# Angewandte Eine Zeitschrift der Ceselfschoft Deufscher Chemiker Chemie 

## Supporting Information

© Wiley-VCH 2008
69451 Weinheim, Germany

```
Direct Evidence for Hydrogen Bonding to Bound
Dioxygen in a Myoglobin/Hemoglobin Model System and
in Cobalt Myoglobin by Pulse-EPR Spectroscopy
Henry Dube }\ddagger, Besnik Kasumaj `, Carlos Calle, Makoto Saito
Gunnar Jeschke, François Diederich*
In Memoriam Arthur Schweiger
[*] Prof. Dr. F. Diederich, Dr. M. Saito, H. Dube
    Laboratorium für Organische Chemie
    ETH Zürich
    Hönggerberg, HCI, 8093 Zürich (Switzerland)
    Fax: (+41) 44-632-1109
    E-mail: diederich@org.chem.ethz.ch
    Homepage: http://www.diederich.chem.ethz.ch
    Dr. C. Calle, B. Kasumaj
    Laboratorium für Physikalische Chemie
    ETH Zürich
    Hönggerberg, HCI, 8093 Zürich (Switzerland)
```

E-mail: besnik.kasumaj@esr.phys.chem.ethz.ch

Prof. Dr. G. Jeschke
Fachbereich Chemie
Universität Konstanz
Universitätsstrasse 10, 78457 Konstanz (Germany)
Fax: (+49) 7531-88-3139
E-mail: Gunnar.Jeschke@uni-konstanz.de
Homepage: http://dg3.chemie.uni-konstanz.de/~agje/
[ $\ddagger$ ] Both authors contributed equally to this work.

## Table of Contents

Computational Details ..... 6
Figure 1SI: Starting Geometries. ..... 6

Table 1SI: Dihedral Angles of the Starting Geometries.7
Figure 2SI: Overlays of $1-\mathrm{Fe}-\mathrm{O}_{2}$ and $\mathrm{Mb}-\mathrm{O}_{2}$. ..... 8
Table 2SI: Geometry Parameters of $\mathbf{1 - F e}-\mathrm{O}_{2}$
and $\mathrm{Mb}-\mathrm{O}_{2}$. ..... 9
Experimental ..... 10
Materials and General Methods ..... 10
Synthetic Protocols ..... 12
Preparation of 5-2H ..... 12
Preparation of 5-Zn ..... 13
Preparation of 6-Zn ..... 15
Preparation of 7-Zn ..... 16
Preparation of $\mathbf{1 - Z n}$ ..... 18
Deuterium Exchange of 1-Zn ..... 20
Preparation of 1-Co ..... 20
Reduction Protocol ..... 22
Deuterium Exchange of 1-Co ..... 23
Preparation of the Dioxygen Adducts ..... 23
Spectra ..... 24
${ }^{1} \mathrm{H}$ NMR Spectra of the Deuterium Exchange of $1-\mathrm{Zn}$ ..... 24
Figure 3SI: Before $D_{2} O$ Exchange. ..... 24
Figure 4SI: After $\mathrm{D}_{2} \mathrm{O}$ Exchange. ..... 25
UV/Vis Spectra of 1-Co ..... 26
Figure 5SI: After $\mathrm{Co}^{\mathrm{II}}$ Insertion. ..... 26
Figure 6SI: After Reduction. ..... 27
EPR Studies ..... 28
General ..... 28
EPR Spectra of $1-\mathrm{Co}-\mathrm{O}_{2}$ ..... 30
X-Band CW Spectra ..... 30
Figure 7SI: a) 1-Co; b) $\mathbf{1 - C o}-\mathrm{O}_{2}$. ..... 30
Q-Band Davies-ENDOR Spectra ..... 31Figure 8SI: a) $\mathbf{1 - C o}-\mathrm{O}_{2}, 160 \mathrm{~ns}$ Preparation
Pulse Length; b) 1-Co $-\mathrm{O}_{2}, 80 \mathrm{~ns}$ Preparation
Pulse Length. ..... 31
X-Band 6-Pulse HYSCORE of 1-Co-O ..... 32
Figure 9SI: 6-Pulse HYSCORE of $\mathbf{1 - C o}-\mathrm{O}_{2}$. ..... 32
Simulations of EPR Spectra of $1-\mathrm{Co}-\mathrm{O}_{2}$ ..... 33
General ..... 33
Figure 10SI: X-Band CW Spectrum Simulation. ..... 34
ENDOR Spectra Simulations ..... 35
Figure 11SI: Proton Assignments in $1-\mathrm{Co}-\mathrm{O}_{2}$. ..... 39
Table 3SI: Simulation Parameters. ..... 40
Figure 12SI: Spectra of the ExchangeableProton.44
Figure 13SI: Solvent Spectra. ..... 45
Figure 14SI: Sum Simulation for 80 nsPreparation Pulse Length.Figure 15SI: Sum Simulation for 160 nsPreparation Pulse Length.47
Co-Mb-O ${ }_{2}$ Studies ..... 48
X-Band CW Spectra of $\mathbf{C o - M b}$ and $\mathbf{C o - M b}-\mathrm{O}_{2}$ ..... 49
Figure 16SI: CW EPR Spectrum of Co-Mb. ..... 49
Figure 17SI: $\quad \mathrm{CW}$ EPR Spectra of $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$. ..... 49
Separation of the FID-Integral-Detected EPR
Spectra of the Two Species in $\mathbf{C o}-\mathbf{M b}-\mathrm{O}_{2}$Figure 18SI: REFINE FID-Integral-DetectedEPR Spectra of $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$.50

Figure 19SI: a) FID-Integral-Detected EPR Spectra of Species 1 and Species 2; b) $T_{1}$ Evolution for Species 1 and Species 2. 51 Q-Band Davies-ENDOR Spectra of Co-Mb-O2 53 Figure 20SI: a) $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}, 160 \mathrm{~ns}$ Preparation Pulse Length; b) $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$, 80 ns Preparation Pulse Length. 53

Figure 21SI: a) REFINE Davies-ENDOR Spectra; b) Davies-ENDOR Contributions of Species 1 and Species 2. 54

X-Band 6-Pulse HYSCORE Spectrum of Co-Mb-O2 56
Figure 22SI: HYSCORE of $\mathrm{CO}-\mathrm{Mb}-\mathrm{O}_{2}$. 56
References 57

## Computational Details

Conformational analysis of the iron complex $\mathbf{1 - F e}-\mathrm{O}_{2}$, was conducted at the semiempirical PM5 level of theory, using the Mopac 2002 program package. ${ }^{[1]}$

The dihedral angles $\theta 1$ to $\theta 5$ indicated with blue arrows in Figure 1SI were adjusted to different values given in Table 1SI.


Figure 1SI: Starting geometry of $1-\mathrm{Fe}-\mathrm{O}_{2}$ for conformational analysis. The dihedral angels $\theta 1$ to $\theta 5$ that were varied are indicated with blue arrows.

Table 1SI: Different dihedral angles $\theta 1$ to $\theta 5$ and their values used in the different starting geometries of $\mathbf{1 - F e} \mathbf{O}_{2}$. All combinations of the different starting dihedral angles were used as starting points for geometry optimization.

| Dihedral angle | Values in the starting geometry in $^{\circ}$ |  |  |  |  |  |  |  |
| :---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\theta 1$ | 70 | 90 | 110 |  |  |  |  |  |
| $\theta 2$ | 70 | 90 | 110 |  | 45 | 90 | 135 | 180 |
| $\theta 3$ | -135 | -90 | -45 | 0 |  |  |  |  |
| $\theta 4$ | 70 | 90 | 110 |  | 45 | 90 | 135 | 180 |
| $\theta 5$ | -135 | -90 | -45 | 0 | 45 |  |  |  |

All different combinations of the five dihedral angles led to 1728 different conformers as starting geometries for the geometry optimization of $1 \mathbf{- F e}-\mathrm{O}_{2}$. Optimization led to a considerable convergence to 93 energetically different structures. The structural overlay in Figure 2SI shows the calculated minimum geometry of $1-\mathrm{Fe}-\mathrm{O}_{2}$ (in orange) together with the oxygenated binding site extracted from the crystal structure of sperm whale Mb (grey, PDB code 1A6M). ${ }^{[2]}$ The hydrogen atom in question was added into the crystal structure of the protein using the reported distances and angles from the neutron diffraction structure. ${ }^{[3]}$ Residues appended to the porphyrin core in both the model and the protein were omitted in the picture for reasons of clarity.


Figure 2SI: Overlay of the binding site of dioxygen-bound myoglobin extracted from the neutron diffraction structure ${ }^{[2,3]}$ with the minimum energy structure of $\mathbf{1 - F e} \mathbf{O}_{2}$.

The minimum energy structure was confirmed to be a true minimum by frequency calculations, showing six low frequencies (the "trivial modes" referring to 6 degrees of freedom for a nonlinear molecule, three for translation and three for rotation) for the structures obtained. The distances between the NH proton of the distal imidazole and each oxygen atom of dioxygen are given in Table 2SI together with other important geometry parameters.

Table 2SI: Comparison of the distal geometry in the calculated minimum energy structure $1 \mathbf{- F e}-\mathrm{O}_{2}$ with sperm whale Mb. ${ }^{[2,3]}$

| Geometry | 1-Fe- $\mathrm{O}_{2}$ | $\mathrm{Mb}-\mathrm{O}_{2}$ |
| :---: | :---: | :---: |
| $r(\mathrm{~N}-\mathrm{H} \cdot \cdots \mathrm{O}-\mathrm{O})(\mathrm{A})$ | 2.41 | 1.98 |
| $r(\mathrm{~N}-\mathrm{H} \cdot \mathrm{CO} \mathrm{OF})(\AA)$ | 3.30 | 2.44 |
| $r(\mathrm{Fe}-\mathrm{N} 21)(\AA)$ | 2.01 | 2.00 |
| $r(\mathrm{Fe}-\mathrm{N} 22$ ) ( $\AA$ ) | 2.07 | 2.00 |
| $r(\mathrm{Fe}-\mathrm{N} 23$ ) ( $\AA$ ) | 1.99 | 2.00 |
| $r(\mathrm{Fe}-\mathrm{N} 24)(\AA)$ | 2.08 | 2.02 |
| $r(F e-N 3 a x i a l-b a s e)(\AA)$ | 2.15 | 2.06 |
| $r(\mathrm{Fe}-\mathrm{O})(\AA)$ | 1.71 | 1.81 |
| $r(0-0)(\AA)$ | 1.31 | 1.24 |
| $a(\mathrm{Fe}-\mathrm{O}-\mathrm{O})$ | $120.0^{\circ}$ | $122.5{ }^{\circ}$ |
| d(N21-Fe-N3axial-base-C2axial-base) | $-48.8{ }^{\circ}$ | $91.8{ }^{\circ}$ |
| $d(\mathrm{O}-\mathrm{O}-\mathrm{Fe}-\mathrm{N} 21)$ | $-79.8{ }^{\circ}$ | $-111.1^{\circ}$ |

## Experimental

Materials and General Methods: Reagents and solvents were purchased at reagent grade from Acros, Aldrich, and Fluka, and used as received. Tetrahydrofuran (THF) was freshly distilled from $\mathrm{Na} /$ benzophenone, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $\mathrm{CaH}_{2}$ under $\mathrm{N}_{2}, N$, $N$-dimethylformamide (DMF) was purchased from Fluka ([ $\left.\mathrm{H}_{2} \mathrm{O}\right]<0.005 \%$ ). All cross-coupling reactions were performed under an inert atmosphere by applying a positive pressure of $\mathrm{N}_{2}$ or Ar. Freshly dried solvents for the glove box experiments were carefully degassed by at least 4 freeze-pump-thaw cycles ( $1 \times 10^{-3}$ mbar). Column chromatography (CC) was carried out with $\mathrm{SiO}_{2} 60$ (particle size 0.040-0.063 mm, 230-400 mesh; Fluka) and distilled technical solvents. Thin-layer chromatography (TLC) was conducted on glass plates coated with $\mathrm{SiO}_{2} 60 \mathrm{~F}_{254}$ obtained from Merck; visualization with a UV lamp (254 or 366 nm ). Melting points (m.p.) were measured on a Büchi B-540 melting-point apparatus in open capillaries and are uncorrected. "Decomp." refers to decomposition. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Varian Gemini 300 or on a Bruker DRX500 spectrometer at $20^{\circ} \mathrm{C}$ unless otherwise stated. Chemical shifts ( $\delta$ ) are reported in ppm relative to the signal of tetramethylsilane (TMS). Residual solvent
signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were used as an internal reference $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.263 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}}=5.32\right.$ ppm, $\left.\mathrm{Me}_{2} \mathrm{SO}-d_{6}: \delta_{\mathrm{H}}=2.50 \mathrm{ppm}\right)$. Coupling constants (J) are given in Hz . The apparent resonance multiplicity is described as $s$ (singlet), br (broad signal), d (doublet), t (triplet), $q$ (quartet), and $m$ (multiplet). Infrared spectra (IR) were recorded on a Perkin-Elmer FT1600; signal designations: vs (very strong), s (strong), m (medium), w (weak). UV/Vis spectra were recorded on a Varian Cary-5 spectrophotometer. The spectra were measured in $\mathrm{CHCl}_{3}$ in a quartz cuvette ( 1 cm ). The absorption wavelenghts ( $\lambda$ ) are reported in $n m$ with the extinction coefficient ( $\varepsilon$ ) $\mathrm{m}^{-1} \mathrm{~cm}^{-1}$ in brackets; shoulders are indicated as sh. HR FT-ICR-MALDI spectra were measured on an IonSpec Ultima Fourier transform (FT) instrument with [(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) or 3-hydroxypicolinic acid (3-HPA) as matrix. The most important signals are reported in $m / z$ units with $M$ as the molecular ion. Elemental analyses were performed by the Mikrolabor at the Laboratorium für Organische Chemie, ETH Zürich, with a LECO CHN/900 instrument.

## Synthetic Protocols

Tetraethyl 4, ' $^{\prime}, 4^{\prime \prime}$, $4^{\prime \prime \prime}$ ' $[$ (10-\{5-hydroxy-2-
[(triisopropylsilyl)ethynyl]phenyl\}porphyrin-5,15-
diyl)bis [benzene-2,1,3-triylbis (oxy)] ]tetrabutanoate (5-2H) In a 3 L flask, equipped with a magnetic stirrer and a reflux condenser, $2(3.32 \mathrm{~g}, 7.94 \mathrm{mmol}), 3(580 \mathrm{mg}, 3.97$ mmol), and $4(4.36 \mathrm{~g}, 11.91 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.35 L) in the dark. After addition of TFA (0.95 mL, 1.41 mmol), the mixture was stirred at $20{ }^{\circ} \mathrm{C}$ for 16 h in the dark. Chloranil (11.75 g, 47.79 mmol ) was added, and the mixture was heated under reflux ( $\left.40{ }^{\circ} \mathrm{C}\right)$ for 2 h . After cooling to $20{ }^{\circ} \mathrm{C}, \mathrm{SiO}_{2}(50 \mathrm{~g})$ was added and the solvent was removed in vacuo. The residual black material was prepurified by CC ( $\left.\mathrm{SiO}_{2} ; \quad \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 95: 5 \quad \rightarrow \quad 7: 3\right) \cdot$ Purification of the obtained porphyrin fraction $\left(\mathrm{SiO}_{2}\right.$; $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 95: 5\right)$ afforded $5-\mathbf{2 H}(747 \mathrm{mg}, 15 \%)$ as purple solid. M.p. $59{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.10(\mathrm{~s}$, $1 \mathrm{H}), 9.26(d, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.93(d, J=4.8 \mathrm{~Hz}, 2 \mathrm{H})$, 8.83-8.70 (m, 4H), 7.83 (d, J = 8.7 Hz, 1H), 7.72 (t, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(d, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(d d, J=8.7$ $\mathrm{Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(d, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(d, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.07-3.84(m, 8 \mathrm{H}), 3.81-3.62(m, 8 \mathrm{H}), 1.63-1.19$ $(m, \quad 16 \mathrm{H}), \quad 0.91-0.81(m, 12 \mathrm{H}), 0.04-0.13(m, 21 \mathrm{H}),-2.83$ $(b r \quad s, 2 H) ; \quad{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=173.1,172.8$,
159.5, 159.3, 154.3, 146.8, 145.4, 132.8, 130.9, 130.6, 130.0, 123.3, 119.9, 118.8, 117.4, 115.0, 111.3, 106.9, 105.3, 105.1, 103.9, 92.6, 67.2, 60.1, 59.9, 30.3, 29.7, $24.0,23.8,17.7,17.5,13.9,13.8,10.3 ;$ IR (neat): 3311w, 2939m, 2863m, 2360m, 2342m, 2151w, 1728vs, 1586s, 1455vs, 1374m, 1291m, 1246s, 1178vs, 1092vs, 1029s, 970s, 957s, 931s, 882m, 833s, 803vs $\mathrm{cm}^{-1}$; UV/Vis $\left(\mathrm{CHCl}_{3}\right):$ $\lambda_{\max }(\varepsilon)=644(1.700), 586(5.700), 541$ (4.500), 509 (17.900), 415 (353.500), 398 (76.600, sh), 369 (22.500); HR-MALDI-MS (3-HPA): m/z: 1254.5940 ([M] ${ }^{+}, \mathrm{C}_{73} \mathrm{H}_{86} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{Si}^{+}$, calc. 1254.5955); Anal. Calc. for $\mathrm{C}_{73} \mathrm{H}_{84} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{Si}$ (1255.59): C 69.83, H 6.90, N 4.46, found: C 69.57, H 7.00, N 4.28.

[(triisopropylsilyl)ethynyl]phenyl\}porphyrin-5,15-diylK $\boldsymbol{N}^{21}, \mathrm{~K} \boldsymbol{N}^{2 \boldsymbol{2}}, \mathrm{~K} \boldsymbol{N}^{23}, \mathrm{~K}^{24}$ ) bis [benzene-2,1,3-
triylbis(oxy)]]tetrabutanoato(2-)\}zinc (5-Zn)
A 100 mL flask, equipped with a magnetic stirrer and a reflux condenser, was charged with porphyrin 5-2H ( 632 mg , $0.50 \mathrm{mmol})$ and $\mathrm{CHCl}_{3}(22 \mathrm{~mL}) . \quad \mathrm{ZnOAc}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.14 \mathrm{~g}, 5.19$ mmol) in $\mathrm{MeOH}(22 \mathrm{~mL})$ was added, and the mixture was heated under reflux ( $65{ }^{\circ} \mathrm{C}$ ) for 1 h . After cooling, the solvent was removed in vacuo, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{x} 50 \mathrm{~mL})$. The combined
organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and purified by $\mathrm{CC}\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$ to yield 5-Zn (640 mg, 96\%) as a purple solid. M.p. $65{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.12(s, 1 \mathrm{H}), 9.30(d, J=4.4,2$ H), 8.99 (d, J = 4.4, 2 H$), 8.88-8.82(m, 4 \mathrm{H}), 7.77(d, J$ $=8.4,1 \mathrm{H}), 7.70(t, J=8.4,2 \mathrm{H}), 7.43(d, J=2.5,1$ H), $7.15(d d, J=2.5,8.4,1 \mathrm{H}), 7.07(d, J=8.4,2 \mathrm{H})$, $6.99(d, J=8.4,2 \mathrm{H}), 6.73(\mathrm{br} s, 1 \mathrm{H}), 4.04-3.76(m, 8$ H), 3.72-3.54 ( $m, 4 \mathrm{H}), 3.48-3.26(m, 4 \mathrm{H})$, 1.54-0.83 (m, $16 \mathrm{H}), 0.83(t, J=7.2,6 \mathrm{H}), 0.63(t, J=7.2,6 \mathrm{H}),-$ $0.12-0.25(m, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.8$, 172.7, 159.7, 159.3, 154.1, 150.3, 150.2, 149.3, 149.1, 147.5, 132.7, 131.5, 131.2, 131.14, 131.08, 129.7, 122.8, 121.6, 119.0, 118.3, 114.8, 112.1, 107.1, 105.8, 105.7, 105.0, 92.1, 67.6, 67.5, 59.84, 59.82, 29.8, 29.6, 24.0, 23.8, 17.5, 13.9, 13.7, 10.3; IR (neat): 3421m, 2941s, $2864 m, 2153 \mathrm{w}, 1734 \mathrm{vs}, 1700 \mathrm{~s}, 1595 \mathrm{~s}, 1560 \mathrm{~m}, 1457 \mathrm{vs}, 1380 \mathrm{~m}$, 1301m, 1249s, 1180s, 1101vs, 1029m, 996s, $805 \mathrm{~m} \mathrm{~cm}^{-1}$; UV/Vis $\left(\mathrm{CHCl}_{3}\right): \lambda_{\max }(\varepsilon)=548(11.800), 420(277.000), 400(29.300$, sh), 309 (12.800); HR-MALDI-MS (3-HPA): $1316.5080\left(\left[\mathrm{M}^{+}\right.\right.$, $\mathrm{C}_{73} \mathrm{H}_{84} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{SiZn}^{+}$, calc. 1316.5090); Anal. Calc. for $\mathrm{C}_{73} \mathrm{H}_{84} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{SiZn} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1352.53): C 64.71, H 6.55, N 4.13 , found: C 64.86, H 6.65, N 3.98.
\{Tetraethyl 4,4',4' ${ }^{\prime} 4^{\prime \prime \prime}-([10-(5-\{[6-(1 H-i m i d a z o l-1-$ yl)hexyl]oxy\}-2-
[(triisopropylsilyl)ethynyl]phenyl)porphyrin-5,15-diyl-

triylbis(oxy)])tetrabutanoato(2-)\}zinc (6-Zn)
A 250 mL separation funnel was filled with ice-cold NaOH ( $85 \mathrm{~mL}, 1 \mathrm{~m}$ ). 1-(6-Bromohexyl)-1H-imidazol-3-ium acetate + 2 x AcOH ( $700 \mathrm{mg}, 1.70 \mathrm{mmol})$ was added, and the aqueous phase was extracted with ice cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 30 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Dry DMF (9.00 $\mathrm{mL}), 5-\mathrm{Zn}(640 \mathrm{mg}, 0.49 \mathrm{mmol})$, and dry $\mathrm{Cs}_{2} \mathrm{CO}_{3}(636 \mathrm{mg}, 1.95$ mmol) were added and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed at $\mathrm{T} \leq 25{ }^{\circ} \mathrm{C}$ in vacuo. The resulting suspension was stirred at $20{ }^{\circ} \mathrm{C}$ for 14 $h$ under $N_{2}$. Subsequently, the mixture was filtered through Celite. The Celite was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and the organic phase concentrated in vacuo. $\mathrm{CC}\left(2 \mathrm{x} \mathrm{SiO}_{2}\right.$; $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 99:1) afforded 6-Zn (561 mg, 79\%) as purple solid. M.p. $81-82{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=$ $9.95(s, 1 \mathrm{H}), 9.19(d, J=4.3,2 \mathrm{H}), 8.88(d, J=4.3,2$ H), $8.73(d, J=4.5,2 \mathrm{H}), 8.63(d, J=4.5,2 \mathrm{H}), 7.77$ $(d, J=8.8,1 \mathrm{H}), 7.68(t, J=8.5,2 \mathrm{H}), 7.13(d d, J=$ $1.8,8.7,1 \mathrm{H}), 7.06(d, J=8.4,2 \mathrm{H}), 7.02(d, J=1.8,1$ H), $6.98(d, J=8.4,2 H), 4.88(s, 1$ H), 4.02-3.92(m, $4 \mathrm{H})$, 3.90-3.80 ( $m$, 6 H$), 3.75-3.60(m, 6 \mathrm{H}), 3.58-3.49(m$,
$2 \mathrm{H}), 2.51(b r t, J=5.9,2 \mathrm{H}), 2.22(b r s, 1 \mathrm{H}), 1.92(s$, $1 \mathrm{H}), 1.60(\mathrm{br} s, 2 \mathrm{H}), 1.51-1.29(m, 8 \mathrm{H}), 1.28-1.02(m, 8$ H), 0.94-0.85 ( $m, 2 \mathrm{H}), 0.91(t, J=7.2,6 \mathrm{H}), 0.80(t, J=$ $7.2,6 \mathrm{H}), 0.75-0.68(m, 2 \mathrm{H}),-0.07(\mathrm{br} s, 2 \mathrm{H}),-0.13-$ $0.25(m, 21 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.1,172.7$, 160.2, 159.6, 155.2, 150.1, 149.9, 149.1, 149.0, 148.7, 132.2, 131.7, 131.0, 130.9, 130.5, 130.4, 129.3, 123.6, 122.8, 119.0, 118.8, 117.5, 116.6, 114.8, 110.9, 107.2, 106.2, 105.3, 104.5, 92.8, 67.6, 67.4, 66.4, 59.8, 59.7, 46.0, 29.6, 29.5, 29.3, 26.4: 24.9, 23.94, 23.89, 23.8, 17.4, 13.9, 13.8, 10.2, one signal not observed due to signal overlap; IR (neat): 3421w, 2925s, 2861m, 1730vs, 1592m, 1457s, 1379m, 1294w, 1315w, 1248s, 1183s, 1099vs, 1059m, 1029w, 993s, 800w cm ${ }^{-1}$; UV/Vis $\left(\mathrm{CHCl}_{3}\right): \lambda_{\max }(\varepsilon)=594$ $(3.000), 559(13.000), 426(356.000), 406(30.400$, sh), 316 (14.500); HR-MALDI-MS (3-HPA): $1466.6258\left(\left[\mathrm{M}^{+}\right.\right.$, $\mathrm{C}_{82} \mathrm{H}_{98} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{SiZn}^{+}$, calc. 1466.6247 ); Anal. Calc. for $\mathrm{C}_{82} \mathrm{H}_{98} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{SiZn}(1469.18): \mathrm{C} 67.04, \mathrm{H} 6.72, \mathrm{~N} 5.72$, found: C 67.15, 6.91, 5.56.
(Tetraethyl 4, 4', 4'', $\mathbf{4}^{\prime \prime \prime}-\{[10-(2-e t h y n y l-5-\{[6-(1 H-$ imidazol-1-yl)hexyl]oxy\}phenyl)porphyrin-5,15-diyl-

triylbis(oxy)]\}tetrabutanoato(2-))zinc (7-Zn)

A 10 mL flask, equipped with a magnetic stirrer and a septum, was charged with $6-\mathbf{Z n}(120 \mathrm{mg}, 0.08 \mathrm{mmol})$ and THF ( 3.00 mL ). $n \mathrm{Bu}_{4} \mathrm{NF}(0.40 \mathrm{~mL}, 1 \mathrm{~m}$ in THF, 0.40 mmol$)$ was added dropwise. After stirring for 40 min at $20{ }^{\circ} \mathrm{C}$, the conversion was complete. The mixture was poured into a mixture of EtOAc/saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (150 mL, 2:1), and the phases were separated. The aqueous phase was extracted with EtOAc (3 x 50 mL$)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by $\mathrm{CC}\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 98:2) afforded 7-Zn (100 mg, 93\%) as purple solid. M.p. 88-90 ${ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.96(s, 1 \mathrm{H}), 9.19(d, J=4.4,2 \mathrm{H})$, $8.89(d, J=4.4,2 \mathrm{H}), 8.78(d, J=4.5,2 \mathrm{H}), 8.65(d, J$ $=4.5,2 \mathrm{H}), 7.79(d, J=8.9,1 \mathrm{H}), 7.68(t, J=8.5,2$ H), $7.15(d d, J=1.8,7.7,1 \mathrm{H}), 7.07(d, J=1.8,1$ H), $7.04(d, J=8.5,2 \mathrm{H}), 7.00(d, J=8.5,2 \mathrm{H}), 4.92(s, 1$ H), 4.05-3.92 (m, 4 H), 3.91-3.82 (m, 6 H), 3.72-3.56 (m, 6 H), 3.55-3.47 (m, 2 H), 2.52 (br t, J = 5.7, 2 H$), 2.31(s$, 1H), $2.24(s, 1 H), 2.00(s, 1 H), 1.60(b r s, 2 H), 1.48-$ $1.02(m, 16 \mathrm{H}), 0.91(t, J=7.1,6 \mathrm{H}), 0.94-0.87(m, 2 \mathrm{H})$, $0.79(t, J=7.1,6 \mathrm{H}), 0.76-0.69(m, 2 \mathrm{H}),-0.05(\mathrm{br} s, 2$ H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=173.1,172.7,160.0$, 159.6, 155.4, 150.3, 149.9, 149.3, 148.8, 148.5, 132.6, 131.7, 131.0, 130.8, 130.6, 130.5, 129.4, 123.6, 122.4,
118.7, 117.7, 116.8, 115.0, 111.02, 110.98, 105.9, 105.2, 104.8, 83.5, 79.6, 67.5, 67.4, 66.3, 59.8, 59.7, 46.1, $29.7,29.5,29.3,26.3,24.8,24.0,23.9,23.8,13.9,13.8 ;$ IR (neat): 3290w, 3117w, 2932m, 2870w, 1732vs, 1593m, $1520 \mathrm{~m}, ~ 1456 \mathrm{vs}, 1382 \mathrm{~m}, 1297 \mathrm{~m}, 1247 \mathrm{~s}, 1182 \mathrm{vs}, 1099 \mathrm{vs}, 1057 \mathrm{~m}$, 1030m, 992vs, 940w, 910w, 840w cm ${ }^{-1}$; UV/Vis $\left(\mathrm{CHCl}_{3}\right):$ $\lambda_{\max }(\varepsilon)=597(4.300), 560(18.500), 427(502.000), 406$ (41.600, sh), 314 (22.900); HR-MALDI-MS (3-HPA): 1310.4918 $\left(\left[\mathrm{M}^{+}, \quad \mathrm{C}_{73} \mathrm{H}_{78} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{Zn}^{+}\right.\right.$, calc. 1310.4913); Anal. Calc. for $\mathrm{C}_{73} \mathrm{H}_{78} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{Zn}(1312.84): \mathrm{C} 66.79, \mathrm{H} 5.99, \mathrm{~N} 6.40$, found: C 66.69, H 6.17, N 6.24.
 ylethynyl)-5-\{[6-(1H-imidazol-1yl) hexyl]oxy \}phenyl) porphyrin-5,15-diyl$\left.\kappa N^{21}, \kappa N^{22}, \kappa N^{23}, \kappa N^{24}\right]$ bis [benzene-2,1,3-triylbis(oxy)]\}tetrabutanoato(2-))zinc (1-Zn)

A dry, $\mathrm{N}_{2}$-flushed $10-\mathrm{mL}$ Schlenk tube, equipped with a magnetic stirrer and a septum, was charged with $\mathbf{7 - Z n}$ (80 $\mathrm{mg}, 0.06 \mathrm{mmol}), 5(6)$-iodobenzimidazole (58 mg, 0.24 mmol$)$, CuI (16 mg, 0.08 mmol$)$, and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](58 \mathrm{mg}, 0.05 \mathrm{mmol})$. The Schlenk tube was carefully evacuated again and purged with $\mathrm{N}_{2}$ twice. DMF ( 3.00 mL ) and $\mathrm{NEt}_{3}(5.00 \mathrm{~mL})$ were added, and the mixture was stirred 4 h at $100{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$. A
saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and EtOAc (50 mL ) were added and the phases separated. The aqueous phase was extracted with EtOAc (2 x 50 mL$)$, and the combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by $\mathrm{CC}\left(\mathrm{SiO}_{2} \quad \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 97:3), preparative GPC (SX-1, THF) followed again by CC (2 x SiO ${ }_{2}$; $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 100:0.5 $\rightarrow$ 100:1 $\rightarrow$ 100:2) afforded 1-Zn (55 mg, 51\%) as purple solid. M.p. $96-97{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.84(s, 1 \mathrm{H}), 9.06(\mathrm{br} s, 2 \mathrm{H}), 8.71$ (br $s, 2 H), 8.59(b r s, 4 H), 7.72-7.48(m, 4 H), 7.19-7.07$ $(b r s, 1 H), 7.01-6.74(m, 5 H), 6.5(b r s, 2 H), 5.3(b r$ $s, 1 \mathrm{H}), 4.06-3.32(m, 19 \mathrm{H}), 2.74(b r, 2 \mathrm{H}), 2.59(b r, 1$ H), $2.09(b r, 1$ H), $1.65(b r, 2 H), 1.54-0.52(m, 34 H) ;$ ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=173.0,172.6,159.6,158.9$, 156.7, 149.9, 149.7, 148.9, 148.6, 148.0, 136.5, 135.8, 133.3, 130.9, 130.8, 130.7, 130.6, 129.4, 127.4, 122.1, 120.0, 119.8, 118.4, 117.2, 116.0, 114.1, 113.4, 111.2, 105.8, 105.7, 104.8, 91.2, 89.3, 67.7, 67.3, 67.0, 60.3, $59.6,46.9,30.5,29.4,29.3,28.4,26.0,25.4,23.8,23.3$, 14.3, 13.8, four signals not observed due to signal overlap; IR (neat): 3322w, 3111m, 2975m, 2939m, 2869m, $1733 \mathrm{vs}, 1594 \mathrm{~s}, 1456 \mathrm{vs}, 1381 \mathrm{~m}, 1321 \mathrm{~m}, 1293 \mathrm{~m}, 1249 \mathrm{~s}, 1187 \mathrm{~s}$, $1097 \mathrm{vs}, 1058 \mathrm{~m}, 1030 \mathrm{~m}, ~ 992 \mathrm{~s}, ~ 940 \mathrm{w}, ~ 907 \mathrm{w}, ~ 840 \mathrm{w}, ~ 830 \mathrm{w}, 792 \mathrm{~m}$ $\mathrm{cm}^{-1}$; UV/Vis $\left(\mathrm{CHCl}_{3}\right): \lambda_{\max }(\varepsilon)=599(3.900), 560$ (18.200),

427 (477.000), 406 (39.900, sh), 320 (46.600); HR-MALDI-MS (DCTB): 1427.5371 ([MH ] ${ }^{+}, \quad \mathrm{C}_{80} \mathrm{H}_{83} \mathrm{~N}_{8} \mathrm{O}_{13} \mathrm{Zn}^{+}$, calc. 1427.5366);

Anal. Calc. for $\mathrm{C}_{80} \mathrm{H}_{82} \mathrm{~N}_{8} \mathrm{O}_{13} \mathrm{Zn}$ (1428.94): C 67.24, H 5.78 , N 7.84, found: C 67.50, H 6.03, N 7.58.

## Deuterium Exchange of the Zinc Complexes

Deuterium exchange was tested by stirring a solution of 1-Zn in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ with $\mathrm{D}_{2} \mathrm{O}$ for 10 s . Only one single proton peak at 5.80 ppm (Figure $\mathbf{3 S I}$ and Figure 4SI) disappeared in the ${ }^{1} H$ NMR spectra and appeared again after stirring the same solutions with $\mathrm{H}_{2} \mathrm{O}$.
 ylethynyl)-5-\{[6-(1H-imidazol-1-
yl) hexyl]oxy fphenyl) porphyrin-5,15-diyl$\left.\kappa N^{21}, \kappa N^{22}, \kappa N^{23}, \kappa N^{24}\right]$ bis [benzene-2,1,3-
triylbis (oxy)] \}tetrabutanoato(2-)) cobalt (1-Co)
All processes were carried out under $\mathrm{N}_{2}$ atmosphere in the dark. To a solution of $1-Z n(21 \mathrm{mg}, 15.00 \mu \mathrm{~mol})$ in degassed $\mathrm{CHCl}_{3}(4.80 \mathrm{~mL}), \mathrm{TFA}(0.24 \mathrm{~mL}, 368 \mathrm{mg}, 3.2 \mathrm{mmol})$ was added. The mixture was stirred for 12 min . To the green solution, degassed saturated aqueous solution of $\mathrm{NaHCO}_{3}(4.80 \mathrm{~mL})$ was added and the two-phase mixture was stirred vigorously until the organic phase turned brown. The colorless aqueous phase was removed by means of a syringe with a
long, thin needle. The organic phase was washed with degassed $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{x} 4.80 \mathrm{~mL})$ in a similar manner and directly subjected to column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ neutral; $\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 20:1), the product containing fractions were filtered through cotton, and the solvent was removed in vacuo. The free base 1-2H ( 20 mg , quant.) was obtained as brown amorphous solid.

The following steps were carried out in a glove box (oxygen level < 2 ppm, water level < 5 ppm) with carefully degassed and dried solvents. To a degassed solution of $\mathbf{1 - 2 H}$ (20 $\mathrm{mg}, 15.00 \mu \mathrm{~mol})$ in degassed $\mathrm{THF}(3.30 \mathrm{~mL}), \mathrm{CoCl}_{2}(18 \mathrm{mg}, 140$ $\mu$ mol) and degassed 2,6-lutidine ( 3 drops) were added and the mixture was stirred in the dark for 12 h . Samples (0.60 $\mathrm{mL})$ of the mixture were directly subjected to CC (degassed $\mathrm{Al}_{2} \mathrm{O}_{3}$ neutral, $\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 20:1) to give a mixture of predominantly $\mathbf{1 - C o}{ }^{\text {II }}$ and some $\mathbf{1 - C o}{ }^{\text {III }}$, which was analyzed by UV/Vis-spectroscopy. M.p. $152{ }^{\circ} \mathrm{C}$ (dec); IR (neat): $2924 \mathrm{~m}, ~ 2848 \mathrm{w}, 1726 \mathrm{~s}, 1664 \mathrm{w}, 1594 \mathrm{~m}, 1494 \mathrm{w}, 1456 \mathrm{~s}, 1370 \mathrm{~m}$, 1288m, 1248s, 1179s, 1095vs, 1063s, 1025m, 1003s, 817w; UV/Vis $\left(\mathrm{CHCl}_{3}\right): \mathbf{1 - C o}{ }^{\mathrm{II}}, \lambda_{\max }=408,529 ; \mathbf{1 - C o}{ }^{\text {III }}, \lambda_{\max }=429$, 540; HR-MALDI-MS (HPA): $1421.5310\left(\left[\mathrm{M}^{+}, \mathrm{C}_{80} \mathrm{H}_{82} \mathrm{CoN}_{8} \mathrm{O}_{13}{ }^{+}\right.\right.$, calc. 1421.5328.

The solvent was removed in vacuo, and fresh $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.10 \mathrm{~mL})$ was added. The resulting solution of 1 -Co was directly used for the EPR.

## Reduction Protocol

Complex 1-Co was found to be predominantly in the $\mathrm{Co}^{\text {II }}$ oxidation state after CC. However, an additional reduction step was introduced in order to achieve comparable conditions (wet solvent) with the sample obtained after deuterium exchange.

After removing the solvent from the CC purification, the residual solid was dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.00 \mathrm{~mL})$ and stirred vigorously with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}\left(20 \mathrm{mg}\right.$ in $\left.1.00 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}\right)$ for 30 min . The organic phase was analyzed by UV/Vis-spectroscopy showing no alteration of the spectrum with $\mathrm{Co}^{\text {II }}$ still being predominant in the solution (Figure 5SI and Figure 6SI). The solvent was again removed in vacuo, and fresh $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{~mL})$ was added.

The additional reduction step could be omitted for 1Co, in order to obtain an $\mathrm{H}_{2} \mathrm{O}$-free sample. Therefore, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH were used for the CC . Residual solvent from the $C C$ was removed in vacuo and the resulting 1 -Co was dried at ultra high vacuum ( $4 \times 10^{-6}$ mbar) for 24 h before
adding fresh, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{~mL})$ to prepare the EPR samples. Complex 1 -Co was also measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ as solvent.

## Deuterium Exchange of the Cobalt Complex

Deuterium exchange was achieved by vigorously stirring a solution of 1 -Co ( 4 mg ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.00 \mathrm{~mL})$ with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ ( 20 mg ) in $\mathrm{D}_{2} \mathrm{O}(1.00 \mathrm{~mL})$ for 30 min . The organic phase was directly used for the measurements.

## Preparation of the Dioxygen Adducts

After recording the $C^{I I} C W$ EPR spectrum, a 0.10 mL sample of 1 -Co in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was warmed up to $20^{\circ} \mathrm{C}$ and pure $\mathrm{O}_{2}$ was bubbled through the solution by means of an $\mathrm{O}_{2}$-filled balloon and a long needle for 25 s, after which no residual $\mathrm{Co}^{\text {II }}$ signal was visible in the X -band $C W$ EPR spectrum. Immediately after oxygenation, the solution was frozen in liquid $\mathrm{N}_{2}$ and put into the spectrometer at 120 K .

No CW EPR spectra of the $\mathrm{H}_{2} \mathrm{O}$-free sample of 1 -Co were recorded in order to avoid $\mathrm{H}_{2} \mathrm{O}$ condensing in the sample tube during warm-up after $C W$ EPR measuring. Instead, a sample of 1 -Co was subjected to $\mathrm{O}_{2}$ for 25 s at $20^{\circ} \mathrm{C}$, directly after preparation, immediately frozen in liquid $N_{2}$, and Davies-ENDOR spectra were recorded.

## Spectra

${ }^{1} \mathrm{H}$ NMR Spectra of the Deuterium Exchange of $1-\mathrm{Zn}$


Figure 3SI: ${ }^{1} \mathrm{H}$ NMR spectrum ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$ ) of $\mathbf{1 - Z n}$. The broadness of the spectrum is caused by a dynamic equilibrium between intramolecular ligation of the zinc(II) ion by the alkyl-tethered imidazole and intermolecular ligation by the distal benzimidazole. However, the intramolecular ligation by the alkyl-tethered imidazole is considerably favored over the intermolecular ligation, which is clearly visible by the indicative shifts of the imidazole protons at $2.09 \mathrm{ppm}, 2.59 \mathrm{ppm}$, and 5.30 ppm , as well as the indicative shift of the alkyl-chain of the
tether at $2.74 \mathrm{ppm} .{ }^{[4]}$ Heating to $35^{\circ} \mathrm{C}$ and cooling down to $-20^{\circ} \mathrm{C}$ did not change the ${ }^{1} \mathrm{H}$ NMR spectrum of $1-\mathrm{Zn}$.


Figure 4SI: ${ }^{1} \mathrm{H}$ NMR spectrum ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}$ ) of $\mathbf{1 - Z n}$ after 10 s shaking with $\mathrm{D}_{2} \mathrm{O}$. Only the peak at 5.80 ppm has disappeared.

## UV/Vis Spectra of 1-Co

1-Co was found predominantly in the $\mathrm{Co}^{\mathrm{II}}$ oxidation state directly after the insertion reaction.


Figure 5SI: UV/Vis spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right)$ of 1-Co after cobalt insertion. $\mathrm{Co}^{\mathrm{II}}$ is the predominant oxidation state.


Figure 6SI: UV/Vis spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right)$ of 1 -Co after dithionite reduction. There are still remaining Co $^{\text {III }}$ species in the solution.

## EPR Studies

## General

Continuous wave (CW) EPR spectra were recorded on a Bruker ELEXYS E500 spectrometer at $X$-band microwave frequency (approximately 9.8 GHz ) in frozen solution at 120 K.

For the model complex $1-\mathrm{Co}-\mathrm{O}_{2}$ and $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2} 2-$ and 3pulse ESEEM, 4-pulse-, matched- and SMART-HYSCORE, hyperfine-decoupled ESEEM, Mims and Davies-ENDOR were tried to measure the proton hyperfine couplings at X -band frequencies. None of these established pulse-EPR methods allowed for a complete detection of the proton hyperfine splittings. The reason is a severe cross suppression effect, which is present in both $\mathbf{1 - C o}-\mathrm{O}_{2}$ and $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$ because of the presence of several strong suppressors. ${ }^{[5]}$ However, we were able to measure parts of the largest and exchangeable proton hyperfine splitting by $x$-band 6-pulse HYSCORE, which suffers less strongly from cross suppression than the standard 4-pulse HYSCORE. ${ }^{[6]}$ For the 6-pulse HYSCORE experiment we used nominal pulse lengths of 12 ns and $24 \mathrm{~ns}(\pi / 2$ and $\pi)$ and $\tau_{1}=\tau_{2}=112 \mathrm{~ns}$, an eight step phase cycle was used.

In order to avoid the strong modulation depths (and therefore the severe cross suppression) at $X$-band frequencies, the proton hyperfine splittings were measured at Q-band frequency where the modulation depths (and also the cross suppression effect) is weaker.

Davies-ENDOR spectra were recorded on a home-built spectrometer at Q-band microwave frequency (approximately 34.7 GHz) in frozen solution at $10 \mathrm{~K}\left(1-\mathrm{Co}-\mathrm{O}_{2}\right)$ or 13 K (Co-$\left.\mathrm{Mb}-\mathrm{O}_{2}\right)$. Field-swept FID-integral-detected EPR spectra were recorded using a weak 500 ns preparation pulse and a 40 ns $\pi / 2$ pulse for the detection. For Davies-ENDOR, the applied preparation pulse length were 160 ns and 80 ns , followed by an rf $\pi$-pulse of $8.5 \mu s$ (sandwiched by waiting times of 500 ns and 1000 ns respectively), and the read-out sequence 40 ns ( $\pi / 2$ pulse) - 200 ns free evolution time - 80 ns ( $\pi$-pulse). The orientations contributing to the spectra are each shown next to the spectra projected on unit spheres. The observer positions are indicated on the EPR spectra insets in the respective figures. Deviations of signal-tonoise ratios in different spectra were - amongst other reasons - caused by a phase drift during the data acquisition and hampered quantitative analysis of difference spectra.

## EPR Spectra of $\mathbf{1 - C o}-\mathbf{O}_{2}$

## X-Band CW Spectra



Figure 7SI: X-band frozen-solution CW EPR spectra of 1-Co in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (black), after $\mathrm{D}_{2} \mathrm{O}$ exchange in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (blue). a) $\mathrm{Co}^{\text {II }}$ species. b) $1-\mathrm{Co}-\mathrm{O}_{2}$ complexes.

## Q-Band Davies-ENDOR Spectra



Figure 8SI: Frozen-solution Davies-ENDOR spectra of $1-\mathrm{Co}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (black), in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (blue) and after $\mathrm{D}_{2} \mathrm{O}$ exchange in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (red). Observer positions are indicated on the FID-integral-detected EPR spectra in the insets. a) Preparation pulse length $=160 \mathrm{~ns}$. b) Preparation pulse length $=80 \mathrm{~ns}$.

## X-Band 6-Pulse HYSCORE of $1-\mathrm{Co}-\mathrm{O}_{2}$



Figure 9SI: X-band frozen-solution 6-Pulse HYSCORE spectrum of $1-\mathrm{Co}-\mathrm{O}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 20 K at $g=2.0245$. The off anti-diagonal ridges stemming from the largest and exchangeable proton hyperfine splitting can clearly be distinguished from the residual anti-diagonal proton splittings. The simulated ridges (green and brown line) show the real signal extension. Simulation parameters were taken from Table 3SI.

## Simulations of EPR Spectra of $\mathbf{1 - C o}-O_{2}$

General
The principal values of the $g$ matrix, $\left[g_{x}, g_{y}, g_{z}\right]=[2.0027 \pm$ $0.0005,1.989 \pm 0.001,2.0723 \pm 0.0005]$, the principal values of the metal hyperfine tensor $A^{\mathrm{Co}}=[-54,-28,-28]$ $\mathrm{MHz} \pm 2 \mathrm{MHz}$ and its relative orientation to the g-frame, determined by the Euler angles $(\alpha, \beta, \gamma)=\left(0^{\circ} \pm 10^{\circ}, 70^{\circ} \pm\right.$ $\left.10^{\circ}, 0^{\circ} \pm 20^{\circ}\right)$, are close to values found for the dioxygen adducts of $\mathrm{Co}^{\mathrm{II}}$ corrin and tetraphenylporphyrin complexes. ${ }^{[7 b, c]}$

For the $C W$ EPR simulation ${ }^{[7 a]}$ (Figure 10SI) the simulated spin system contained one electron ( $S=1 / 2$ ) and a ${ }^{59} \mathrm{Co}$ nucleus $(I=7 / 2)$. The axially and equatorially coordinating nitrogen nuclei were not taken into account as the small hyperfine couplings are only contributing to the overall line width, but the splittings are not resolved.


Figure 10SI: Simulation (red) of the frozen-solution CW EPR spectrum of $1-\mathrm{Co}^{-} \mathrm{O}_{2}$ (black). * Radical contamination.

## ENDOR Spectra Simulations

ENDOR simulations ${ }^{[7 a]}$ were performed assuming a single unpaired electron and proton nuclei ( $I=1 / 2$ ). No difference could be observed between simulated spectra obtained for this spin system and the one additionally containing a ${ }^{59} \mathrm{Co}$ nucleus $\left(I=7 / 2, A^{\text {Co }}=\left[\begin{array}{lll}-58 & -28 & -28\end{array}\right]\right.$. $A$ Gaussian excitation line width of 100 MHz was used in the simulations, assuming that the resonator band width limits the excitation of contributing spin packets. The ENDOR line widths were modeled using a Gaussian distribution of the widths of Lorentzian lines. The ideal Lorentzian line width is $0.12 \mathrm{MHz}\left(1 / \mathrm{t}_{\pi, \mathrm{rf}}\right)$. The closer a proton is located to a (virtual) spin density centre, the more pronounced the effect of conformational differences on its hyperfine splitting is. Thus, different conformers in frozen solution were accounted for with different Gaussian weighting functions of the Lorentzian lines semiquantitatively adapted to the splitting magnitude. ${ }^{[8 a, d-q]}$

Simulations of the ENDOR spectra were performed, with the main focus on the largest experimentally observable hyperfine splitting stemming from the exchangeable proton. However, also an assignment of some of the other protons could be achieved as their spectral features were sufficiently well resolved. The assignments and obtained parameters shown in Figure 11SI and Table 3SI were found by comparing simulated and experimental spectra by visual inspection. In order to separate some of the overlapping proton peaks and thus facilitate the assignment, difference spectra were computed. For the separation of the exchangeable proton peaks difference spectra of $1-\mathrm{Co}-\mathrm{O}_{2}$ before and after $\mathrm{D}_{2} \mathrm{O}$ exchange in the solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were chosen (Figure 12SI). For the separation of the solvent peaks, difference spectra of $1-\mathrm{Co}-\mathrm{O}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were chosen (Figure 13SI). Thus, besides the largest and exchangeable proton hyperfine splitting (proton 1) also the solvent peaks (proton 2, 3 and 4, see Figure 11SI) could be well resolved and the matrix peak observed. The difference spectra of $1-\mathrm{Co}-\mathrm{O}_{2}$ before and after $\mathrm{D}_{2} \mathrm{O}$ exchange in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ contain a matrix part, which is presumably caused by distant $\mathrm{H}_{2} \mathrm{O}$ in the solvent, stemming from the reduction step (see reduction protocol). The hyperfine splitting of proton 5 was clearly visible in the ENDOR spectrum of 1-Co-
$\mathrm{O}_{2}$ measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and could be caused by $\beta$-protons of the porphyrin macrocycle or protons at comparable distances. ${ }^{[9]}$ Values for proton 6 were taken from the literature, where similar results were found stemming from the ortho-protons of the proximal pyridine in the dioxygen adduct of a $\beta$ -octaethylporphyrinato-Co ${ }^{\text {II }}$ (CoOEP) complex. ${ }^{[9]}$ Proton splittings of comparable magnitude as of the protons 7 to 10 are reported in literature for solvent interactions if dioxygen adducts of $\mathrm{Co}^{\text {II }}$ porphyrins are used, which do not posses distal residues, e.g. CoOEP. ${ }^{[9]}$ However, the comparison of the difference spectra of $1-\mathrm{Co}-\mathrm{O}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ revealed that the splittings 7 to $10 \mathrm{MHz}( \pm 3- \pm 8$ MHz ) are not caused by interactions with the solvent. Thus, it can be concluded that these protons belong either to the ester side arms or to the non-exchangeable protons of the distal residue. The assignment of the second largest splitting 7 to a non-exchangeable proton of the distal residue was made by the reasoning that if there is a distal hydrogen bond in complex $\mathbf{1 - C o}-\mathrm{O}_{2}$, one aromatic nonexchangeable proton of the distal benzimidazole is simultaneously forced to be rather close to bound dioxygen (Figure 11SI). The three additional proton hyperfine splittings 8 to 10 were sufficiently well resolved to obtain qualitatively satisfying "fits" of the experimental
spectra. Given the constitution of $1-\mathrm{Co}-\mathrm{O}_{2}$ with the distal benzimidazole and the flexible distal ester side arms, three different distal protons close to bound dioxygen are possible (Figure 11SI). With the available data assignments of the proton splittings 8 to 10 were not possible. Potentially, more sophisticated EPR experiments in combination with site-selective deuterium exchange might allow for a more accurate assignment. ${ }^{[10]}$


Figure 11SI: Assignments of the intra-molecular proton hyperfine splittings of $\mathbf{1 - C o}-\mathrm{O}_{2}$. Proton 7 is forced close to bound dioxygen upon formation of the distal hydrogen bond.

Table 3SI: Principal values of proton hyperfine interactions $A^{\mathrm{H}}$ in complex $\mathbf{1 - C o - O} \mathrm{O}_{2}$ in MHz and qualitative assignments of these protons. The Euler angles $\alpha, \beta$, and $\gamma$ describe the orientation with respect to the $g$-frame, and have an error of $\pm 10^{\circ}$ - $20^{\circ}$. Additionally, the Gaussian line width ( $\left.\Delta w_{\text {Gauss }}\right)$ and the distances $d$ to the virtual spin density center are given. The distances $d$ are determined from the dipolar part of the hyperfine interaction. * The quality of the spectra did not allow for a detailed assignment of these protons.

| Proton/Position |  | $A_{\text {x }} / \mathrm{MHz}$ | $A_{\mathrm{y}} / \mathrm{MHz}$ | $A_{z} / \mathrm{MHz}$ | Err. | $\alpha /^{\circ}$ | $\beta{ }^{\circ}$ | $\gamma /{ }^{\circ}$ | Err. | $d / \AA$ | $\Delta W_{\text {Gauss }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | NH proton | -6.8 | -6.0 | 13.5 | $\pm 0.5$ | 0 | 105 | 0 | 10 | 2.3 | 1 |
| 2 | Solvent | 2.4 | 1.3 | 1.3 | $\pm 0.2$ | 0 | 0 | 0 | 10 | 6.0 | 0.6 |
| 3 | Solvent | 3.2 | 2.0 | 2.0 | $\pm 0.2$ | 0 | 20 | 0 | 10 | 5.8 | 0.6 |
| 4 | Solvent | 6.0 | 2.5 | 2.5 | $\pm 0.2$ | 40 | 30 | -10 | 20 | 4.1 | 0.8 |
| 5 | $\beta$-Position or phenyl | 0.75 | -0.55 | -0.55 | $\pm 0.05$ | 0 | 90 | 0 | 10 | 5.8 | 0.4 |
| 6 | Proximal base ${ }^{[9]}$ | 1.17 | -1.07 | -1.02 | $\pm 0.01$ | 0 | 90 | 0 | 20 | 4.8 | 0.6 |
| 7* | Distal <br> residue | -3.6 | -3.6 | 7.2 | $\pm 0.2$ | 0 | 40 | 0 | 20 | 2.8 | 1 |
| 8* | Ester/distal residue | 3.0 | 6.0 | 3.0 | - | 20 | 30 | 0 | 20 | 4.0 | 1 |
| 9* | Ester/distal residue | 3.0 | 3.0 | 6.5 | - | 0 | 30 | 0 | 20 | 4.1 | 1 |
| 10* | Ester/distal residue | 3.6 | 2.6 | 2.6 | - | 10 | 0 | 0 | 20 | 6.2 | 0.8 |

Simulations of the Davies-ENDOR spectra (Figure 12SI to Figure 15SI) were performed using identical parameters in all simulations as it is described in the following: In a first step, each proton hyperfine interaction was simulated individually for all the different field positions (see details in Table 3SI). The Gaussian line widths were assigned to 1.0 MHz for protons 1 (Solution 1 and Solution 2) and protons 7 to $9,0.6 \mathrm{MHz}$ for protons 2,3 and $6,0.8$ MHz for protons 4 and 10 and 0.4 MHz for proton 5. After that, the intensity of each spectrum was multiplied with the hyperfine contrast selectivity function ${ }^{[8 c]}$

$$
w\left(v_{r f}\right)=\frac{2 \sqrt{2} t_{\pi}\left|v_{r f}-v_{1 \mathrm{H}}\right|}{1 / 2+\left(2 t_{\pi}\left|v_{r f}-v_{1 \mathrm{H}}\right|\right)^{2}}+0.05,
$$

where a constant threshold of $5 \%$ was added in order to account for imperfections (see Figure 14SI and Figure 15SI). The matrix peak was not modified by the hyperfine contrast selectivity, instead it is represented by a simple Gaussian line of 0.25 MHz line width. ${ }^{[8 \mathrm{~b}]}$ For each field position these proton spectra were then summed up, without any further re-weighting. This procedure enabled a qualitatively correct reproduction of the Davies-ENDOR peak intensities and good agreement of their positions.

Simulated spectra of the largest and exchangeable proton hyperfine splitting of proton 1 are shown in Figure 12SI together with the experimental difference spectra of $1-\mathrm{Co}-\mathrm{O}_{2}$ before and after $\mathrm{D}_{2} \mathrm{O}$ exchange in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. In Figure 13SI, the difference spectra of $1-\mathrm{Co}-\mathrm{O}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ are shown together with the simulation of the hyperfine interaction of the solvent protons 2,3 and 4 and the matrix peak. Simulated spectra for each contributing proton and their sum spectra are shown in Figure $14 \mathbf{S I}$ ( 80 ns preparation pulse length) and Figure 15SI (160 ns preparation pulse length) together with the corresponding experimental spectra of $\mathbf{1}-\mathrm{Co}-\mathrm{O}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.


Figure 12SI: Difference Davies-ENDOR spectra of $\mathbf{1 - C o}-\mathrm{O}_{2}$ before and after $\mathrm{D}_{2} \mathrm{O}$ exchange in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with preparation pulse length $=80$ ns (black) together with the simulation (red). The orientations contributing to the experimental spectra are projected on the unit spheres.


Figure 13SI: Difference Davies-ENDOR spectra of $1-\mathrm{Co}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ with preparation pulse length $=160 \mathrm{~ns}$ (black) together with the summed up simulated spectra of the solvent peaks (protons 2, 3 and 4) and the matrix peak (red). The orientations used in the simulations are illustrated on the unit spheres.


Figure 14SI: Experimental Davies-ENDOR spectra of 1-Co-O $\mathbf{O}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with preparation pulse length $=80 \mathrm{~ns}$ (black) together with the sum simulation (red) and contributing individual proton spectra (blue). The weighting function $\mathrm{w}\left(v_{\mathrm{rf}}\right)$ for a 80 ns preparation pulse is shown in the top spectra (blue line on top). The unit spheres depict the orientations used in the simulations.


Figure 15SI: Davies-ENDOR spectra of $1-\mathrm{Co}-\mathrm{O}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with preparation pulse length $=160 \mathrm{~ns}$ (black) together with the sum simulation (red) and contributing individual proton spectra (blue). The weighting function $w\left(v_{r f}\right)$ for a 160 ns preparation pulse is shown in the top spectra (blue line on top). The unit spheres depict the orientations used in the simulations.

## $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$ Studies

Deoxy-Co-Mb was prepared according to literature procedures in 0.01 M phosphate $\mathrm{H}_{2} \mathrm{O}$ buffer ( pH 6.0 ). ${ }^{[11]}$ The exchange of the phosphate $\mathrm{H}_{2} \mathrm{O}$ buffer against the phosphate $\mathrm{D}_{2} \mathrm{O}$ buffer was achieved via ultrafiltration.

The CW EPR spectrum (Figure 16SI) agrees well with the Co-Mb CW EPR spectra reported in the literature. ${ }^{[12 a,}{ }^{12 c]}$ After $D_{2} \mathrm{O}$ buffer exchange and concentration, formation of the dioxygen adduct of deuterated $\mathrm{Co}-\mathrm{Mb}$ was already complete. Therefore, no CW EPR spectrum of the deuterated Co-Mb is shown in Figure $16 S I$.

The dioxygen adduct of reconstituted Co-Mb was prepared by repetitively bubbling $\mathrm{O}_{2}$ through a solution of reconstituted Co-Mb in potassium phosphate buffer (pH 6.0) at $20{ }^{\circ} \mathrm{C}$. After 10 to 15 min , formation of $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$ was complete. The CW EPR spectrum of $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$ (Figure 17SI) again agrees very well with the spectra for $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$ reported in the literature. ${ }^{[12]}$

## X-Band CW Spectra of $\mathrm{Co}-\mathrm{Mb}$ and $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$



Figure 16SI: Frozen-solution X-band CW EPR spectrum of CoMb in $\mathrm{H}_{2} \mathrm{O}$ phosphate buffer solution at 120 K .


Figure 17SI: Frozen-solution X -band CW EPR spectrum of Co-$\mathrm{Mb}-\mathrm{O}_{2}$ at 120 K in $\mathrm{H}_{2} \mathrm{O}$ phosphate buffer solution (black) and in $D_{2} \mathrm{O}$ phosphate buffer solution (blue).

Separation of the FID-Integral-Detected EPR Spectra of the Two Species in $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$


Figure 18SI: Experimental frozen-solution Q-band FID-integral-detected EPR spectra of $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$ recorded with different filter times $T_{F}$ (REFINE: a strong inversion pulse with flip angle $3 \pi$ followed by a free evolution time $T_{\mathrm{F} 0}=$ $0.5 \mu \mathrm{~s}, \Delta T_{\mathrm{F}}=100 \mu \mathrm{~s}$ followed by a selective 500 ns detection $\pi / 2$ pulse was used. The decaying FID was found to be less distorted than the FID obtained by the $\pi-\pi / 2-$ detection subsequence). ${ }^{[13]}$ Biexponential fits at different consecutive field positions (along the $T_{F}$ dimension) were used in order to separate signal contributions from the two species.


Figure 19SI: a) Experimental frozen-solution Q-band FID-integral-detected EPR spectrum of $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$ (red), FID-integral-detected EPR spectrum of species 1 (blue) derived from the biexponential fits, and FID-integral-detected EPR spectrum of species 2 (black) derived from the biexponential fits. The error given is calculated from the error vectors between the experimental data and the biexponential fits. An additional error due to frequency variations was not included. b) Longitudinal relaxation
times $T_{1}$ for each Q-band field position of species 1 (blue) and species 2 (black).

## Q-Band Davies-ENDOR Spectra of Co-Mb-O



Figure 20SI: Frozen-solution Davies-ENDOR spectra of Co-$\mathrm{Mb}-\mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{O}$ buffer solution (black), and in $\mathrm{D}_{2} \mathrm{O}$ buffer solution (blue). Observer positions are indicated on the FID-integral-detected EPR spectra in the insets. a) Preparation pulse length $=160$ ns. b) Preparation pulse length $=80 \mathrm{~ns}$.


Figure 21SI: a) Experimental frozen-solution Q-band Davies-ENDOR spectra of $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{O}$ buffer solution at the observer position 1215 mT at 13 K recorded with different filter times $T_{F}$ (REFINE: a strong inversion pulse followed by a free evolution time $T_{F 0}=1 \mu \mathrm{~s}, \Delta T_{\mathrm{F}}=50 \mu \mathrm{~s}$ in advance to the Davies-ENDOR sequence was used). Each rf frequency was fitted with a biexponential decay function (along the $T_{F}$ dimension) in order to separate the two overlapping species. b) High rf frequency part of the experimental Davies-ENDOR spectrum of $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$ (red). The

Davies-ENDOR spectra recorded were asymmetric, having very low intensities on the low rf frequency part of the spectra. This is a known problem in Davies-ENDOR spectroscopy.

The signal contributions from the two species to the full amplitude of the spectrum were determined from the biexponential fits to the Davies-ENDOR spectra measured with different filter times $\mathrm{T}_{\mathrm{F}}$. The fitting was repeated at different spectral positions. In advance to the biexponential fit, a baseline correction $0^{\text {th }}$ order was performed with the data points at the high rf frequency range. The observer position indicated on the FID-integral-detected EPR spectrum (shown in the inset) was chosen, because here the amplitudes of species 1 and species 2 have the same magnitude, which reduces errors due to the baseline correction step of the data processing. The largest and exchangeable proton hyperfine splitting could be fitted by a monoexponential fit, providing a relaxation time of $\sim 450 \quad \mu \mathrm{~s}$. This relaxation time unambiguously corresponds only to species 2.

## X-Band 6-Pulse HYSCORE Spectrum of Co-Mb-O



Figure 22SI: $X$-band 6-Pulse HYSCORE spectrum of $\mathrm{Co}-\mathrm{Mb}-\mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{O}$ buffer solution at 20 K and $g=2.029$. The off antidiagonal ridges stemming from the largest and exchangeable proton hyperfine splitting can clearly be distinguished from the residual anti-diagonal proton splittings. The simulated ridges (green and brown line) show the real signal extension (approximate $g$-values ${ }^{[14]}$ and approximate hyperfine splittings of $A^{\mathrm{H}}=\left[\begin{array}{lll}-10 & -10 & 19\end{array}\right] \mathrm{MHz}$ were used for the simulation). The peak at ( $23 \mathrm{MHz}, 10 \mathrm{MHz}$ ) is a spectrometer artifact.

## References

[1] J. J. P. Steward, Fujitsu Limited 2001, MOPAC 2002.
[2] J. Vojtechovsky, K. Chu, J. Berendzen, R. M. Sweet, I. Schlichting, Biophys. J. 1999, 77, 2153-2164.
[3] S. E. V. Phillips, B. P. Schoenborn, Nature 1981, 292, 81-82.
[4] P. Weyermann, F. Diederich, Helv. Chim. Acta 2002, 85, 599-617.
[5] a) S. Stoll, C. Calle, G. Mitrikas, A. Schweiger, J. Magn. Reson. 2005, 177, 93-101.
b) C. J. Calle y Richter. ETH Diss. No. 16883 (2006).
[6] B. Kasumaj, S. Stoll, J. Magn. Reson. accepted for publication.
[7] a) S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42-55. b) S. Van Doorslaer, A. Schweiger, B. Kraeutler, J. Phys. Chem. B 2001, 105, 7554-7563; c) S. Van Doorslaer, R. Bachmann, A. Schweiger, J. Phys. Chem. A 1999, 103, 5446-5455.
[8] a) M. Bennati, C. T. Farrar, J. A. Bryant, S. J. Inati, V. Weis, G. J. Gerfen, P. Riggs-Gelasco, J. Stubbe, R. G. Griffin, J. Magn. Reson. 1999, 138, 232-

243; b) A. V. Astashkin, A. Kawamori, J. Magn. Reson. 1998, 135, 406-417; C) C. Fan, P. E. Doan, C. E. Davoust, B. M. Hoffman, J. Magn. Reson. 1992, 98, 6272; d) G. C. Hurst, T. A. Henderson, R. W. Kreilick, J. Am. Chem. Soc. 1985, 107, 7294-7299; e) B. M. Hoffman, R. A. Venters, J. Martinsen, J. Magn. Reson. 1985, 62, 537-542; f) R. P. J. Merks, R. De Beer, D. Van Ormondt, Chem. Phys. Lett. 1979, 61, 142-144; g) A. E. Stillman, R. N. Schwartz, Mol. Phys. 1978, 35, 301-313.
[9] M. Baumgarten, C. J. Winscom, W. Lubitz, Appl. Magn. Reson. 2001, 20, 35-70.
[10] D. Goldfarb, B. Epel, H. Zimmermann, G. Jeschke, J. Magn. Reson. 2004, 168,75-87.
[11] F. Ascoli, M. Rosaria, R. Fanelli, E. Antonini, Methods of Enzymology, Academic Press, London, 1981, 76, pp. 72-87.
[12] a) J. Huettermann, R. Stabler in Electron Magnetic Resonance of Disordered Systems (Ed.: N. D. Yordanov), World Scientific, Singapore, 1989, pp. 127-148; b) F. A. Walker, J. Bowen, J. Am. Chem. Soc. 1985, 107, 7632-7635; C) B. M. Hoffman, D. H. Petering, Proc. Natl. Acad. Sci. USA 1970, 67, 637-643.
[13] T. Maly, T. F. Prisner, J. Magn. Reson. 2004, 170, 8896.
[14] J. C. W. Chien, L. C. Dickinson, Proc. Natl. Acad. Sci. USA 1972, 69, 2783-2787.

