZij�k

)
� i = 1� 
 
 
 � n�

where Zij�k = h−1
k S∗

k�Xj − Xi�. Our design assumption means in particular
that the �d+ 1�×�d+ 1�-matrices �i� k�U� are well defined for all U close to I
and for all i ≤ n.

In what follows �A� stands for the matrix norm associated with the
Euclidean vector norm, �A� = supλ �Aλ�/�λ�.

Assumption 4 (Design). There exist constants CV�CK�CK′ and some
α > 0, such that for all matrices U satisfying �U−I� ≤ α and for all k ≤ k�n�
the following conditions hold:

(i) The inverse matrices �i� k�U�−1 are well defined and

Ni�k�U���i� k�U�−1� ≤ CV� i = 1� 
 
 
 � n
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(ii) For j = 1� 
 
 
 � n,

n∑
i=1

1
Ni�k�U�K

(
Z�

ij� kUZij�k

) ≤ CK�

n∑
i=1

1
Ni�k�U�

∣∣∣K′(Z�
ij� kUZij�k

)∣∣∣ ≤ CK′ 


Here K′ means the derivative of the kernel K.

Remark 1. It can be checked that in the case of random design with a
continuous positive density one can fix some constants CV�CK and CK′ (which
depend on the dimension d and the design distribution) such that the bounds
in Assumption 4 hold with probability which converges to 1 exponentially as
n grows.

3.2. Accuracy of the estimator θ̂. In what follows by C�C1�C2� etc. we
denote generic constants depending on d�Cg�CV�CK and σ only.

Theorem 1. Let Assumptions 1 through 4 hold. Under the condition

�β∗� > 4
√

2σCVCKznn
−1/2(3.2)

with zn = �1 + 2 log n + 2 log log n�1/2, it holds for n sufficiently large,

P
(∣∣∣∣�θ̂ − θ� − γ∗

√
n

∣∣∣∣ > Cz2
nn

−2/3

�β∗�
)

≤ 3k�n�
n

�

where γ∗ is a Gaussian random vector in �d with Eγ∗ = 0 and

E�γ∗�2 ≤ 2σ2C2
VC

2
K�β∗�−2


Here k�n� is the total number of iterations, k�n� ≤ C log n.

Remark 2. Note that one of the consequences of Theorem 1 is that the
normalized error

√
n�θ̂ − θ� is close in distribution to the Gaussian vector γ∗.

Further, since the error θ̂ − θ is bounded, it also implies that E�θ̂ − θ� =
O�n−1/2�.

Remark 3. The result of Theorem 1 is essentially nonasymptotic; that
is, the estimator θ̂ delivers the given accuracy of estimation with a given
probability close to 1. The only requirement for this is some minimal number
of observations; that is, n should be larger that some value n0 depending on
the model we consider.
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3.3. Properties of the estimator β̂. The following results are used in the
proof of Theorem 1. They are of certain interest on their own. We start with
the description of the accuracy of the first step estimator β̂1.

Proposition 1. Under Assumptions 1 through 4, it holds

β̂1 − β∗ = s1h1 + η1

h1
√
n
�

where s1 is a deterministic vector in �d satisfying �s1� ≤ √
2CgCV and η1 is a

Gaussian random vector in �d with zero mean satisfying E�η1�2 ≤ 2σ2C2
VC

2
K.

Also

P
(

�β̂1 − β∗� >
√

2CgCVh1 +
√

2σCVCKz

h1
√
n

)
≤ ze−�z2−1�/2 ∀ z ≥ 1


Consider now the “final” estimator β̂ of β∗. The losses �β̂ − β∗� are not
homogeneous w.r.t. the orientation in the space �d that is induced by appli-
cation of elliptic windows for estimating the gradient vectors ∇f�Xi�. To
emphasize this property, we introduce for every k ≤ k�n� the d×d-matrix
P∗

ρk
= �I + ρ−2

k β∗�β∗���−1/2 = �S∗
k�−1. Note that when restricted to the hyper-

plane orthogonal to θ∗, P∗
ρk

coincides with the identity mapping. However, its
eigenvalue which corresponds to the eigenvector θ∗ is of order ρk.

Theorem 2. Let Assumptions 1 through 4 hold. There exists a Gaussian
zero mean random vector ξ∗ ∈ �d such that, with ρ = ρk�n� and n large enough,

P
(∣∣∣∣P∗

ρ�β̂ − β∗� − ξ∗
√
n

∣∣∣∣ > C1z
2
nn

−2/3
)

≤ 3k�n� − 1
n

and E�ξ∗�2 ≤ 2σ2C2
VC

2
K.

Corollary 1. Under the conditions of Theorem 2, for every z ≥ 1,

P
(∣∣P∗

ρ�β̂ − β∗�∣∣ >
√

2σCVCKz√
n

+ C1z
2
nn

−2/3
)

≤ ze−�z2−1�/2 + 3k�n� − 1
n




3.4. Comments. By inspecting the proof of Theorems 1 and 2 one may
conclude that all the results hold in the case of heteroskedastic Gaussian
errors εi, however, σ2 is to be understood as sup1≤i≤nEε

2
i . Similarly, the

results can be extended to the case of non-Gaussian errors under the con-
dition sup1≤i≤nE exp�λεi� ≤ 4λ for some positive constants λ and 4λ.

One natural question that arises when Theorems 1 and 2 are concerned is
what happens if the model assumption is misspecified, that is, if the regres-
sion function f�x� does not possess a single-index structure. It is known that
the average derivative method gives (under rather restrictive assumptions) a√
n-consistent estimator of the vector

∫ ∇f�x�w�x�dx with some weight func-
tion w which depends on the design density [cf. Stoker (1986) and Powell,
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Stock and Stoker (1989)]. A similar result holds for our first step estimator θ̂1.
However, now the rate of convergence is n−1/4 for d ≤ 4 and n−1/d for d > 4.
Unfortunately, the results of Theorems 1 and 2 cannot be extended without
additional assumptions to the situation when the model structure (1.1) is not
valid. This issue is confirmed by our simulated results in the next section.
We refer to our forthcoming paper for an extension of the above-presented
procedure which allows for a multiindex structure and which can be used for
testing the single-index assumption.

4. Implementation and simulation results. This section illustrates
the performance of the proposed procedure for some simulated data sets. First
we present a slightly modified procedure which allows us to deal with an irreg-
ular design. This issue turned out to be important for the performance of the
method with small and moderate sample sizes.

We start by some informal discussion. In the algorithm described above in
Section 2 the estimator β̂k is defined at each step as a linear combination of
the estimated gradient vectors ∇̂f�Xi�. To ensure good asymptotic properties
of the procedure, the estimators ∇̂f�Xi� should be well defined. This requires
some local regularity of the design in the corresponding neighborhoods of the
points Xi (cf. Assumption 4). If the condition of design regularity does not hold
even in a few points, the variance of the gradient estimators at these points
can be very large, which may destroy the quality of the index estimators β̂.
This problem can be efficiently dealt with by using the following weighted
scheme. The idea is to multiply each summand in the expression for β̂k by
some weight which expresses the degree of local regularity of the design. This
leads to the following modified procedure.

1. Initialization: specify parameters ρ1� ρmin� aρ� h1� hmax� ah, Cw. Define

w̄ as the square root of the minimal eigenvalue of the matrix �� with

�� = 1
EK�ζ�ζ�E

(
1
ζ

)(
1
ζ

)�
K�ζTζ��

where ζ is random and uniformly distributed over the ball B1 = �x ∈ �d �
�x� ≤ 1�: w̄2 = λmin� �� �; set k = 1, β̂0 = 0.

2. Compute Sk = �I + ρ−2
k β̂k−1β̂

�
k−1�1/2.

3. For every i = 1� 
 
 
 � n, compute the matrix �̂k�Xi� with

�̂k�Xi� = 1∑n
j=1 K

(�Wij�k�2)
n∑

j=1

(
1

Wij�k

)(
1

Wij�k

)�
K
(�Wij�k�2)�

where Wij�k = h−1
k Sk�Xj − Xi� and define wi as the square root of the

minimal eigenvalue of �̂k�Xi�� w2
i = λmin��̂k�Xi��.

4. If the condition

w1 + · · · + wn ≥ nCww̄
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is not fulfilled then increase hk by the factor ah, that is, hk �= ahhk.
If hk > hmax, terminate, otherwise repeat from Step 3.

5. For every i = 1� 
 
 
 � n, compute ∇̂fk�Xi�:(
f̂k�Xi�

∇̂fk�Xi�

)
=

{ n∑
j=1

(
1
Xij

)(
1
Xij

)�
K

( �SkXij�2
h2
k

)}−1

×
n∑

j=1

(
1
Xij

)
K

( �SkXij�2
h2
k

)



6. Compute the vector β̂k = �∑n
i=1 wi�−1 ∑n

i=1 ∇̂fk�Xi�wi with the previously

obtained wi’s. If �β̂k� > 1, then normalize β̂k �= β̂k/�β̂k�.
7. Set ρk+1 = aρρk and hk+1 = min�ahhk� hmax�. If ρk+1 > ρmin, then set

k = k + 1 and continue with step 2; otherwise terminate.

The estimator β̂k from the last iteration is applied for estimating θ∗� θ̂mod =
β̂k/�β̂k� .

In our simulation study we apply the modified procedure with the following
parameter setting:

h1 = n−1/4∨d� hmax = 2
√
d� ah = e1/2�4∨d��

ρ1 = 1� ρmin = n−1/3/hmax� aρ = e−1/6

(4.1)

We also set Cw = 0
5 and apply the quartic kernel K�t� = �1 − t2�2+.
The objective of our simulation study is to illustrate the following features

of the procedure:

1. How the quality of estimation improves during iteration.
2. Dependence on the sample size n, dimensionality d and the noise level σ .
3. Relative performance to the one-step estimator with the “ideal” bandwidth.
4. Behavior of the estimator when the single-index assumption does not hold.

Note that the first-step estimator of the algorithm can be viewed as a ver-
sion of the average derivative estimator �ADE� which is a natural competitor
to the iterative estimator. In our study we calculate this estimator selecting
the parameter h1 by optimizing the corresponding mean losses (the “ideal”
bandwidth).

The performance of the method is illustrated by means of the following
examples. We consider the model described by (1.1) and (1.2) with σ = 0
1�0
2,
0
4 and 0
8. The design X1� 
 
 
 �Xn is modeled randomly in the cube �−1�1	d
with independent components so that every component of �Xi + 1�/2 fol-
lows B�τ�1�-distribution. The parameter τ controls the skewness of the beta-
distribution with τ = 1 corresponding to the uniform design. We also set
g�u� = u2eu and θ = �1�2�0� 
 
 
 �0��/

√
5. The estimation error is measured in

the l1-norm in �d: �θ̂ − θ∗�1 = ∑d
j=1 �θ̂j − θj� which allows to easily evaluate

the “error per parameter.”
The empirical results for the mean absolute error E�θ̂− θ∗�1 based on 250

Monte Carlo replicates are collected in Table 1. The last column displays the
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Table 1

MAE E�θ̂ − θ∗�1 for ADE with optimal bandwidth and first, fifth, tenth and last iteration1

n d � � ADE First step Fifth step Tenth step Last step ADE/last

200 4 0.1 1 0.1165 0.1228 0.0868 0.0762 0.0425 2.74
200 4 0.2 1 0.1584 0.1584 0.1146 0.1063 0.0838 1.89
400 4 0.1 1 0.0770 0.0940 0.0606 0.0488 0.0294 2.62
400 4 0.2 1 0.1116 0.1157 0.0792 0.0709 0.0584 1.91
400 4 0.4 1 0.1741 0.1751 0.1277 0.1253 0.1165 1.49
800 4 0.1 1 0.0537 0.0782 0.0461 0.0344 0.0205 2.62
800 4 0.2 1 0.0809 0.0927 0.0585 0.0497 0.0409 1.98
800 4 0.4 1 0.1302 0.1322 0.0910 0.0870 0.0817 1.59
800 4 0.8 1 0.2188 0.2247 0.1663 0.1675 0.1634 1.34

200 6 0.1 1 0.2614 0.2614 0.1490 0.1023 0.0702 3.72
200 6 0.2 1 0.3054 0.3054 0.1954 0.1542 0.1391 2.20
400 6 0.1 1 0.1688 0.1749 0.0927 0.0609 0.0468 3.61
400 6 0.2 1 0.2092 0.2094 0.1267 0.1000 0.0932 2.25
400 6 0.4 1 0.2974 0.3084 0.2101 0.1883 0.1856 1.60
800 6 0.1 1 0.1120 0.1284 0.0635 0.0405 0.0314 3.57
800 6 0.2 1 0.1466 0.1511 0.0858 0.0671 0.0629 2.33
800 6 0.4 1 0.2131 0.2131 0.1402 0.1265 0.1257 1.70
800 6 0.8 1 0.3435 0.3608 0.2626 0.2486 0.2479 1.39

200 10 0.1 1 0.6094 0.6094 0.3597 0.2048 0.1397 4.36
200 10 0.2 1 0.6729 0.6752 0.4410 0.3027 0.2773 2.43
400 10 0.1 0.75 0.7670 0.8799 0.6841 0.5528 0.1447 5.30
400 10 0.1 1 0.4186 0.4196 0.2163 0.1105 0.0822 5.09
400 10 0.1 1.5 0.2482 0.2617 0.1958 0.1378 0.0412 6.02
400 10 0.2 1 0.4665 0.4665 0.2726 0.1763 0.1659 2.81
400 10 0.4 1 0.5916 0.6082 0.4210 0.3247 0.3287 1.80
800 10 0.1 1 0.2939 0.2939 0.1351 0.0678 0.0536 5.48
800 10 0.2 1 0.3272 0.3273 0.1758 0.1142 0.1070 3.06
800 10 0.4 1 0.4190 0.4262 0.2760 0.2151 0.2124 1.97
800 10 0.8 1 0.6302 0.6778 0.5018 0.4244 0.4112 1.53

1All values are estimated from 250 simulations.

relative improvement given by the iterative procedure compared with the ADE
with the optimal (risk minimizing) bandwidth. This improvement is defined as
the ratio of the corresponding risks. The results clearly illustrate how the esti-
mation quality is improved during iterations and they are in agreement with
the asymptotic root-n consistency of the estimator. Compared to the average
derivative estimator with the “ideal” bandwidth choice, the proposed proce-
dure provides superior results in all situations although the improvement is
design dependent. For instance, it decreases as σ increases which has a simple
explanation: the iterative procedure allows reducing the bias of the estimator
but the stochastic error is still there and it increases with σ while the relative
improvement decreases.
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Fig. 1. Box plots for d−1√
n�θ̂n − θ∗�1 with σ = 0
1 and n = 200�400�800.

It is also worth mentioning that the improvement attained by the iterative
procedure increases with dimension d. For instance, with n = 800 and σ = 0
1,
it varies from the factor 2.62 for d = 4 to 5.48 for d = 10. This fact is fully in
agreement with our heuristic discussion and theoretical results. Indeed, the
bias component in the risk of the ADE increases with dimension d but the
iterative procedure allows one to eliminate it.

Another interesting observation is that the improvement increases for assy-
metric design.

Figure 1 displays Box-and-Whisker plots based on 250 replicates for d−1√
n�θ̂ − θ∗�1 for different values of dimension d and sample size n with fixed

σ = 0
1. Box plots are produced by function boxplot from R; see The R Ref-
erence index on http://www.ci.tuwien.ac.at/R/ for details. Similar box plots for
σ−1d−1√

n�θ̂−θ∗�1 with n = 800 but different values of σ are given in Figure 2.
The figures clearly indicate that the losses of the iterative estimator are essen-
tially proportional to the noise level σ and to n−1/2. One can also see that
the estimation “error per parameter” does not increase with the dimension d
and that the variance and the interquartile range of the relative error even
decrease.

Table 2 shows how the estimator works in the case where the single-index
model assumption does not hold. We consider the ten-dimensional situation
(d = 10) for the sample size n = 400 and σ = 0
1, the covariates are uniformly
distributed over the cube �−1�1	d and

f�x� =
√

1 − η2x2
1e

x1 + ηx2
2e

x2 
(4.2)

Here the parameter η controls the deviation from the single-index model (cor-
responding to η = 0) with η = 1/

√
2 leading to an essentially double-index

model. For the model (4.2) the mean gradient β∗ (averaged w.r.t. the design
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Fig. 2. Box plots for σ−1d−1√
n�θ̂ − θ∗�1 with n = 800 and σ = 0
1�0
2�0
4�0
8.

distribution) is clearly in the direction θ∗ = �
√

1 − η2� η�0� 
 
 
 �0�� with the
same value of �β∗� = 1 for all η.

One can see that the iterative procedure still works for small values of
η, that is, if the single-index assumption is not significantly violated. For
η approaching 1/

√
2, the starting iterations still provide some improvement

while the further steps lead to a moderate loss of accuracy compared to the
first step estimator.

The general conclusion of this simulation study is that the proposed pro-
cedure works well even for reasonably small sample sizes under a variety of
design assumptions. It outperforms the average derivative estimator in all sit-
uations we considered especially in high dimensions, provided that the under-
lying single-index assumption is not significantly violated.

Table 2

MAE E�θ̂− θ∗�1 for ADE with optimal bandwidth, and first, fifth, tenth and last iteration for the

model f�x� =
√

1 − η2x2
1e

x1 + ηx2
2e

x2
1

n d � � ADE First step Fifth step Tenth step Last step ADE/last

400 10 0.1 0.707 0.3817 0.4098 0.3768 0.4119 0.4791 0.80
400 10 0.1 0.500 0.3846 0.3937 0.3328 0.3495 0.3863 1.00
400 10 0.1 0.250 0.3544 0.3555 0.2362 0.1980 0.2020 1.75
400 10 0.1 0.125 0.3401 0.3402 0.1940 0.1253 0.1193 2.85
400 10 0.1 0.0 0.3341 0.3341 0.1766 0.0827 0.0637 5.24

1All values are estimated from 250 simulations.
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Another conclusion of our study is that the iterative procedure needs some
minimal number of observations to start working. This value increases with
the noise level.

If the underlying single-index assumption does not hold, then the iterative
procedure does not provide an improvement but delivers approximately the
same quality as the ADE with the optimal bandwidth.

5. Proofs. Proofs of Theorems 1 and 2 are based on the following tech-
nical statement which qualifies the improvement of the estimator β̂k at each
iteration step. Suppose that we are given some fixed values h and ρ (which
mean the current values hk and ρk) and a fixed vector b ∈ �d which can be
viewed as a pilot estimator β̂k−1 of β∗ obtained at the previous step. Define
Sb = (

I + ρ−2bb�)1/2 and set(
f̂b�Xi�

∇̂fb�Xi�

)
=

{ n∑
j=1

(
1
Xij

)(
1
Xij

)�
K

( �SbXij�2
h2

)}−1

×
n∑

j=1

Yj

(
1
Xij

)
K

( �SbXij�2
h2

)
�

β̂b = 1
n

n∑
i=1

∇̂fb�Xi��

where, recall, Xij = Xj−Xi. We aim to evaluate the estimation errors β̂b−β∗.

Proposition 2. Let Assumptions 1 through 4 hold. With P∗
ρ = �I + ρ−2×

β∗�β∗���−1/2 and some positive δ < ρ/4, define the set �δ� ρ = �b ∈ �d � �P∗
ρ×(

b − β∗�� ≤ δ�. There exists a Gaussian vector η∗ in �d such that E�η∗�2 ≤
2σ2C2

VC
2
K and it holds

P
(

sup
b∈�δ� ρ

∣∣∣∣P∗
ρ�β̂b − β∗� − η∗

h
√
n

∣∣∣∣ >
√

2CgCVhρ
2

�1 − α�3/2 + σCα�nα

h
√
n

)
≤ 2/n

with α = 2δ/ρ + δ2/ρ2 and

Cα�n = 1
2

(√
2CVCK′

�1 − α�2 + 2
√

2C2
VCKCK′

�1 − α�3
)(

2 +
√

�3 + d� log�4n�
)

(5.1)

Before proving this statement, we present one straightforward corollary.

Corollary 2. It holds under Assumptions 1 through 4 for every z ≥ 1,

P
(

sup
b∈�δ� ρ

∣∣∣∣P∗
ρ�β̂b − β∗�

∣∣∣∣ >
√

2CgCV hρ2

�1 − α�3/2 + z
√

2σCVCK

h
√
n

+ σCα�nα

h
√
n

)

≤ ze−�z2−1�/2 + 2
n
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Indeed, the statement of the corollary follows directly from Proposition 2
and Lemma 7 from the Appendix.

Proof of Proposition 2. We begin with the following simple lemma.

Lemma 1. If β is a vector in �d such that �P∗
ρ�β−β∗�� ≤ δ for some δ > 0,

then ∥∥P∗
ρ

(
ββ� − β∗�β∗��)Pρ

∥∥ ≤ 2ρδ + δ2


Proof. Since∣∣P∗
ρβ

∗∣∣2 = ∥∥P∗
ρβ

∗�β∗��P∗
ρ

∥∥ = ∥∥(I + ρ−2β∗�β∗��)−1
β∗�β∗��∥∥ ≤ ρ2�

the condition of the lemma yields∥∥P∗
ρ

(
ββ� − β∗�β∗��)P∗

ρ

∥∥ ≤ 2�P∗
ρ�β − β∗��β∗��P∗

ρ� + �P∗
ρ�β − β∗�(β − β∗)�

P∗
ρ�

≤ 2�P∗
ρ�β − β∗�� �P∗

ρβ
∗� + �P∗

ρ�β − β∗��2 ≤ 2δρ + δ2

as required. ✷

It is useful to introduce the notation

u = ρ−1P∗
ρb� U = P∗

ρ

(
I + ρ−2bb�)P∗

ρ = �P∗
ρ�2 + uu�

and similarly,

u∗ = ρ−1P∗
ρβ

∗� U∗ = P∗
ρ

(
I + ρ−2β∗�β∗��

)
P∗

ρ = I


Obviously the condition �P∗
ρ

(
b − β∗)� ≤ δ implies �u − u∗� ≤ δ/ρ; that is, the

inclusion b ∈ �δ� ρ is equivalent to u ∈ �u � �u − u∗� ≤ δ/ρ� and by Lemma 1
also �U − U∗� = �uu� − u∗�u∗��� ≤ 2δ/ρ + δ2/ρ2 = α.

Next, for every i� j ≤ n, define Zij = h−1�P∗
ρ�−1�Xj − Xi� and set

�i�U� =
n∑

j=1

(
1
Zij

)(
1
Zij

)�
K�Z�

ijUZij��

ŝi�U� = h−1�i�U�−1
n∑

j=1

(
1
Zij

)
YjK�Z�

ijUZij�


It is easy to check that ŝi�U� = (
h−1f̂b�Xi��P∗

ρ∇̂fb�Xi�
)� and hence,

P∗
ρβ̂b = �dn

−1
n∑
i=1

ŝi�U��(5.2)

where �d is the mapping from �d+1 onto �d keeping the last d coordinates
and leaving out the first one. The model equations (1.1) and (3.1) imply

ŝi�U� = si�U� + ζi�U�(5.3)
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with

si�U� = h−1�i�U�−1
n∑

j=1

(
1
Zij

)
f�Xj�K�Z�

ijUZij�

= h−1�i�U�−1
n∑

j=1

(
1
Zij

)
g�X�

j β
∗�K�Z�

ijUZij��

ζi�U� = h−1�i�U�−1
n∑

j=1

(
1
Zij

)
εjK�Z�

ijUZij�

so that

P∗
ρ�β̂b − β∗� = �dn

−1
( n∑
i=1

si�U� +
n∑
i=1

ζi�U�
)

− n−1
n∑
i=1

P∗
ρ∇f�Xi�
(5.4)

We define η∗ = h
√
n�dζ�U∗� where ζ�U� = n−1 ∑n

i=1 ζi�U�. The assertion of
the proposition easily follows from (5.4) if we show that

sup
u� �u−u∗�≤δ/ρ

��dsi�U� − P∗
ρ∇f�Xi�� ≤

√
2CgCV

�1 − α�3/2hρ
2� i = 1� 
 
 
 � n�(5.5)

P
(

sup
u ��u−u∗�≤δ/ρ

�ζ�U� − ζ�U∗�� > σCα�nα

h
√
n

)
≤ 2/n(5.6)

with U = �P∗
ρ�2 + uu� and U∗ = I, and that

E�ζ�U∗��2 ≤ 2σ2C2
VC

2
K

h2n

(5.7)

Recall that �u − u∗� ≤ δ/ρ implies �U − I� ≤ α for U = �P∗
ρ�2 − uu�. The

following statement will be useful in the sequel.

Lemma 2. Let �U−I� ≤ α < 1. Then for all i� j with Z�
ijUZij ≤ 1, it holds

�Zij�2 ≤ �1 − α�−1.

Proof. Note that the inequalities Z�
ijUZij ≤ 1 and �U − I� ≤ α imply∣∣Z�

ijUZij − �Zij�2∣∣ = ∣∣Z�
ij�U − I�Zij

∣∣ ≤ α�Zij�2

and hence �Zij�2 ≤ �1 − α�−1Z�
ijUZij. ✷

Next we check (5.5). Since(
h−1f�Xi�
P∗

ρ∇f�Xi�
)

= �i�U�−1
n∑

j=1

(
1
Zij

)(
1
Zij

)�( h−1f�Xi�
P∗

ρ∇f�Xi�
)
K�Z�

ijUZij�

= h−1�i�U�−1
n∑

j=1

(
1
Zij

){
f�Xi�+�Xj−Xi��∇f�Xi�

}
K�Z�

ijUZij�
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it holds

si�U�−
(
h−1f�Xi�
P∗

ρ∇f�Xi�
)

=h−1�i�U�−1
n∑

j=1

(
1
Zij

){
f�Xj�−f�Xi�

− �Xj−Xi��∇f�Xi�
}
K�Z�

ijUZij�

=h−1�i�U�−1
n∑

j=1

(
1
Zij

)
rijK�Z�

ijUZij��

where, in view of (3.1),

rij=g�X�
j β

∗�−g�X�
i β

∗�−�Xj−Xi��β∗g′�X�
i β

∗�

Since the kernel K vanishes outside �−1�1	, it suffices to consider only sum-
mands with �Z�

ijUZij�≤1. It is clear that

�X�
j β

∗ −X�
i β

∗�2 = �Xj−Xi��β∗�β∗���Xj−Xi�

≤ ρ2�Xj−Xi��
(
I+ρ−2β∗�β∗��

)
�Xj−Xi�=h2ρ2�Zij�2�

which implies by Lemma 2 and Assumption 3 for every pair �i�j� with Z�
ijU×

Zij≤1:

�rij�≤ Cgh
2ρ2

1−α
� 1+∣∣Zij

∣∣2 ≤1+ 1
1−α

≤ 2
1−α




Using Assumption 4 we bound

��dsi�U�−P∗
ρ∇f�Xi�� ≤ h−1

∣∣∣∣�i�U�−1
n∑

j=1

(
1
Zij

)
rijK�Z�

ijUZij�
∣∣∣∣

≤ Cghρ
2

1−α
��i�U��−1

∣∣∣∣ n∑
j=1

(
1+�Zij�2

)1/2

K�Z�
ijUZij�

∣∣∣∣
≤

√
2�1−α�−3/2CgCVhρ

2

and (5.5) follows.
Further, we study the stochastic component ζ�U�=�1/n�∑n

i=1ζi�U�. It fol-
lows directly from the definition that there are vector coefficients ci�U� such
that

ζ�U�=
n∑
i=1

ci�U�εi


We show that these coefficients satisfy the following conditions.
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Lemma 3. It holds that:

(i)

n∑
i=1

�ci�U∗��2 ≤ 2C2
VC

2
K

h2n



(ii)

sup
U��U−I�≤α

n∑
i=1

�ci�U��2 ≤ 2C2
VC

2
K

�1−α�h2n



(iii) For every unit vector e∈�d,

sup
U��U−I�≤α

∥∥∥∥ d

dU
e�ci�U�

∥∥∥∥≤ 4α
nh

with

4α=
√

2�1−α�−3/2CVCK′ +2
√

2�1−α�−5/2C2
VCKCK′ 
(5.8)

Proof. Define for i�j=1�


�n,

Ni�U�=
n∑

j=1

K�Z�
ijUZij�� vij�U�=�i�U�−1

(
1
Zij

)



Then

ζ�U� = 1
nh

n∑
i=1

�i�U�−1
n∑

j=1

(
1
Zij

)
εjK�Z�

ijUZij�

=
n∑

j=1

(
1
nh

n∑
i=1

vij�U�K�Z�
ijUZij�

)
εj

=
n∑

j=1

cj�U�εj


It follows from Lemma 2 and Assumption 4(i) that, if �U−I�≤α, then for
every i�j with Z�

ijUZij≤1, it holds

∣∣Ni�U�vij�U�∣∣≤CV�1+�Zij�2�1/2 ≤CV

√
2�1−α�−1/2(5.9)

and by Assumption 4(ii),

�cj�U��≤
√

2CV

nh�1−α�1/2
n∑
i=1

K�Z�
ijUZij�

Ni�U� ≤
√

2CVCK

nh�1−α�1/2 
(5.10)
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As a particular case, with U=U∗ =I and α=0, this yields

�ci�U∗��≤
√

2CVCK

nh

and the first two assertions of the lemma follows.
Next we bound the derivative of each coefficient ci�U� w.r.t. the matrix U.

Let e1 and e2 be two unit vectors in �d. Clearly,

d

dU
e�
1 �i�U�e2 =

n∑
j=1

e�
1

(
1
Zij

)(
1
Zij

)�
e2K

′�Z�
ijUZij�ZijZ

�
ij

and Lemma 2 and Assumption 4 yield∥∥∥∥ d

dU
e�
1 �i�U�e2

∥∥∥∥≤2�1−α�−2
n∑

j=1

�K′�Z�
ijUZij��≤2�1−α�−2CK′Ni�U�


Next, (i) and Assumption 4 provide∥∥∥∥ d

dU
e�
1 �i�U�−1e2

∥∥∥∥ =
∥∥∥∥e�

1 �i�U�−1 d

dU
�i�U�e2�i�U�−1

∥∥∥∥
≤ ∥∥�i�U�−1

∥∥2
∥∥∥∥ d

dU
e�
1 �i�U�e2

∥∥∥∥
≤ C2

V

Ni�U�2�1−α�−2CK′ 


These results combined with Lemma 2 and (5.9) imply for every U with �U−
I�≤α and for every unit vector e,∥∥∥∥ n∑

i=1

d

dU
e�vij�U�K�Z�

ijUZij�
∥∥∥∥

≤
n∑
i=1

�Zij�2∣∣vij�U�∣∣�K′�Z�
ijUZij��+

n∑
i=1

∥∥∥∥ d

dU
e�vij�U�

∥∥∥∥K�Z�
ijUZij�

≤
√

2CV

�1−α�3/2
n∑
i=1

�K′�Z�
ijUZij��

Ni�U� + 2
√

2C2
VCK′

�1−α�5/2
n∑
i=1

K�Z�
ijUZij�

Ni�U�

≤
√

2�1−α�−3/2CVCK′ +2
√

2�1−α�−5/2C2
VCKCK′ =4α


This implies for every i≤n, ∥∥∥∥ d

dU
e�ci�U�

∥∥∥∥≤ 4α
nh

with 4α from (5.8) as required. ✷
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Let u fulfill �u−u∗�≤δ/ρ and U=�P∗
ρ�2+uu�. Then

�u�≤1+δ/ρ=
√

1+α≤�1−α�−1/2

and hence, �dU/du�=�u�≤�1−α�−1/2. Now Lemma 3(iii) ensures for every
unit vector e∈�d and all i=1�


�n,∣∣∣∣ ddue�ci�U�

∣∣∣∣≤
∥∥∥∥ d

dU
e�ci�U�

∥∥∥∥
∥∥∥∥dUdu

∥∥∥∥≤ 4α�u�
nh

≤ 4′
α

nh
(5.11)

with

4′
α= 4α√

1−α
=

√
2CVCK′

�1−α�2 + 2
√

2C2
VCKCK′

�1−α�3 


Now we are ready to show (5.7) and (5.6). By Lemma 3(i),

E�ζ�U∗��2 =σ2
n∑
i=1

�ci�U∗��2 ≤σ2 2C2
VC

2
K

h2n
�

which implies (5.7). The assertion (5.6) follows from (5.11) and Lemma 8; see
Appendix, applied with ai�u�=ci�U�√n for U=Uu=�P∗

ρ�2+uu�, r=α/2 and
4=4′

α/h
√
n.

5.1. Proof of Proposition 1. This statement can be proved in the same way
as Proposition 2. It suffices to follow the proof of Proposition 2 and to replace
P∗

ρ formally by the unit operator and b by zero vector. We omit the details.

5.2. Proof of Theorem 2. To be able to apply Proposition 2 to the estima-
tors β̂k at step k, we need that the vector b= β̂k−1 coming as the result of
the preceding iteration belongs to the set �ρ�δ=�b � �P∗

ρb�≤δ� with ρ=ρk and
some δk<ρk/4. Since the vector β̂k−1 is random, we have to ensure that the
probability of the event �β̂k−1 ∈�ρk�δk

� is sufficiently large. We now aim to
show that this condition is satisfied when n is large enough.

Let the numbers hk and ρk be as in the algorithm description, k=1�


�k�n�.
Define successively the values δk and αk, k=1�


�k�n� by α1 =0 and

δk=
√

2CgCV

�1−αk�3/2 hkρ
2
k+

√
2σCVCKzn
hk

√
n

+ σCαk�n
αk

hk

√
n

�

αk+1=ρ−2
k+1

(
2δkρk+δ2

k

)(5.12)

with zn=�1+2logn+2log logn�1/2.

Lemma 4. For n sufficiently large, the αk’s fulfill maxk≤k�n�αk<1/4. In
addition, for the last iteration k�n�, it holds

µn �=
√

2CgCV

�1−αk�n��3/2
hk�n�ρ

2
k�n� +

σCαk�n��nαk�n�
hk�n�

√
n

≤C1z
2
nn

−2/3
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Proof. The rule (2.6) implies αk+1 =2acδk/ρk+a2cδ2
k/ρ

2
k. Next,

δk
ρk

=
√

2CgCV

�1−αk�3/2 hkρk+
√

2σCVCKzn+σCαk�n
αk

hkρk
√
n




By (2.6), hkρk=hk−1ρk−1a
1−c<hk−1ρk−1, and hence, hkρk≤h1ρ1 =C0n

−1/�4∨d�

and
√
nhkρk≥√

nhk�n�ρk�n� ≥C0n
1/6 which ensure the first assertion of the

lemma. Next, it is easy to see that δk�n�−1 ≤Cznn
−1/2 implies αk�n� ≤C1znn

−1/6

and, since Cαk�n
≤Czn, also µn≤C1z

2
nn

−2/3. ✷

Next, successive application of the results of Proposition 2 and Corollary 2
leads to the following.

Lemma 5. Let n be sufficiently large. There exist random sets �1 ⊇···⊇
�k�n� such that P��k�≥1−3k/n and it holds on �k,∣∣P∗

ρk+1

(
β̂k−β∗)∣∣≤δk� k=1�


�k�n�−1


Proof. We proceed by induction in k. First we apply Proposition 1 with
z=zn to the first-step estimator β̂1 and use that zne−�z2

n−1�/2<1/n. We then
obtain

P��β̂1−β∗�≥δ1�≤1/n 
that is, there exists a random set �1 with P��1�≥1−1/n such that �β̂1−β∗�≤
δ1 on �1. This obviously implies

�P∗
ρ2

�β̂1−β∗��≤δ1


Suppose now that there is �k−1 such that P��k−1�≥1−3�k−1�/n and it holds
on �k−1 ∣∣P∗

ρk

(
β̂k−1−β∗)∣∣≤δk−1�

that is, β̂k−1 ∈�δk−1�ρk
. By Corollary 1 applied again with z=zn, there exists

another random set Ak with P�Ak�≥1−3/n such that it holds for every b∈
�δk−1�ρk

,

�P∗
ρk

�β̂b−β∗��≤δk

so that, with �k=�k−1∩Ak, we obtain P��k�≥1−3k/n and it holds on �k,

�P∗
ρk

�β̂k−β∗��≤δk


and, since for every ρ′<ρ,∥∥P∗
ρ′ �P∗

ρ�−1
∥∥2 =∥∥(I+�ρ′�−2β∗�β∗��)−1(

I+ρ−2β∗�β∗��)∥∥≤1�

the assertion follows. ✷
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Let now �k�n�−1 be the random set with P
(
�k�n�−1

)≥1−�3k�n�−3�/n
shown in Lemma 5 so that on this set the estimator β̂k�n�−1 belongs to �δ�ρ with
δ=δk�n�−1 and ρ=ρk�n�. Let then η∗ be the Gaussian vector from Proposition 2
applied with h=hk�n� and the above δ and ρ. Due to this proposition, there
exists a random set Ak�n� with P�Ak�n��≥1−2/n, so that on Ak�n� it holds for
all b∈�δ�ρ, ∣∣∣∣P∗

ρ�β̂b−β∗�− η∗

h
√
n

∣∣∣∣≤µn�

where µn is defined in Lemma 4. This yields for the set �k�n� =�k�n�−1∩
An that P��k�n��≥1−�3k�n�−1�/n and the final estimator β̂= β̂k�n� satisfies
on �k�n�, ∣∣P∗

ρ�β̂−β∗�−n−1/2ξ∗∣∣≤µn�

where ξ∗ =h−1η∗. In view of h=hk�n� ≥1,

E�ξ∗�2 =h−2E�η∗�2 ≤2σ2C2
VC

2
K

and Theorem 2 is completely proved. ✷

5.3. Proof of Theorem 1. We use the result of Theorem 2 and the following
technical statement.

Lemma 6. Let β∈�d be such that �P∗
ρ�β−β∗��≤δ for some δ<ρ/4 and

�β∗�≥4δ. Then it holds for θ=β/�β� and θ∗ =β∗/�β∗�,∣∣∣∣θ−θ∗ − �I−@∗�P∗
ρ�β−β∗�

�β∗�

∣∣∣∣≤ 2δ2�1+�β∗�/ρ�
�β∗�2 


Here @∗ denotes the projector in �d on the vector β∗, that is, @∗ =θ∗�θ∗��.

Proof. Let �β�β∗� denote the angle between two vectors β and β∗. Then

sin�β�β∗�= ��I−@∗�β�
�β� � cos�β�β∗�= �@∗β�

�β� � tan�β�β∗�= ��I−@∗�β�
�@∗β� 


The simple geometry gives

�θ−θ∗� ≤ tan�β�β∗��

�@∗�θ−θ∗�� = �θ−θ∗�sin �β�β∗�
2

≤�θ−θ∗� tan�β�β∗�
2

≤ tan2�β�β∗�
2

so that

�θ−θ∗ −�I−@∗�θ�=�@∗�θ−θ∗��≤ tan2�β�β∗�
2

= ��I−@∗�β�2
2�@∗β�2 
(5.13)
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Note that I−@∗ is the projector onto the hyperplane 	 =�v �@∗v=0�. By defi-
nition, the operator P∗

ρ=(
I+ρ−2β∗�β∗��)−1/2 coincides with the unity operator

within the hyperplane 	 ; that is, P∗
ρ�I−@∗�=�I−@∗�P∗

ρ=I−@∗. Hence,

�I−@∗�β = �I−@∗��β−β∗�=�I−@∗�P∗
ρ�β−β∗��

�I−@∗�θ = �I−@∗�P∗
ρ�β−β∗�

�β� 


This, (5.13) and the inequality �P∗
ρ�β−β∗��≤δ imply∣∣∣∣θ−θ∗ − �I−@∗�P∗

ρ�β−β∗�
�β�

∣∣∣∣≤ δ2

2�@∗β�2 
(5.14)

It is obvious that

��P∗
ρ�−1�=∥∥(I+ρ−2β∗�β∗��)1/2∥∥=

√
1+�β∗�2/ρ2 ≤1+�β∗�/ρ�

so that

�β−β∗�= ∣∣�P∗
ρ�−1P∗

ρ�β−β∗�∣∣≤∥∥�P∗
ρ�−1

∥∥�P∗
ρ�β−β∗��≤�1+�β∗�/ρ�δ

and hence,

�β∗��1−δ/ρ�−δ≤�β�≤�β∗��1+δ/ρ�+δ
(5.15)

Since @∗β∗ =β∗, it holds∣∣@∗β−β∗∣∣= ∣∣@∗�β−β∗�∣∣≤ ∣∣β−β∗∣∣≤(
1+∣∣β∗∣∣/ρ)δ�

which along with the conditions δ/ρ≤1/4, �β∗�≥4δ provides

�@∗β�≥�β∗�1−δ/ρ�−δ�≥�β∗�/2

This and (5.14) yield ∣∣∣∣θ−θ∗ − �I−@∗�P∗

ρ�β−β∗�
�β�

∣∣∣∣≤ 2δ2

�β∗�2 


Further, by (5.15),∣∣∣∣θ−θ∗ − �I−@∗�P∗
ρ�β−β∗�

�β∗�

∣∣∣∣ ≤
∣∣∣∣θ−θ∗ − �I−@∗�P∗

ρ�β−β∗�
�β�

∣∣∣∣+δ

∣∣∣∣ 1
�β� − 1

�β∗�

∣∣∣∣
≤ 2δ2

�β∗�2 +δ
�1+�β∗�/ρ�δ

�β∗���β∗��1−δ/ρ�−δ� ≤ 2δ2�1+�β∗�/ρ�
�β∗�2

as required. ✷

Due to Theorem 2 and Corollary 1 applied with z=zn=�1+2logn+
2loglogn�1/2, there exists a random set �k�n� with P��k�n��≥1−3k�n�/n such
that it holds on this set,

�P∗
ρ�β̂−β∗��≤δk�n��

∣∣∣∣P∗
ρ�β̂−β∗�− ξ∗

√
n

∣∣∣∣≤µn
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with µn≤C1z
2
nn

−2/3, δk�n� ≤√
2σCVCKznn

−1/2+µn (see Lemma 4) and with a
Gaussian vector ξ∗ satisfying E�ξ∗�2 ≤2σ2C2

VC
2
K. Now Lemma 6 provides for

γ∗ =�I−@∗�ξ∗/�β∗� on �k�n�,∣∣∣∣�θ̂−θ�− γ∗
√
n

∣∣∣∣≤ µn

�β∗� +
2δ2

k�n��1+�β∗�/ρ�
�β∗�2 


The use of δk�n� ≤Cznn
−1/2, ρ≈n−1/3 and �β∗�≥Cznn

−1/2 completes the proof
of Theorem 1.

APPENDIX

Here we present two general assertions about Gaussian random vectors.

Lemma 7. Let ξ be a Gaussian vector in �d. Then for every z≥1,

P
(

�ξ�>z
√
E�ξ�2

)
≤ze−�z2−1�/2


Proof. For every orthonormal d×d-matrix U, the vector Uξ is also
Gaussian and �ξ�=�Uξ�. Therefore, selecting a proper transform U, we can
reduce the general case to the situation when the components ξi of the vector
ξ are independent. Denote v2

i =Eξ2
i and V2 =E�ξ�2. Obviously V2 =∑d

i=1v
2
i and

by the Chebyshev inequality, it holds for every µ>0 with 2µv2
i <1 for all i≤d,

P
(�ξ�>zV

)=P(�ξ�2>z2E�ξ�2)≤exp
(−µz2V2)Eexp

(
µ�ξ�2)


Since the components ξi of ξ are independent,

Eexp
(
µ�ξ�2) = Eexp

( d∑
i=1

µξ2
i

)
=

d∏
i=1

Eexp
(
µξ2

i

)

=
d∏
i=1

1√
1−2µv2

i

=exp
(

−1
2

d∑
i=1

log�1−2µv2
i �
)

so that

P
(�ξ�>zV

)≤exp
(

−µz2V2− 1
2

d∑
i=1

log�1−2µv2
i �
)



We now apply this inequality with µ=�1−z−2�V−2/2 and use that −log�1−
x�−log�1−y�≤−log�1−x−y� for all positive x�y with x+y<1. This yields

P��ξ�>zV� ≤ exp
(

−µz2V2− 1
2
log�1−2µV2�

)

= exp
(

−z2−1
2

− 1
2
log�z−2�

)
=zexp

(
−z2−1

2

)
as required. ✷
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Lemma 8. Let r>0 and let vector functions ai�u� obey the conditions

sup
�u−u∗�≤r

∣∣∣∣ dduai�u�
∣∣∣∣≤4� i=1�


�n
(A.1)

If εi are independent 
 �0�σ2�-distributed random variables, then

P
(

sup
�u−u∗�≤r

1√
n

∣∣∣∣ n∑
i=1

�ai�u�−ai�u∗��εi
∣∣∣∣>σ4r

(
2+

√
�3+d�log�4n�

))
≤ 2
n



Proof. Let Br be the ball �u � �u−u∗�≤r� and Ar be the ε-net on Br such
that for any u∈Br there is an element ul of Ar such that �u−ul�≤r/

√
n. It is

easy to see that such a net with cardinality Nr<�4n�d/2 can be constructed.
For a ul∈Ar we denote

η�ul�= 1√
n

n∑
i=1

{
ai�ul�−ai�u∗�}εi


Then by (A.1),

E�η�ul��2 = σ2

n

n∑
i=1

∣∣aj�ul�−aj�u∗�∣∣2 ≤σ242r2�

and for any t≥1 by Lemma 7,

P��η�ul��>t
√
E�η�ul��2�≤te−�t2−1�/2


Hence, if t=
√

2log
(
Nrn

3/2
)
, then

P
(

sup
ul∈Ar

�η�ul��>tσ4r

)
≤

Nr∑
l=1

P��η�ul��>tσ4r�

≤tNr exp
(−log

(
Nrn

3/2)+1/2
)
<1/n


(A.2)

Meanwhile, by construction of the net Ar, for any u∈Br there is ul�u�∈Ar

such that �u−ul�u��≤r/
√
n. Then we have by the Cauchy–Schwarz inequality

and (A.1),

�η�u�−η�ul�u���2 ≤ 1
n

n∑
i=1

�ai�ul�u��−ai�u��2
n∑
i=1

ε2
i ≤ 42r2

n

n∑
i=1

ε2
i 


Since the probabilityP��1/n�∑n
i=1ε

2
i >4σ2� is certainly less than n−1, it follows

that

P
(
sup
u∈Br

�η�u�−η�ul�u���>24σr
)

≤ 1
n

(A.3)
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Now (A.2) and (A.3) and the bound n3/2Nr≤�4n��3+d�/2 imply, in an obvi-
ous way,

P
(
sup
u∈Br

�η�u��>4σr
(
2+

√
�3+d�log�4n�

))

≤P
(

sup
ul∈Ar

�η�ul��>4σr
√

�3+d�log�4n�
)

+P
(
sup
u∈Br

�η�u�−η�ul�u���>24σr
)

≤ 2
n

and the lemma follows. ✷
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