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We evaluate the light, strange, and charm scalar content of the nucleon using one lattice QCD ensemble
generated with two degenerate light quarks with mass fixed to their physical value. We use
improved techniques to evaluate the disconnected quark loops to sufficient accuracy to determine
the strange and charm nucleon σ terms in addition to the light quark content σπN . We find
σπN ¼ 37.2ð2.6Þð4.7

2.9Þ MeV, σs ¼ 41.1ð8.2Þð7.8
5.8Þ MeV, and σc ¼ 79ð21Þð12

8
Þ MeV, where the first error

is statistical and the second is the systematic error due to the determination of the lattice spacing, the
assessment of finite volume, and residual excited state effects.
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Introduction.—The scalar quark contents of the nucleon,
or the so-called nucleon σ terms, are fundamental quantities
of QCD determining the mass generated by the quarks in
the nucleon and thus related to the explicit breaking of
chiral symmetry. They are relevant for a wide range of
physical processes, such as pion- and kaon-nucleon scat-
tering, but also for the interpretation of direct-detection
dark matter searches being undertaken by a number of
experiments [1]. Dark matter candidates under consider-
ation are weakly interacting massive particles (WIMPs)
predicted in many beyond the standard model theories
that interact with normal matter by elastic scattering with
nuclei [2]. In such a process, a WIMP, due to its large mass,
produces a Higgs boson that interacts with the nucleon
via scalar density operators. At zero momentum transfer,
the cross section for spin independent elastic scattering
depends quadratically on the nucleon scalar matrix
element, which constitutes the largest uncertainty [3].
It is customary to define the nucleon σ terms to be

scheme- and scale-independent quantities:

σf ¼ mqfhNjq̄fqfjNi; σπN ¼ mudhNjūuþ d̄djNi; ð1Þ

for a given quark qf of flavor f, or for the isoscalar com-
bination, wheremqf is the mass of qf,mud ¼ ðmu þmdÞ=2
is the average light quark mass, and jNi is the nucleon state.
Since the pioneering chiral perturbation theory analysis
that yielded σπN ∼ 45 MeV [4], there has been significant
progress in the determination of σπN from experimental
data [5,6]. Using high-precision data from pionic atoms to
determine the πN-scattering lengths and a system of Roy-
Steiner equations that encode constraints from analyticity,
unitarity, and crossing symmetry a value of 59.1(3.5)MeV is

obtained [7]. This larger value of σπN has theoretical impli-
cations on our understanding of the strong interactions as
stressed in Ref. [8]. The determination of the strange σs term
is more difficult since it would require an analysis of kaon-
nucleon scattering phase shifts. Alternatively, one can use as
input the values of σπN and of the ratio ms=mud, and SU(3)
chiral perturbation theory to determine it. The evaluation of
the charm scalar content is even harder amplifying even
further the uncertainty in the WIMP-nucleon cross section.
Given the importance of these quantities, a number of

lattice QCD calculations have been undertaken using two
approaches [9]. The first uses the Feynman-Hellmann theo-
rem that is basedon thevariation of the nucleonmassmN with
mqf : σf ¼ mqfð∂mN=∂mqfÞ. Within lattice QCD the mass
of the nucleon has been computed using various discretized
actions and different values of the light quark mass including
recent simulations with the physical value (referred to as the
physical point). Themost extensive analysis, using a large set
of simulations with two light and a strange clover-improved
fermions reaching physical values of the pion mass and
including an assessment of finite volume effects and an
extrapolating to the continuum limit, yielded a precise value
of σπN ¼ 38ð3Þð3Þ MeV [10]. However, using the same
approach to evaluate σs yields larger errors. The analysis
of Ref. [10] finds σs ¼ 105ð41Þð37Þ MeV, while for σc this
approach is currently not applicable.
An alternative method is to evaluate directly the nucleon

matrix elements of the scalar operator that involves dis-
connected quark loops. These are much more demanding to
compute than hadron masses. Therefore, it is only recently
that a direct computation of the σ terms has been performed
using dynamical simulations [11–16]. In this Letter we
employ improved methods to compute the disconnected
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quark loops, and evaluate σπN , σs, and σc directly at the
physical point, thus eliminating chiral fits. The evaluation is
done for one ensemble of Nf ¼ 2 twisted mass fermions at
maximal twist with a lattice spacing of a ¼ 0.093ð1Þ fm
determined from the nucleon mass [17]. An analysis using
a single ensemble precludes the evaluation of cutoff and
infinite-volume effects using directly lattice QCD results
on these quantities. However, we present conservative
estimates of these systematics using auxiliary arguments.
Since we are using an Nf ¼ 2 ensemble, the strange and

charm quarks are absent from the sea. Results obtained
using Nf ¼ 2 and Nf ¼ 2þ 1þ 1 twisted mass ensembles
on quantities for which such quenching can potentially
have a large effect, such as the strange and charm quark
masses [18,19] or the kaon and D-meson decay constants
[20,21], showed no detectable quenching effects. For the
value of σs itself, there are two direct computations of the
matrix element using the same overlap fermion ensembles,
one with Nf ¼ 2 [22] and one with Nf ¼ 2þ 1 [23] both
yielding consistent values albeit with a large systematic
uncertainty. A more recent direct evaluation of the matrix
element with overlap valence quarks on Nf ¼ 2þ 1

domain wall sea fermions including the physical point
yielded a value σs ¼ 32.3ð4.7Þð4.9Þ, which is compatible
with the value of σs ¼ 30ð8Þð21Þ MeV obtained with
Nf ¼ 2 overlap fermions [22]. These results suggest that
quenching effects are negligible within the statistical
accuracy that they are presently computed. We, therefore,
neglect quenching effects in this Letter.
Matrix elements in lattice QCD.—The nucleon scalar

matrix element can be extracted from the ratio of the three-
point function of the scalar operator to the two-point

function at zero momentum transfer, Rðts; tinsÞ ¼ ½C3ptðts −
t0; tins − t0Þ=C2ptðts − t0Þ� [17]. Inserting a complete set of
states yields

Rðts; tinsÞ ¼
P∞

i;j¼0 Aije−δEiðts−tinsÞe−δEjðtins−t0Þ

1þP∞
i¼1 cie

−δEiðts−t0Þ

⟶
δEiðtins−t0Þ≫1

δEiðts−tinsÞ≫1
mqfhNjq̄fqfjNi; ð2Þ

where δEi ¼ Ei − E0 is the energy gap between the ith
nucleon excited state Ei and the ground state E0 ¼ mN ,
A00 is the desired matrix element, O ¼ mqf q̄fqf, and we
consider the light, the strange, and the charmquark flavors. In
Eq. (2) the desired matrix element is obtained when the
insertion-source, tins − t0, and the sink-insertion, ts − tins
time separations are large enough so that contributions to the
matrix element of O from excited states with the same
quantum numbers as the nucleon are negligible. For the
scalar operator these have been shown to be large [14]. We
use three approaches in order to check that indeed excited
state contributions are sufficiently suppressed. (i) In the so-
called plateaumethod we look for the range of the values of
tins for which the ratio of Eq. (2) becomes time independent
(plateau region) and then fit a constant within this region.
This is done for several values of ts. Excited states are
sufficiently suppressedwhen thevalue of the plateau remains
statistically unchanged. Smearing techniques are crucial to
reduce the coefficientsAij for i, j > 0 and ci in the three- and
two-point functions. We use both Gaussian and APE
smearing to maximize the overlap of our interpolating field
with the nucleon [17]. (ii) In the summationmethod [24] we
consider the ratio of Eq. (2) summed over tins:

RsumðtsÞ ¼
Xts=a−1

tins=a¼1

Rðts; tinsÞ ¼
P∞

i¼0 Aiiðts=a − 2Þe−δEits þP∞
i≠j¼0 Aij

e−aδEij−e−δEijts
1−e−aδEij

e−δEits

1þP∞
i¼1 cie

−δEits
; ð3Þ

where we set t0 ¼ 0 for simplicity in what follows and
define δEij ¼ Ej − Ei. For large enough ts, Rsum depends
linearly on ts=a, and the matrix element is given by A00,
obtained as the slope of a linear fit. While excited state
contributions are suppressed as e−δE1ts , as compared to
e−δE1ðts−tinsÞ and e−δE1tins in the plateau method, fitting to a
two-parameter linear dependence increases the statistical
errors. (iii) In the so-called two-state fit, one takes into
account the contributions of the first excited state by fitting
to the form given in Eq. (2) neglecting higher order terms.
This introduces five fit parameters, namely A00, A01, A11,
c1, and δE1. We consider that excited states are sufficiently
suppressed when the value extracted from the plateau
method is consistent between two ts, as well as with the
other two approaches.
Computation of the three-point function.—The three-

point function C3ptðts; tinsÞ receives contributions from two

types of diagrams, one when the scalar operator couples to
a valence quark inside the nucleon (connected) and one
when it couples to a sea quark (disconnected). For σπN both
contributions are nonzero, while for σs and σc only the
disconnected contribution is present. Evaluation of
quark-disconnected contributions is notoriously difficult
and it is only very recently that such contributions can be
computed [12–16,23,25]. This is due to the fact that one
needs to evaluate a closed quark loop of the formP

~xinsTr½Gfðxins; xinsÞ� where Gfðx; yÞ is the quark propa-
gator. Because of the appearance of the sum over the
spatial coordinate ~xins, the evaluation of disconnected
contributions requires knowledge of the quark propagator
from all to all spatial coordinates, which translates into
spatial volume N3

S inversions of the Dirac matrix compared
to two per quark flavor required for the evaluation of
the connected contribution. This is overcome by using
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stochastic techniques to evaluate the quark propagator
entering the loop.
We use the twisted mass fermion discretization scheme

[26], which, besides ensuring OðaÞ improvement for
physical observables after tuning to maximal twist [27],
is particularly suited for evaluating scalar matrix elements.
The first important advantage is that all scalar matrix
elements are multiplicatively renormalizable [28] avoiding
the mixing that occurs between the bare light and strange
scalar quark matrix elements in other Wilson-type fermion
discretizations. This property also holds for chiral invariant
lattice formulations, which, however, are computationally
much more demanding. The second important advantage
has to do with the twisted mass term of the doublets in the
action, which helps reduce the gauge noise of disconnected
quark loops. This is because the isoscalar combination of a
flavor doublet of the scalar operator transforms into an
isovector of the pseudoscalar operator in the twisted mass
formulation at maximal twist. For the u- and d-flavor
doublet we have ūuþ d̄d ¼ iχ̄uγ5χu − iχ̄dγ5χd, where χu
and χd are the two degenerate light quark fields in the
twisted mass basis. The disconnected quark loop contri-
bution to σπN therefore becomes [29]X

~xins

Tr½iγ5Gχuðxins; xinsÞ − iγ5Gχdðxins; xinsÞ�

¼ 2μl
X
y;~xins

Tr½γ5Gχuðxins; yÞγ5Gχdðy; xinsÞ�: ð4Þ

The appearance of the small twisted light quark mass
parameter μl allows for significant reduction in the gauge
noise. In this form, stochastic techniques can be employed to
obtain the trace via the so-called one-end trick [30] enabling
the accurate computation of the quark loops at all time
insertions tins [13,31]. Having the quark loop for all tins, the
summation method can be employed without any further
cost, which is an additional advantage of this formulation.
For the strange and the charm quarks a similar procedure

can be followed. In this case we consider Osterwalder-Seiler
doublets [32] to construct, in the twisted mass basis,
the pseudoscalar current: 1

2
ðiχ̄fþγ5χfþ−iχ̄f−γ5χf−Þ, where

f¼s, c and f� refers to taking�μf. The nucleonmatrix ele-
ments of these operators giveσs and σc.UnlikeσπN , however,
only purely disconnected contributions are involved.
Simulation parameters.—We use configurations simu-

lated with the Nf ¼ 2 twisted mass fermion action [33]
including a clover term with cSW ¼ 1.57551 with μl tuned
to obtained the physical value of the pion mass [34–38].
The lattice size is NS ¼ 48 in the spatial and NT ¼ 96 in
the temporal direction. For the strange and charm doublets
of Osterwalder-Seiler quarks, we tune the bare strange and
charm quark twisted mass aμs and aμc to reproduce the
experimental value of the Ω− and Λc mass, respectively,
obtaining aμs ¼ 0.0264ð3Þ and aμc ¼ 0.3348ð15Þ.
The statistical uncertainty in the disconnected quantities

is reduced as compared to that of Ref. [13] by increasing

the statistics at reduced cost. This is accomplished by using
a polynomially accelerated implicitly restarted Arnoldi
method to obtain the Nev smallest eigenmodes of our
linear system, which we use to precondition the conjugate
gradient (CG) algorithm for successive solves on the same
configuration. We take Nev ¼ 1400, which yields a speed-
up of about twenty times as compared to the nondeflated
CG. In the stochastic evaluation of the quark loops we use
Zð4Þ noise vectors with the number given in Table I. For the
strange and charm quark loops, we use the truncated solver
method (TSM), where we combine a large number of
stochastic estimates computed to low precision with a small
number of stochastic estimates computed to high precision,
appropriately tuned [39,40]. Table I gives a summary of the
statistics. All quark loop contributions are evaluated using
graphics cards where the QUDA software is extended to
include these quantities [41].
Results.—In Figs. 1 and 2 we show results for the ratio of

Eq. (2) for the light, the strange, and the charm scalar
operators, respectively. As ts increases the ratios converge
in the plateau regions. We fit to the plateau when
ts ¼ 1.7 fm to extract results for σπN and σs. For the
charm sector, within the larger statistical errors, the plateaus
are consistent already for ts ¼ 0.9 fm. We observe that the
disconnected contribution to the σπN is at the 10% level, a
value consistent with the one found using an ensemble with
pion mass of 373 MeV [13].
The convergence of our results as we vary ts in the

plateau method is demonstrated in Fig. 3 where we also
show the results of the two-state fit and the summation
method as we vary the lowest value of ts used in the fit,
denoted by tlows . Our final value is taken from the plateau
method after convergence with increasing ts is demon-
strated, as well as when there is agreement with the
two-state fit. The summation method has typically larger
errors but it corroborates the plateau value. We quantify the
systematic error due to excited state effects by weighting all
values extracted from the plateau with the fit p value for
ts ≥ 1.5 fm (0.9 fm) for the light and strange (charm) σ
term and taking the variance.
Besides the systematic error due to the fit ranges, we

have a systematic error from the determination of the lattice

TABLE I. Ncnf and Nsrc is the number of configurations and
source positions per configuration. For the disconnected loops,
we give, in addition, the number of stochastic sources Nr, the
number of high (NHP

r ) and low precision (NLP
r ) solves used within

the TSM. For the two-point functions we used Ncnf ¼ 1800 and
Nsrc ¼ 100.

Connected: three-point Fermion loop

ts=a Ncnf Nsrc Quark flavor Ncnf NHP
r NLP

r

10,12,14 192 16 Light 1800 2250 0
16 265 88 Strange 1800 63 1024
18 517 88 Charm 1800 5 1250
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spacing, which we estimate by using the minimum and
maximum values when different physical quantities are used
to set the scale [34]. In addition,we estimate the finitevolume
correction on σπN by evaluating the finite volume correction
on the nucleon mass using baryon chiral perturbation
theory [42], in combination with the Feynman-Hellmann
theorem. We find a volume correction of 5% on σπN , and
assume this to be an upper bound also for σs and σc.
Conclusions.—Based on our analysis, the final values for

σπN , σs, and σc are

σπN ¼ 37.2ð2.6Þstatð1.9Þexcið1.0Þa
�1.8
0.0

�
vol

MeV;

σs ¼ 41.1ð8.2Þstatð4.7Þexcið1.1Þa
�2.0
0.0

�
vol

MeV and

σc ¼ 79ð21Þstatð6Þexcið2Þa
�4
0

�
vol

MeV; ð5Þ
where the first error is statistical and the rest are systematics
due to excited states (exci), finite lattice spacing (a), and
finite volume (vol) effects. The systematic errors are added
linearly to arrive at the errors in the final values given in the
abstract. Alternatively, we provide our results in terms of
the dimensionless ratios, fNf ¼ σf=mN , obtaining

fNud ¼ 0.0399ð28Þ
�40
21

�
; fNs ¼ 0.0440ð88Þ

�72
51

�
; and

fNc ¼ 0.085ð22Þ
�11
7

�
; ð6Þ

using mN ¼ 933ð8Þ MeV [17], where the first error is
statistical and the second is the sum of the systematic
uncertainties due to the excited states and the finite volume.
The isovector matrix element hNjūu − d̄djNi, has been

FIG. 2. The ratio from which σs (upper) and σc (lower) are
extracted. The notation is the same as in Fig. 1.

FIG. 1. Ratios yielding σπN , connected contribution (upper) and
disconnected (lower), versus tins shifted by half the sink-source
time separation. The lines and associated bands show fits to the
ratio in the plateau region (blue starting at the lower and finishing
at the upper fit range used), the two-state fit (gray solid line) and
the summation method (brown dashed line).

FIG. 3. Results for σf from the plateau (left column), two-state
(center column), and summation (right column) methods. From
top to bottom we show the results for the connected and
disconnected contributions to σπN , σs, and σc. tlows is the smallest
ts in the summation or two-state fits. The open symbol shows the
selected final result and the red band its statistical error.
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computed [17] and combining it with the isoscalar matrix
element we obtain the individual up- and down-quark
contributions for the proton and the neutron in the isospin
limit via

fpu ¼ 2mudr
rþ 1

hNjūujNi
mN

; fnu ¼
2mudr
rþ 1

hNjd̄djNi
mN

;

fpd ¼ 2mud

rþ 1

hNjd̄djNi
mN

; fnd ¼
2mud

rþ 1

hNjūujNi
mN

; ð7Þ

where r ¼ ðmu=mdÞ ¼ 0.50ð4Þ taken from Ref. [43]. We
find

fpu ¼ 0.0149ð17Þ
�21
14

�
; fnu ¼ 0.0117ð15Þ

�18
12

�
;

fpd ¼ 0.0234ð23Þ
�27
16

�
; and fnd ¼ 0.0298ð23Þ

�30
16

�
;

ð8Þ
and for the yN parameter

yN ≡ 2hNjs̄sjNi
hNjūuþ d̄djNi ¼ 0.075ð16Þ

�14
10

�
: ð9Þ

Isospin breaking can be estimated by comparing the values
of fp=nu=d in Eq. (8) to those obtained when replacing the
isovector matrix element with the neutron-proton mass
splitting ΔmN jQCD ¼ 2mudð1 − r=1þ rÞhNjūu − d̄djNi,
and using the value ΔmN jQCD ¼ 2.52ð17Þð24Þ MeV deter-
mined for nondegenerate u- and d- quarks [44]. We find a
systematic error due to isospin breaking of maximum 1%
on fp=nu=d , i.e., an order of magnitude smaller than the other
errors.
In Fig. 4 we compare our values with recent results from

phenomenology and lattice QCD omitting analyses that

include simulations with pion masses larger than 500 MeV.
As can be seen, our value for σπN is in perfect agreement
with the most recent value determined using the Feynman-
Hellmann theorem [10], which corroborates the consis-
tency between the two methods. Such a value of σπN is
consistent with a small SU(3) breaking in conjunction with
a small violation of the Okubo-Zweig-Iizuka (OZI) rule.
However, there is tension with recent analyses based on the
Roy-Steiner equations and experimental data on pionic
atoms. The lattice QCD value implies a considerably
smaller value of the πN-scattering lengths in disagreement
with pionic-atom phenomenology. A thorough investiga-
tion of the lattice systematics, as well as an evaluation of the
πN-scattering lengths within lattice QCD [48], can, thus,
provide crucial input in resolving this puzzle.
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