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An application of the Gibbs-Duhem integration [D. A. Koke, J .  Chem. Phys., 98, 4149 (1993)l for the 
direct evaluation of vapour-liquid equilibria by molecular dynamics is presented. The Gibbs-Duhem 
integration combines the best elements of the Gibbs ensemble Monte Carlo technique and ther- 
modynamic integration. Given conditions of coexistence at one coexistence point, simultaneous but 
independent NPT molecular dynamics simulations of each phase are carried out in succession along 
saturation lines. In each simulation, the saturated pressure is adjusted to satisfy the Clapeyron equation. 
The Clapeyron equation is a first-order nonlinear differential equation that prescribes how the pressure 
must change with the temperature to maintain coexistence. The Clapeyron equation is solved by the 
predictor-corrector method. Running averages of enthalpy and density of each phase are used to evaluate 
the right-hand side of the Clapeyron equation. The Gibbs-Duhem integration method is applied to a 
two-centre Lennard-Jones fluid of elongation 0.505. The starting coexistence point was taken from 
published data or was determined via the Widom test particle insertion method. Implementation of the 
Gibbs-Duhem integration with a thermodynamic model for the vapour phase is also presented. 

KEY WORDS: Vapour-liquid equilibria, molecular dynamics, Gibbs-Duhem integration. 

1 INTRODUCTION 

Prediction of vapour-liquid equilibria (VLE) by molecular dynamics (MD) simula- 
tions is tedious and time-consuming work. Two approaches are typically used. The 
first approach involves calculations of PVT data along isotherms and subsequent 
applications of the Maxwell equal area rule [l]. The second approach combines 
MD with the Widom test particle insertion method when searching for conditions of 
coexistence (equality of the pressure, temperature and chemical potential) [2]. Both 
approaches require carrying out M D  simulations at state points that are not laid on 
the saturation curves. 

The Gibbs ensemble Monte Carlo (GEMC) technique [3] greatly simplifies the 
search and evaluation of coexistence conditions. It enables one with a single simula- 
tion to locate and evaluate the coexistence condition for a given system at a given 
temperature. The GEMC relies on particle insertions, and problems inherent in the 

27 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f G
ue

lp
h]

 A
t: 

20
:1

4 
13

 A
ug

us
t 2

00
7 28 M. L k A L  AND V. VACEK 

particle insertion method occur at high densities [4]. The GEMC also fails when 
dealing with systems modelled by complex intermolecular potentials unless special 
biasing procedures are employed. 

Recently, Kofke [ 5 ]  has proposed a new method for the direct evaluation of phase 
coexistence by molecular simulations: the Gibbs-Duhem integration. He applied 
it to the Lennard-Jones fluid. The Gibbs-Duhem integration combines the best 
elements of the GEMC technique and thermodynamic integration. The method 
entails simultaneous NPT simulations of each phase (like the GEMC method). The 
mechanism for equating the chemical potential is the Clapeyron equation. Hence, in 
contrast to the GEMC method, no particle insertion is necessary. Starting at a state 
point for which the two phases are known to be in equilibrium, the Gibbs-Duhem 
integration method can be used to trace out the phase diagram directly and efficiently. 

In this study, we applied the Gibbs-Duhem integration method to the molecular 
fluid: the two-centre Lennard-Jones (2CLJ) fluid of elongation of 0.505. We chose 
the 2CLJ fluid of elongation 0.505 because its VLE has been recently determined 
from the NPT plus test particle method [6 ] ,  and thus, it can serve for comparison 
with the results obtained from the Gibbs-Duhem integration method. Moreover, 
Saager ef al. [7] have used the 2CLJ fluid of elongation 0.505 in the construction of 
the physically based equation of state. This application also prompted us to calcu- 
late the VLE for this fluid. In contrast to Kofke [5]  who utilized the NPT Monte 
Carlo (MC) method, we carried out the NPT simulations by the NPT MD method. 
The M D  method has advantages over the MC method in that dynamical properties 
can be assessed. The next section presents the Clapeyron equation and its numerical 
solution by predictor-corrector methods. Section 3 gives the 2CLJ potential and 
simulation details. Section 4 presents results of the Gibbs-Duhem integration for (a) 
the starting coexistence condition given by Kriebel et al. data [ 6 ] ,  (b) the starting 
coexistence condition predicted via the Widom test particle insertion method, and (c) 
the use of thermodynamic model for the vapour phase. Finally, we given conclusions 
in Section 5. 

2 THE CLAPEYRON EQUATION 

The Gibbs-Duhem equation for pure substance [S] can be written as 

d ( B A  = hdB + Bvdp,  (1) 
where ,u is the chemical potential, h the molar enthalpy, u the molar volume, p the 
pressure, and p =  l/k,T, with k ,  the Boltzmann constant and Tthe absolute tem- 
perature. By writing Eq. (1) for two coexisting phases, liquid (1) and vapour (v), and, 
by equating the right-hand sides, the Clapeyron equation results in 

In Eq. (2), A h  = h, - h, is the difference in molar enthalpies of the coexisting phases, 
and A u =  u , - u ,  the difference in molar volumes of the coexisting phases; the 
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subscript G indicates that the derivative is taken along the saturation line. Eq. (2) is a 
first-order nonlinear differential equation that prescribes how the pressure must 
change with the temperature for two phases to remain in coexistence. 

Given an initial condition, i.e., the pressure, temperature andf(b, p )  at one coexist- 
ence point, Eq. (2) can be solved numerically by a predictor-corrector method. We 
successfully applied the Adams predictor-corrector [5 ,  91 

to calculate the pressure. In Eqs. (3) and (4), y stands for log p,fforf(p,p), P for the 
predictor, C for the corrector, and A/? is the step in the fi. The Adams algorithm 
requires four prior simulations. We performed the start-up as follows: The pressure 
at the first simulation point was predicted by the trapezoid predictor-corrector 

p Y ,  = Y o  + Abfo (5 )  

(6)  
A P  c Y ,  = Y o  + +fl + f O L  

Then, the midpoint predictor-corrector 

P Y ,  = Yo + Wfl (7) 

was used to determine the pressure at the second point. Finally, the midpoint 
predictor 

Y3 = Y 1 +  2ABfz (9) 
with the Adams corrector 

was used to compute the pressure at the third point. The quantities needed to 
evaluate the right-hand side of the Clapeyron equation were obtained from simulta- 
neous but independent NPT MD simulations of the liquid and vapour phase. 

3 SIMULATION METHOD 

3.1 Intermolecular potential 

We applied the Gibbs-Duhem integration method to the 2CLJ fluid. The pair 
potential for the 2CLJ fluid is 
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In Eq. (1 l), rob is the distance between atom a of molecule i and atom b of molecule j ,  
E and a are the Lennard-Jones energy and size parameters, and w is the orientation 
of molecules. In the following, we used the Lennard-Jones reduced units: 
L * = l f a , r *  = r / o , t * = t f ( o ~ ) , T * = k , T f ~ , p * = p o ~ , p *  = p o 3 / & , u * = u / N ~ ,  
h* = h / N e , p *  = p / ~ , a n d  B* = Bfa3. 

3.2 Simulation details 

We carried out the NPT M D  simulations using the Andersen algorithm [4]. The 
temperature was kept constant by the isokinetic scaling of translational and angular 
velocities after every timestep. The equations of translational motion were solved by 
the Gear predictor-corrector algorithm of the fifth order. The rotational motion was 
treated by the method of quaternions and it was solved by the Gear predictor- 
corrector algorithm of the fourth order[4]. The minimum image convention, peri- 
odic boundary conditions and cut-off radius equal to the half-box length were used. 
Long-range corrections of the internal energy and pressure were included [4]. For 
the integration, the timestep At* = 0.002 was chosen. The membrane mass M* was 
set to 5.10-4 for the liquid and 1.10-6 for the vapour [6]. All simulation runs were 
performed with 256 molecules. 

We performed the Widom test particle insertion method in the NVT ensemble to 
calculate the chemical potential needed .for the determination of the initial coexist- 
ence point. The calculation of the chemical potential was carried out with 500 real 
and 500 test molecules. After every timestep, the test molecules were inserted ran- 
domly with the same cut-off radius as the real molecules. Equilibration periods 
consisted of 5000 timesteps, and production runs took 30000 timesteps. The reliabil- 
ity of the M D  code was checked to reproduce some published data in the NPT 
ensemble (the density, enthalpy and chemical potential) [6] and in the NVT en- 
semble (the pressure and internal energy) [7]. 

We proceeded with the Gibbs-Duhem integration method as follows: Starting 
from fcc lattices, we performed the NVT M D  simulations of the liquid and vapour 
phases at the initial coexistence point. Following simulations continued in the NPT 
ensemble. At each temperature, the simulations of the liquid and vapour phases 
were performed simultaneously but independently. The temperature was increased 
and the predictor pressure was calculated according to Eq. (5). Afterwards, the liquid 
and vapour structures were allowed to relax 3000 timesteps. At the end of relaxation 
period, all accumulators were set to zero. The subsequent production run of the 
liquid and vapour phases was divided into eight timeblocks. The first timeblock 
consisted of 3000 timesteps and the following timeblocks contained 1000 timesteps 
each. After each timeblock was completed, the computed running averages of liquid 
and vapour enthalpies, and liquid and vapour densities, were used to evaluate the 
right-hand side of the Clapeyron equation, and thus, to calculate the corrector 
pressure according to Eq. (6). Then, the temperature was again increased and the 
process was repeated. The predictor and corrector pressures were evaluated 
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according to appropriate equations: Eqs. (3,4 and 7- 10). The reciprocal temperature 
1/T* was increased in constant steps A/? of 0.006 or 0.009. 

The Gibbs-Duhem integration had to be halted near the critical point because the 
liquid phase 'vapourized', i.e., the liquid density took on a vapour-like value after 
about 3000 timesteps. Such an event is unavoidable in the NPT MD simulation if 
the critical point is approached. 

4 RESULTS AND DISCUSSION 

We carried out the Gibbs-Duhem integration between temperatures T* 1.85 and 2.8. 
The Clapeyron equation can be rewritten in the Lennard-Jones units as 

T* h,* - h: 

where p,* and p? are the vapour and liquid number densities. 

4.1 

Kriebel et al. [6] determined the VLE of the 2CLJ fluids by the NPT plus test 
particle method. We took their coexistence point at T* = 1.85 as the initial 
condition for the Gibbs-Duhem integration. Figure 1 shows a comparison of the 

The starting coexistence condition given by Kriebel et al. data 

1.80 2.00 2.20 2.40 2.60 2.80 

T* 

Figure 1 Vapor-liquid coexistence pressure p* as a function of temperature T* for the two-centre 
Lennard-Jones fluid of elongation 0.505. The starting coexistence condition given by Kriebel et a/. data 
[6 ] .  ( - : Kriebel et a/ .  [6]; 0: the Gibbs-Duhem integration). 
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vapour-liquid coexistence pressure given by Kriebel et al. data with that calculated 
by the Gibbs-Duhem integration. The Gibbs-Duhem results agree very well with the 
Kriebel et a/. results. The Gibbs-Duhem pressure is higher at  low temperatures, and 
it is lower at high temperatures in comparison with the Kriebel et al. values. 
Figure 2 displays the coexistence envelope of the 2CLJ fluid of elongation 0.505 for 
the Gibbs-Duhem integration method and the NPT plus test particle method. The 
overall accord between both methods is more than satisfactory. However, at high 
temperatures both vapour and liquid densities are slightly lower in the case of the 
Gibbs-Duhem integration method. It is worthwhile to note that the test of the 
thermodynamic consistency of the Kriebel ef a/. VLE data by the Clapeyron equa- 
tion [6] revealed differences between the right-hand and left-hand sides of the 
Clapeyron equation equal to about 13%. Those differences can cause discrepancies 
between our results and those of Kriebel ef a/. 

We estimated the critical temperature T,* and density pc* from a least-squares fit 
of the law of rectilinear diameter 

and the critical scaling relation 

* 
I- 

2.60 

2.40 

2.20 

2.00 

1 .80 
0.00 0.10 0.20 0.30 0.40 0.50 

Figure 2 Coexistence envelope for the two-centre Lennard-Jones Buid of elongation 0.505. The starting 
coexistence condition given by Kriebel ef a/ .  data [ 6 ] .  ( - : Kriebel et al. [6]; 0: the Gibbs-Duhem 
integration). Error bars are included only if large than the plot marks. The diamonds describe the law of 
rectilinear diameter, and the critical point estimated from the Gibbs-Duhem integration data is indicated 
by the square. 
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The fit of Eq. (13) was performed over the entire temperature range, and the result is 
shown in Figure 2. Eq. (14) was fit for T *  2 2.4. The least-squares fit gives the fitting 
parameters C, = - 6.268.10-, and C, = 0.475, and the critical parameters 
T,* = 2.764 and pz = 0.195. The analysis is not particularly sensitive to the location 
of the temperature cut-off for the fit of Eq. (14). The use of the cut-off T* 3 2.5 or 
T* 2 2.3 produces small differences in T z  and p,*. Our critical parameters can be 
compared with those of Kriebel et al.: T :  = 2.800 and pz = 0.206. 

4.2 The starting coexistence condition predicted via the Widom test particle 
insertion method 

We determined the initial condition of the Gibbs-Duhem integration at T* = 1.85 by 
(a) applying the Widom test particle insertion method on the liquid side, and (b) 
using the simple truncated virial equation of state [ 111 

(15) 

on the vapour side. In Eq. (15), B* is the second virial coefficient. The B* was 
calculated by a non-product algorithm [12] and B* = - 11.183 at T* = 1.85. From 
the simple truncated virial equation of state, the chemical potential in the vapour p,* 
and vapour density p,* can be expressed as 

-..... ’* -1+B*p* 
p* T* 

(16) 
P* 2 = logp,* + 2B*p: 
T* 

,/4B*p*/T* + 1 - 1 
2B* P,* = (17) 

We carried out the NVT MD simulations with the test particle insertions at 
T* = 1.85 for densities 0.48, 0.49, 0.50,0.51 and 0.52. The computed chemical poten- 
tial and pressure were fitted to polynomials of the third order as displayed in 
Figure 3. The initial coexistence point for the Gibbs-Duhem integration was deter- 
mined from the condition of the equality of the pressure and chemical potential in 
both phases. The resulting coexistence point at T* = 1.85 is p* = 1.00.10-2, 
p,* = 0.58.10-,, and pT = 0.499. The obtained vapour-liquid coexistence pressure 
and vapour density are about 12% lower than the Kriebel et al. coexistence point 
p* = 1.13.10-2,p,* = O.66.1Op2, and p: = 0.499. Figure 4 and 5 compare the va- 
pour-liquid coexistence pressure and the coexistence envelope for the 2CLJ fluid of 
elongation 0.505. As one can expect, the Gibbs-Duham pressure p* and vapour 
density p,* are consistently lower than the Kriebel et al. values, and the discrepancies 
increase with temperature. This is due to lower initial values of p* and p,* in 
comparison with the Kriebel et al. values. The fit of our data to Eqs. (13) and (14) 
gives the fitting parameters C ,  = - 7.156.10-, and C ,  = 0.512, and the critical par- 
ameters Tc* = 2.752 and pc* = 0.189. 

4.3 

The Gibbs-Duhem integration can be easily modified to incorporate a ther- 
modynamic description of the vapour phase. Such a situation may occur either 

A thermodynamic model for vapour phase 
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t 
3 

-4.00 

-4.50 

-5.00 

1 .oo 

0.50 

0.00 

-0.50 

* 
Q 

0.48 0.50 0.52 

P* 

Figure 3 Chemical potential p*(  - ) and pressure p* ( - - - ) computed from the NVT M D  simulations 
with the test particle insertions as a function of density [I* (lines: the fit to polynomials of the third order; 
0: computed values). 

0.1 

* 
Q 

0.0 1 
1.80 2.00 2.20 2.40 2.60 2.80 

T* 

Figure4 Vapour-liquid coexistence pressure p* as a function of temperature T* for the two-centre 
Lennard-Jones fluid of elongation 0.505. The starting coexistence condition predicted via the Widom test 
particle insertion method. ( - : Kriebel et al. [6 ] ;  0: the Gibbs-Duhem integration). 
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* 
I- 

2.40 

2.20 - 

2.00 - 

0.00 0.10 0.20 0.30 0.40 0.50 

P" 

Figure 5 Coexistence envelope for the two-centre Lennard-Jones fluid of elongation 0.505. The starting 
coexistence condition predicted via the Widom test particle insertion method. Error bars are included 
only if larger than the plot marks. ( - :  Kriebel et al. [6]; 0: the Gibbs-Duhem integration). The diamonds 
describe the law of rectilinear diameter, and the critical point estimated from the Gibbs-Duhem integra- 
tion data indicated by the square. 

when extensive experimental or simulation data are available and a suitable ther- 
modynamic model has been found, or when a potential model successfully describes 
the liquid phase, but it fails to describe the vapour phase [13]. We implemented the 
simple truncated virial equation of state (Eq. (15)), but the idea can be readily 
extended to a more complicated thermodynamic model. The simple truncated virial 
equation of state is valid for low densities. The second virial coefficient B* was 
calculated by the non-product algorithm [12] and it is presented in Figure 6.  The 
calculated values of B* were fitted to the equation [14] 

The fitting parameters are a, = 2 . 6 7 2 9 , ~ ~  = 3.5672, and a3 = 1.6601. 
We started the Gibbs-Duhem integration from the initial condition given via the 

Widom test particle insertion method. The vapour density p z  was obtained from 
Eq. (17) and the difference in the enthalpies h,* - hf was expressed according to [lS] 
by 

ho* - h; = - uf + p*($ -+) + p,* T*( T*dT* dB* - B*). 
(19) 
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1.80 2.00 2.20 2.40 2.60 2.80 

T" 

Figure6 Second virial coefficient B* as a function of temperature T* ( - :  the fit to Eq. (18); 0: cal- 
culated values). 

r 

t 
I- : 
9 

* 

(;q 
d- 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

0.00 
1.80 2.00 2.20 2.40 2.60 2.80 

T" 

Figure7 Region of validity the simple truncated virial equation of state. The simple truncated virial 
equation of state is valid until 4B*p*/T* + 1 (Eq. (17)) is positive. 
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Figure8 Vapour-liquid coexistence pressure p* as a function of temperature T* for the two-centre 
Lennard-Jones fluid of elongation 0.505. The starting coexistence condition predicted via the Widom test 
particle insertion method. ( - :  Kriebel et a/. [ 6 ] ,  0: the Gibbs-Duhem integration with the ther- 
modynamic model for the vapour phase). 

* 
I- 

0.00 0.10 0.20 0.30 0.40 0.50 

Figure 9 Coexistence envelope for the two-centre Lennard-Jones fluid of elongation 0.505. The starting 
coexistence condition predicted via the Widom test particle insertion method. ( - : Kriebel et al. [6]; 0: the 
Gibbs-Duhem integration with the thermodynamic model for the vapour phase). Error bars are included 
only if larger than the plot marks. The diamonds describe the law of rectilinear diameter. 
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In Eq. (19), uI* is the potential energy of the liquid. The Gibbs-Duhem integration 
had to be halted near the temperature 2.4 because the root-square in Eq. (17) is not 
longer defined, as is shown in Figure 7. 

Figure 8 and 9 present the results of the Gibbs-Duhem integration. One can see 
that the pressure increase for the Gibbs-Duhem integration is steeper than for the 
NPT plus test particle method (Figure 8); nevertheless, accord between the two 
methods is very good. The coexistence envelope for the Gibbs-Duhem integration 
agrees very well with the Kriebel et al. data (Figure9). Only the last two vapour 
values in Figure 9 are influenced by the loss of validity the simple truncated virial 
equation of state. 

5 CONCLUSIONS 

We directly evaluated the vapour-liquid equilibria by MD simulations using the 
Gibbs-Duhem integration method [5]. The Gibbs-Duhem integration method, like 
the GEMC method, performed simultaneous but independent simulations of each 
’phase. However, in contrast to the GEMC, the Gibbs-Duhem integration method 
does not require the particle insertion. The Gibbs-Duhem integration method was 
applied to the 2CLJ fluid of elongation 0.505. The necessary initial coexistence point 
for initation of the Gibbs-Duhem integration was taken from (a) Kriebel et al. data 
[6], and (b) was determined via the Widom test particle insertion method. In case 
(a), the agreement between the Gibbs-Duhem and Kriebel et al. VLE data is very 
good. In case (b), the agreement is less satisfactory because the initial pressure and 
vapour density determined via the Widom test particle insertion method is lower. 
We also showed how the Gibbs-Duhem integration method can be easily modified 
to incorporate a thermodynamic description of the vapour phase, e.g., the simple 
truncated virial equation of state. 
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