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ABSTRACT:

While ccuracy, detail, and limited time on site make photogrammetry a valuable means for underwater mapping, the establishment

of reference control networks in such settings is oftentimes difficult. In that respect, the use of the coplanarity constraint becomes a

valuable solution as it requires neither knowledge of object space coordinates nor setting a reference control network. Nonetheless,

imaging in such domains is subjected to non-linear and depth-dependent distortions, which are caused by refractive media that alter

the standard single viewpoint geometry. Accordingly, the coplanarity relation, as formulated for the in-air case does not hold in such

environment and methods that have been proposed thus far for geometrical modeling of its effect require knowledge of object-space

quantities. In this paper we propose a geometrically-driven approach which fulfills the coplanarity condition and thereby requires

no knowledge of object space data. We also study a linear model for the establishment of this constraints. Clearly, a linear form

requires neither first approximations nor iterative convergence scheme. Such an approach may prove useful not only for object

space reconstruction but also as a preparatory step for application of bundle block adjustment and for outlier detection. All are key

features in photogrammetric practices. Results show that no unique setup is needed for estimating the relative orientation parameters

using the model and that high levels of accuracy can be achieved.

1. INTRODUCTION

Relative orientation enables the estimation of a minimal set of

parameters that are necessary to establish coplanarity among

corresponding points between two views (Mullen, 2004). Its

simplified form, which requires no knowledge of object space

coordinates, makes it useful as a means to obtain scene recon-

struction, up to a similarity transformation, without setting a

reference control network (Stewenius et al., 2006; Pollefeys

and Van Gool, 1997; Hemayed, 2003; Hartley and Zisserman,

2003). These advantages become paramount in underwater

environments where reference control networks are difficult

to establish and where local ones become the more practical

solution. Accordingly, the use of relative orientation has been

applied in a diverse set of applications, including: seabed map-

ping, archaeological surveys, marine biology studies, vehicle

navigation, or industrial equipment inspection, to name only a

few (Eustice et al., 2005; Allotta et al., 2015; Ricci et al., 2015;

Teixeira et al., 2016; Ludvigsen and Sørensen, 2016; Pergent et

al., 2017; Herkül et al., 2017).

Establishing a relative orientation in underwater environments

is challenged, however, by limited visibility due to scattering

and absorbance of light, and by refraction that alters light rays

trajectory from their standard ‘collinear’ path and ultimately

the coplanarity relation (Menna et al., 2017). The problem

of recovering 3-D geometry in the presence of refraction has

been studied extensively in recent years. The majority of ap-

proaches rely on standard in-air models, assuming that the

pinhole camera model with distortion can compensate for re-

fraction (e.g., Pizarro et al., 2003; Singh et al., 2007; Shortis,

2015). These models have proved applicable, but analysis of the

actual image-point correction due to refraction shows that for
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close-range imaging, the actual aberration is depth dependent,

and three dimensional (Sedlazeck and Koch, 2012; Shortis,

2015). Modeling the effect of imaging through refractive me-

dia has shown that the standard single viewpoint perspective

(SVP) model no longer applies in this setting and introduces

systematic errors that are proportional to the distance between

the entrance pupil and the flat port (Menna et al., 2017). To

handle these effects, recent studies considered the introduction

of an explicit modeling of the refraction effect. As an example,

Chaudhury et al. (2015) implemented a ray-tracing based model

that allows expressing the underlying refractive geometry as an

extension of projective geometry. The authors assumed, how-

ever, that refraction occurs only at the camera center, allowing

to geometrically estimate the relationship between the observed

image point and the one obtained as if refraction did not occur.

The case of a fixed interface and the moving camera was con-

sidered by Chen et al. (2011) where the authors assumed that

the imaging system is integrated with an inertial measurement

unit (IMU) so that the pitch and yaw angles of the camera are

considered known. The authors then proposed a closed-form

solution to the absolute orientation estimation, yet required the

vertical displacement of the camera to be known in advance. A

setup of two cameras embedded in different watertight housing

was considered in Kang et al. (2012). The authors neglected the

glass thickness and considered the image plane and the glass

interface to be parallel. They estimated then the air medium

thickness for each imaging system and the five relative pose

parameters in a non-linear optimization procedure. Telem and

Filin (2013) derived a coplanarity constraint, which is based

on the varifocal representation. The authors demonstrated that

because of refraction, the linear relation between views does

not hold when imaging underwater, leading to a non-linear and

inhomogeneous coplanarity constraint. Aiming to accommo-

date for a thick glass interface found in deep-sea high pressure
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housings, Jordt et al. (2016) proposed a ray-tracing refrac-

tive structure-from-motion (SfM) framework by extending the

one previously proposed in Jordt-Sedlazeck et al. (2013) and

Jordt-Sedlazeck and Koch (2013). The authors relied on the

coplanarity constraint to estimate the relative camera motion

between two successive views while using a non-linear refrac-

tive bundle adjustment. The proposed refractive SfM required

a good initialization, especially for the two-view pose estima-

tion case, and relied on a computationally demanding genetic

optimization. Furthermore, the model exhibited sensitivity to

noise, especially when using thin glass interface or when the

distance between the perspective center and the interface was

small. A pose and calibration models for an underwater stereo

imaging system was proposed by Zhang et al. (2018) where

the authors remodeled the underwater imaging system in the

view of the light filed parametrization and proposed a forward

projection error function which was minimized in a non-linear

optimization fashion.

The literature shows that because of refraction, underwater

imaging suffers from depth-dependent, non-linear distortions

and that the imaging system does not follow the standard SVP

model. To handle that, recent research followed ray-tracing

based principles and incorporated robust optimization strate-

gies, proposed to algorithmically reduce the measurement

noise, or used hardware-driven solutions. While exerting high

computational demand, they still fall short of obtaining sat-

isfactory levels of accuracies and are often supplemented by

elaborate setups, or require an a priori knowledge of part of the

camera pose parameters. In this paper, we propose a geomet-

rically driven model that accounts for the refraction effect and

constitutes an alternative formulation of the relative orientation

and the coplanarity constraint. We show that the pose param-

eters can be estimated linearly and directly, with no need for

first approximations or iterations. The linearity is achieved by

separating the relative pose from the underwater-related sys-

tem parameters where the refraction effect is manifested. The

advantages of our model are the following: firstly, the relative

pose parameters can be estimated linearly; secondly, and con-

trary to the in-air case, the model allows to estimate the scale of

the system; and thirdly, 3-D data can be extracted with no need

to establish an explicit reference frame. The model is analyzed

by simulated experiments and in actual underwater conditions.

Evaluation is of the inner and geometric accuracy, both are

analyzed by the reconstructed point-sets. Results show that a

high-level of accuracy is reached while facilitating a flexible

orientation strategy for modeling in underwater environments.

2. METHODOLOGY

2.1 Varifocal model

We consider an imaging system made of a camera shielded by

a flat-port housing. The image formation model is of a ray

that propagates from an in-water point until it refracts at the

port glass-interface and then propagates through the air until

it reaches the image plane while passing through the perspec-

tive center (Fig. 1). The system is defined by the camera’s

focal length, f , the distance from the housing interface to the

perspective center, F, and the refractive indices. Snell’s law

of refraction suggests that the refracted ray, the normal to the

interface surface, and the incoming- and outgoing-rays, all lie

on the same plane (Fig. 1). As the refracted rays pass through

the perspective center, all planes of refraction revolve about

the optical axis as long as it coincides with the normal to the

Figure 1: Varifocal configuration, the dashed line follows the
direction of the underwater ray until intersecting the system
axis, where kF is the perspective center offset, α is the angle
of refraction; and β is the angle of incidence (µ1 and µ2 the
refractive indices of air and water, respectively).

interface. Hence, the axiality of the system. Axiality is also

a property of the varifocal model, but here the position of the

perspective center is modified along the optical axis to maintain

the collinearity of the incoming ray.

Axial camera modeling – Modifying the imaging system

with respect to the interface (Fig. 1), F becomes the principal

distance, and coordinates are given by:

x̄ =
[

x̄i, ȳi,−(F + kiF )
]T

(1)

where x̄i =
F
f
xi and ȳi =

F
f
yi are the housing system coordi-

nates for a given image plane coordinates, xi and yi.
The collinearity form in this system can be written as:





x̄i

ȳi
−F



+





0
0

−kiF



 = λi





r1Xi − tx
r2Xi − ty

r3Xi − tz − kiF



 (2)

where Xi is the 3-D coordinate of a point in object space; ri
is the i-th row of the rotation matrix R; tx, ty , and tz are the

camera position in the camera reference frame; λi is a scale

factor; and ki:

ki(αi) =

√

1− µ2 sin2 αi

µ2 cos2 αi

− 1 (3)

is the principal distance adaptation to the refraction effect,

where α is the angle of incidence (Fig. 1); and µ = µ1/µ2 is

the refractive index ratio between the indices of air and water.

Deviation from parallelism – The derivation of Eq. (2) as-

sumed that the optical axis and the normal to the interface coin-

cide. This assumption fails to hold when the image plane is not

parallel to the housing interface. In such a case all the planes of

refraction still pass through the perspective center. They do not

coincide however with the optical axis, rather with the normal

to the interface, which is common to all planes of refraction.

The offset between the normal to the interface and the optical

axis is an image related term which is defined by two rotation

angles, one off the optical axis and another about it. Telem

and Filin (2010) have shown that the rotation about the z-axis is

strongly correlated with the exterior orientation angles, thus ab-
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sorbed, and cannot be estimated independently. Consequently,

the transformation between the two systems can be approxi-

mated by the use of a single rotation about the y-axis. Hence,

the modification becomes:

x
′ = Ry (η)x (4)

where Ry (η) is the rotation matrix from the image plane to the

interface by an angle η. Thus, the modified expression for k

becomes:

k̃ (x) =
1

µ

√

xTx

xTM3x
+ µ2

(

xT (M3 − I)x

xTM3x

)

− 1 (5)

where x is the image point coordinate, and M3 = r3 ⊗ r3 is

the outer product of the third row in Ry (η) in which the re-

fraction effect is accounted for. As offsetting the perspective

center should be performed in reference to the system in which

the normal to the interface acts as the optical axis, both image

and object-space related vectors should transform to this sys-

tem, followed by a modification to the perspective center:

M





x̄i

ȳi
−F



−





0
0

k̃iF



 = λi



M





r1Xi − tx
r2Xi − ty
r3Xi − tz



−





0
0

k̃iF









(6)

The glass interface effect on the system was not considered to

that point, but it was demonstrated by Telem and Filin (2010)

that for a standard underwater imaging system it introduces a

lateral shift which is smaller by an order of magnitude or more

than the one caused due to angular refraction. This shift can

be reduced to a constant value, factored by the glass thickness.

Hence, it is absorbed by F .

2.2 Plücker coordinates of a 3-D line

To establish the relative orientation we define the ray’s direc-

tion using Plücker representation of lines. We show that such a

representation facilitates a linear estimation of the camera pose

parameters. We represent the projected image rays as 3-D lines

using Plücker coordinates. Of the definitions for a Plücker 3-D

line we use the vector form (Förstner and Wrobel, 2016). Let A

and B be homogeneous coordinates of two 3-D points defining

a line. The Plücker line representation is given by:

L =

















A4B1 −A1B4

A4B2 −A2B4

A4B3 −A3B4

A3B2 −A2B3

A1B3 −A3B1

A2B1 −A1B2

















(7)

where Ai, Bi is the ith ordinate of the respective point. L can

be split into two 3-vectors a and b,

L =
(

aT bT
)T

=
(

L1 L2 L3 L4 L5 L6

)T
(8)

where, a and b are the direction and moment of the 3-space

line, respectively. To define a proper line in space these two sub

vectors must satisfy the constraint:

a
T

b = 0 (9)

Considering two 3-space lines, L and L′, a coplanarity relation

between them is obtained if and only if they fulfill the following

constraint:

L
T

(

03×3 I3×3

I3×3 03×3

)

L
′ = L

T
WL

′ = 0 (10)

where, W is a 6× 6 permutation matrix.

Transformations – a metric transformation defined by a ro-

tation matrix R and a translation vector t, acts on a point X by:

X →

(

R t

0T 1

)

X (11)

Accordingly, Plücker line coordinates are transformed by,

L →

(

R 0

− [t]
×

R 1

)

L (12)

where, [t]
×

is a skew symmetric matrix (Förstner and Wrobel,

2016).

2.3 Underwater relative orientation

Considering, L and L′ as lines that represent the rays projected

from two cameras meeting in a point in object-space, Eq. (10)

can be written as:

L
T

(

[t]
×

R R

R 0

)

L
′ = 0 (13)

Describing a ray by a point v that lies on it and a unit vector

direction x̂. The Plücker coordinates of two lines corresponding

to image pair correspondence i are given by,

Li =

(

x̂i

vi × x̂i

)

; L
′

i =

(

x̂
′

i

v′

i × x̂
′

i

)

(14)

In our case, x̂i would be the direction defined by the corrected

perspective center vi = [0, 0,−kiF ] and its corresponding

housing system point x̄i (Eq. 1) in the first image. Setting the

point on the line to be vi, Eq. (14) can be written in terms of

the varifocal model as follows,

Li =
(

x̄i ȳi F + F k̃i −k̃iȳi k̃ix̄i 0
)T

(15)

As the last element of Plücker rays is zero, the 6 × 6 transfor-

mation matrix in (Eq. 13) can reduced to the following 5 × 5
matrix:

Er =













e11 e12 e13 r11 r12
e21 e22 e23 r21 r22
e31 e32 e33 r31 r32
r11 r12 r13 0 0
r21 r22 r23 0 0













(16)

yielding the constraint:

L̃
T

i ErL̃
′

i = 0 (17)

where, L̃i and L̃
′

i are a 5-length vectors. We can also write

Eq. (17) as:

x̄
T
i Ex̄

′

i + x̄
T
i R
(

v
′

i × x̄
′

i

)

+ (vi × x̄i)Rx̄
′

i = 0 (18)

Eq. (17) provides a form from which the relative pose parame-

ters can be estimated linearly. For that purpose, we use the sin-
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Figure 2: Histograms of the estimation accuracy using 30 corre-
sponding points and based on 500 randomly simulated tests. In
all tests, a Gaussian noise with σ = ±0.5 pixels was introduced
to the image measurements.

Figure 3: Pose estimation errors as a function of Gaus-
sian noise. Left shows the estimation accuracy in rota-
tion, translation, and scale (units are in accordance with
Eqs. (19a), (19b) and (19c)) as a function of Gaussian noise
level. Right shows the reprojection error.

gular value decomposition (SVD; Golub and Van Loan (1983))

based solution for Er which yields satisfactory results. How-

ever, we propose a two-step approach, an alternative solution

scheme to obtain better estimates. First the rotation matrix is es-

timated from E = [t]
x

R, which is computed by the first element

in Eq. (18). Secondly, a non-linear refinement of this estimates

is directly computed from the complete form of Eq. (18). To

compute the scale, we fix the refined rotation matrix in Eq. (18)

and compute the translation vector, t. As t is the only un-

known and Eq. (18) is a non-homogeneous set of equation (un-

less R = I, meaning no motion), thus t can be computed using

linear least-squares adjustment, with no scale ambiguity.

3. EXPERIMENTS

Evaluation of the model was performed by studying two sce-

narios, one in which the pose parameters were estimated and

compared to ground truth, and another in which reconstruction

error was evaluated. The evaluation was carried out using sim-

ulations with settings that resemble actual underwater imaging

conditions and using real-world experiments. For both real and

simulated experiments, the proposed model performance was

characterized by the following metrics: (i) angle difference be-

tween the rotation axes of R and R̂ (Eq. 19a); (ii) the direction

difference between t and t̂ (Eq. 19b); and (iii) the scale error

between t and and t̂ (Eq. 19c).

δθ = cos−1





tr
(

RR̂
T
)

− 1

2



 (19a)

δt = cos−1

(

tT t̂

‖t‖
∥

∥t̂
∥

∥

)

(19b)

ǫscale =

∣

∣

∣

∣

∣

1−
‖t‖
∥

∥t̂
∥

∥

∣

∣

∣

∣

∣

(19c)

The parameters R, t are the ground-truth information used for

the simulations, and R̂, t̂ correspond to the estimated equiv-

alents. Note that all these matrices or vectors are defined in

absolute scales rather than up to a scale as is in the in-air case.

3.1 Synthetic simulations

To test the pose parameter estimation model we consider an

imaging system with a standard frame camera and a flat-port

housing. The settings consisted of a 3000 × 2000 pixels frame

camera with a 7.5 µm pixel size; a 24 mm lens; µglass = 1.5;

µwater = 1.333; F = 50 mm; and η = 1◦. A normally dis-

tributed additive random noise with standard deviation ranging

between σ = [0.1, 1] pixels was introduced to the image coor-

dinates.

The first experiment tested the estimation accuracy for rota-

tion, translation, and scale in the presence of σ = ±0.5 pixels

of Gaussian noise. Histograms of the estimation accuracy of

different metrics (Eqs. 19a, 19b and 19c) are plotted in Fig. (2).

The second experiment tested the quality and stability of the

camera pose parameters (position and orientation), and scale

estimation in the presence of Gaussian noise. Here measure-

ment noise varied from 0.1 to 1 pixels. The accuracy estimates

are discussed only for σ = ±0.5, other levels are plotted in the

designated graphs in Fig. (3). The application of the proposed

model for that noise level yielded an angular error of ±0.012◦.

The scale estimation accuracy was 5.5e−4. The reprojection

error shows a linear trend with the increase of the noise level

(Fig. 3), an indication of the stability of the model. In all ex-

periments convergence was reached within three iterations, one

for the estimation of the approximated values and two others

for the estimation by the optimal form in Eq. (18).

3.2 Real world – Open sea experiment

In addition to the synthetic evaluation, another test was per-

formed under real-world conditions in open sea. This envi-

ronment provided less controlled and different settings. Here

a Nikon D70s with a fixed 24 mm lens shielded by an IKELITE

housing, and two 2-D rigid plates were immersed in water, both

are used for testing the quality of the pose estimation. A dry

calibration phase was performed while the camera was in the

housing (Elnashef and Filin, 2019), then, a wet calibration was

carried out using a total of five images. The a posteriori stan-

dard deviation of the adjustment was σ̂0 = ±0.42 pixels. F was

estimated with an accuracy of ±0.07 mm, ±1e − 6 for µ, and

±0.05” for η. The system parameters were then fixed in the

next stage. We used ORB key-point detector for feature detec-

tion, then a matching between correspondence was performed

to find corresponding points between the two images shown in

(Fig. 4). Note that, the two images used in the relative orienta-

tion estimation were different than those used in the calibration

stage.

Before approaching the non-linear estimation, approximate

pose parameters were computed. To obtain them, we estimated

the essential matrix, E = [t]
×

R using the housing system

coordinates. Hence, we solved for E = x̄T
i Ex̄′

i, which offers

adequate approximation for Eq. (18). We applied the standard

5-point and the RanSac algorithms (Stewenius et al., 2006) to

extract the parameters. With these values, we then optimally

minimized the geometric error, by directly solving for the three

rotations angles (ω, φ, κ) and two translation (tx, ty) (Eq. 18).

Finally, to estimate the translation vector with scale, we first

computed the optimal rotation matrix R̂ from the estimated an-

gles (Eq. 18). Then, fixing it in Eq. (18), we solved only for the
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Figure 4: Images taken of the 2D plates in an open-sea preeminent.

three translation parameters t̂ = [tx, ty, tz], using a standard

least-squares solution.

Testing 3-D point measurement accuracy – We evaluated

the application of these parameters when applied to the mea-

surement of 3-D object-space points using the varifocal model

proposed by Elnashef and Filin (2019). Measurements were

performed on tilted test-plate (with respect to the camera) by

two images. The evaluated measures included coplanarity,

collinearity, parallelism and orthogonality of the measured grid

lines, and measurement of the grid dimensions. All 63 corners

of the 7 cm-spaced, 42×56 cm, grid (Fig. 4) were measured.

The first test evaluated the coplanarity of the mapped points,

and a plane that was fitted to them yielded a ±0.15 mm devi-

ation. The collinearity test for points lying on straight-lines,

and as a consequence the removal of the underwater effect

that bends them, yielded a mean deviation of ±0.21 mm and a

maximal deviation of 0.36 mm from collinearity. Computation

of the angles between parallel and orthogonal lines shows an

angular error of 47” and 27” in parallelism and orthogonal-

ity, respectively. These results are equivalent to 0.54 mm and

0.42 mm deviation, with respect to their actual length on the

target (56 cm and 42 cm, respectively). Such deviations are

comparable in their accuracies to the ones reached in our other

experiments.

4. CONCLUSIONS

This paper proposed a geometrical driven and scaled-relative-

orientation model for the underwater environment. Its main

advantage lies in the preservation of the coplanarity constraint

with no need to gain explicit knowledge of object point co-

ordinates, while also separating the pose parameters from the

refraction related ones. Therefore, our model enables the es-

timation of the underwater related relative orientation param-

eters with the addition of the scale. The experiments demon-

strated how estimation of the orientation parameters yielded

high levels of accuracy, robustness to first approximations, and

high level of noise. The linear estimation form requires 17

point-correspondences, which may limit its applicability in im-

ages with low number of correspondence, and would increase

the computational demand in the presence of high fraction of

outliers. This was alleviated, however, by the direct estima-

tion methodology proposed in the paper, which required only 5

points and allowed us to solve the pose parameters in an optimal

manner by minimization of the reprojection error. We showed

that by applying our proposed relative orientation model, where

scale is also estimable, it was possible to obtain high estima-

tion and also reconstruction accuracy in close-range underwater

imaging with no domain knowledge given.
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