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Direct evidence for dominant bond-directional
interactions in a honeycomb lattice iridate Na2IrO3
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Heisenberg interactions are ubiquitous in magnetic materials
and play a central role in modelling and designing quan-
tum magnets. Bond-directional interactions1–3 offer a novel
alternative to Heisenberg exchange and provide the building
blocks of the Kitaev model4, which has a quantum spin
liquid as its exact ground state. Honeycomb iridates, A2IrO3

(A=Na, Li), offer potential realizations of the Kitaevmagnetic
exchange coupling, and their reported magnetic behaviour
may be interpreted within the Kitaev framework. However,
the extent of their relevance to the Kitaev model remains
unclear, as evidence for bond-directional interactions has so
far been indirect. Herewepresent direct evidence for dominant
bond-directional interactions in antiferromagneticNa2IrO3 and
show that they lead to strong magnetic frustration. Diffuse
magnetic X-ray scattering reveals broken spin-rotational
symmetry even above the Néel temperature, with the three
spin components exhibiting short-range correlations along
distinct crystallographic directions. This spin- and real-space
entanglement directly uncovers the bond-directional nature of
these interactions, thus providing a direct connection between
honeycomb iridates and Kitaev physics.

Iridium (IV) ions with pseudospin-1/2 moments form in
Na2IrO3, a quasi-two-dimensional (2D) honeycombnetwork, which
is sandwiched between two layers of oxygen ions that frame
edge-shared octahedra around the magnetic ions and mediate
superexchange interactions between neighbouring pseudospins
(Fig. 1a). Owing to the particular spin–orbital structure of the
pseudospin5,6, the isotropic part of the magnetic interaction is
strongly suppressed in the 90◦ bonding geometry of the edge-
shared octahedra2,3, thereby allowing otherwise subdominant
bond-dependent anisotropic interactions to play the main role
and manifest themselves at the forefront of magnetism. This
bonding geometry, common to many transition-metal oxides, in
combination with the pseudospin that arises from strong spin–orbit
coupling gives rise to an entirely new class of magnetism beyond
the traditional paradigm of Heisenberg magnets. On a honeycomb
lattice, for instance, the leading anisotropic interactions take the
form of the Kitaev model3, which is a rare example of exactly
solvable models with non-trivial properties such as Majorana
fermions and non-Abelian statistics, and with potential links to
quantum computing4.

Realization of the Kitaev model is now being intensively
sought out in a growing number of materials7–13, including 3D
extensions of the honeycomb Li2IrO3, dubbed ‘hyper-honeycomb’7

and ‘harmonic-honeycomb’8, and 4d transition-metal analogues
such as RuCl3 (ref. 12) and Li2RhO3 (ref. 13). Although most of
these are known to magnetically order at low temperature, they
exhibit a rich array of magnetic structures, including zigzag14–16,
spiral17 and other more complex non-coplanar structures18,19 that
are predicted to occur in the vicinity of the Kitaev quantum spin
liquid (QSL) phase20–23, which hosts many degenerate ground states
frustrated by three bond-directional Ising-type anisotropies. All of
these magnetic orders are captured in an extended version of the
Kitaev model written as
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∑
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which includes, in addition to the Kitaev term K , the Heisenberg
exchange J , which may be incompletely suppressed in the
superexchange process and/or arise from a direct exchange
process21, and the symmetric off-diagonal exchange term Γ , which
is symmetry-allowed even in the absence of lattice distortions23–25.
This ‘minimal’ Hamiltonian couples pseudospins S (hereafter
referred to as ‘spin’) only onnearest-neighbour bonds 〈ij〉, neglecting
further-neighbour couplings, which may be non-negligible. The
bond-directional nature of theK andΓ terms is reflected in the spin
components [α 6=β 6= γ ∈ (x , y , z)] which they couple for a given
bond (γ ∈x-, y-, z-bonds; Fig. 1a). For example, the K term couples
only the spin component normal to the Ir2O6 plaquette containing
the particular bond. Despite these extra terms that may account for
finite-temperature magnetic orders in the candidate materials, the
fact that the KitaevQSL phase has a finite window of stability against
these perturbations20,25 calls for investigation of competing phases
and a vigorous search for the Kitaev QSL phase.

Although the notion of magnetic frustration induced by
competing bond-directional interactions is compelling, it remains
a theoretical construct without an existence proof for such
interactions in a real-world material. Moreover, theories for
iridium compounds based on itinerant electrons suggest alternative
pictures26–28. In principle, measurement of the dynamical structure
factor through inelastic neutron scattering (INS) or resonant
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Figure 1 | Magnetic easy axis and temperature dependence of the zigzag order. a, Honeycomb layers of Ir4+ in the monoclinic Bravais lattice. Green,

yellow and blue planes show Ir2O6 plaquettes normal to the local x-, y- and z-axes (black arrows), respectively, which point along three nearest-neighbour

Ir–O bonds in an octahedron. Ir–Ir bonds are labelled following the plaquettes they belong to. Na+ is not shown for clarity. Blue arrows show the spins in the

static zigzag order propagating along the b direction. Spins are antiparallel between the layers (not shown). b, Illustration of the scattering geometry. Shown

in blue is the scattering plane defined by the incident (ki) and outgoing (kf) wavevector (red arrows). Green arrows show the X-ray polarizations. The

azimuth, Ψ , is defined as the angle between the a-axis and the scattering plane. c, Ψ -dependence of the magnetic Bragg peak (blue filled circle) intensity at

(0, 1, 3.5) measured in the σ–π ′ channel. The black hexagon is the Brillouin zone of the honeycomb net. The red solid line shows the best fitting result to the

data with Θ =44.3◦, with a standard error of ±1.24◦. We note that the actual error may be larger owing to systematic errors arising from factors such as

changes in the beam footprint on the sample. Green and blue lines shows the calculated Ψ dependence for Θ =40◦ and 50◦, respectively. d–f, H, K and L

scans, respectively, of the magnetic Bragg peak at (0, 1, 6.5) for selected temperatures. g, Temperature dependence of the correlation lengths along the a-,

b- and c-axes from Gaussian fitting to the scans. Error bars represent the standard deviation in the fitting procedure. The solid lines are guides to the eye.

inelastic X-ray scattering (RIXS) provides the most direct access to
the Hamiltonian describing the magnetic interactions. However, a
fully momentum- and energy-resolved dynamical structure factor
thus far remains elusive for any of the candidate materials;
RIXS suffers from insufficient energy resolution29 and INS is at
present limited by unavailability of large-volume single crystals15.
In this Letter, we take a new approach using diffuse magnetic
X-ray scattering to provide direct evidence for predominant bond-
directional interactions in Na2IrO3 through the measurement of
equal-time correlations of spin components above the ordering
temperature (TN =12–15K, see Supplementary Fig. 1).

We start by establishing the spin orientation in the static
zigzag order14–16 below TN, as shown in Fig. 1a, using standard
resonant magnetic X-ray diffraction. In this measurement, the
X-ray polarization projects out a certain spin component; the
intensity depends on the spin orientation through the relation I ∝

|kf ·S|
2 for the σ–π ′ channel measured, where kf is the scattered X-

ray wavevector (Fig. 1b). Figure 1c shows the intensity variation as
the sample is rotated about the ordering wavevector Q= (0, 1, 3.5)

by an azimuthal angle Ψ , which causes S to precess around Q.
Earlier studies14,16 have established that S is constrained to lie in
the ac-plane, so this measurement of I(Ψ ) determines the spin
orientation by resolving the tilting angle Θ of S with respect
to the a-axis. The best fitting result with Θ = 44.3◦ indicates
that the magnetic easy axis is approximately half way between
the cubic x- and y-axes (Fig. 1a). This static spin orientation is
a compromise among all anisotropic interactions present in the
system, and is strongly tied to the magnetic structure because
of their bond-directional nature. To see this point, consider, for
example, the K term: in the zigzag structure propagating along
the b direction, where the spins are antiferromagnetically aligned
on the z-bond and ferromagnetically aligned on the x-bond
and y-bond, a ferromagnetic (antiferromagnetic) K favours spins
pointing perpendicular to (along) the z-axis for a pair of spins on
the z-bond, and along (perpendicular to) the x-axis and y-axis for
the pairs on the x-bond and y-bond, respectively.

The zigzag order is one of the many magnetic states (including
the aforementioned spiral and non-coplanar structures) that are
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Figure 2 | Diffuse magnetic X-ray scattering intensities above TN. a, Intensity plots in the HK-plane (L varying between 6.5 and 7) measured at T= 17K for

selected azimuth angles summing π–σ ′ and π–π ′ channels, sensitive to spin components parallel to ki and perpendicular to the scattering plane,

respectively. For example, Ψ =0◦ measures the sum of correlations Sxx and Syy . The dashed hexagon indicates the first Brillouin zone of the honeycomb

net. b, Spin-component-resolved equal-time correlations extracted from a. c, Spin-component-integrated equal-time correlations extracted from a. Peaks

are located at Q=±(0,1), ±(0.5,0.5), and ±(0.5,−0.5). d, Ψ -dependence of the diffuse peak intensities for Samples 1 (open symbol) and 2 (closed

symbol). Solid lines show the calculated Ψ -dependence for x-, y- and z-zigzag states shown in e for the π–σ ′ and π–π ′ polarization channels summed.

e, Zigzag orders propagating along three equivalent directions. Blue zigzag is the static structure, and green and yellow zigzags are generated by 120◦

rotation of the blue zigzag.

classically degenerate in the pure Kitaev limit30 and comprise the
micro-states in the QSL phase. Away from the pure Kitaev limit,
depending on their energy separations, signatures of othermagnetic
states and their associated magnetic anisotropies may become
observable in the paramagnetic phase through diffuse magnetic
scattering. In particular, zigzag orders propagating in two other
directions, ±120◦ rotated from the static one, are expected for a
honeycomb net with C3 symmetry. (The actual 3D crystal structure
has an only approximate C3 symmetry because of a monoclinic
distortion, which singles out one propagation direction for the long-
range ordered state (along b direction) out of the three possible
under the ideal C3 symmetry15.)

With other magnetic correlations possibly emerging at high
temperature in mind, we follow the temperature evolution of the
zigzag order. Figure 1d–f shows H , K and L scans, respectively, of
themagnetic Bragg peak atQ= (0, 1, 6.5) for selected temperatures.
Figure 1g shows the correlation lengths along the a-, b- and
c-axes as a function of temperature. As the temperature increases
above TN, the zigzag correlations diminish rather isotropically,

despite dominant 2D couplings in the honeycomb net. This
3D characteristic of the magnetic correlations contrasts with
that of the quasi-2D Heisenberg antiferromagnet Sr2IrO4, which
exhibits 2D long-range correlations well above TN (ref. 31), and
implies that the critical temperature in Na2IrO3 is limited by the
anisotropic interactions rather than the interlayer coupling; the
Mermin–Wagner theorem requires either the symmetry to be lower
than SU(2) or the dimension to be higher than 2D for a finite-
temperature phase transition. The zigzag correlations survive on a
length scale of several nanometres (approximately three unit cells
wide) above TN, but the peak intensities drop by two orders of
magnitude. To isolate such small signals from the background, we
used an experimental set-up that maximizes the signal-to-noise
ratio, as described in the Methods.

Figure 2a maps the diffuse scattering intensity over a region
in momentum space encompassing a full Brillouin zone of the
honeycomb net, at several different Ψ angles to resolve the spin
components (see Supplementary Fig. 2). These maps integrate
the dynamic structure factor over the range 0 ≤ ω ≤ 100meV,
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Figure 3 | Simulation of diffuse scattering using exact diagonalization.

The Kitaev–Heisenberg model including up to third nearest-neighbour

Heisenberg interactions was considered. ξ interpolates between the pure

Heisenberg model and the pure Kitaev model via J1= J2= J3= 1−ξ and

K=−ξ . A ferromagnetic K with finite J1, J2 and J3 stabilizes the zigzag state

for most values of ξ . The black curve shows the spectral asymmetry,

defined as the ratio of spectral weight at Q=(0.5,0.5) to that at Q=(0,1).

Images show equal-time correlations 〈SxQS
x
−Q〉 obtained by exact

diagonalization using a 24-site cluster and plotted in the extended Brillouin

zone for selected ξ . The correlations for y and z components (not shown)

can be generated by ±120◦ rotations of the images shown.

covering the entire range of magnetic excitations, and serve
as an excellent approximation for the equal-time correlation
Sαα ≡ 〈Sα

QS
α
−Q〉 (α=x ,y ,z). When averaged over the three spin

components, the intensity map (Fig. 2c) indeed shows three zigzag
correlations above TN, with peaks at Q= ±(0, 1), ±(0.5, 0.5) and
±(0.5, −0.5) of equal intensities, confirming the near-ideal C3

symmetry. However, the spin-component-resolved maps, shown
in Fig. 2b, manifestly break the C3 symmetry. The system is left
invariant only when C3 rotation is performed simultaneously in the
real space and in the spin space—that is, cyclic permutation of spin
indices. This ‘global’ C3 symmetry implies a strong entanglement
between the real space and the spin space. Specifically, the full
azimuthal dependence of each zigzag state, shown in Fig. 2d, closely
follows the curves simulated for spin orientation fixed relative to
the propagation direction, as depicted in Fig. 2e. In other words,
specifying a spin component amounts to fixing the momentum
direction and vice versa. This one-to-one correspondence between
the spin space and the real space is a direct consequence of the bond-
dependent nature of the anisotropic exchange terms.

Qualitatively, it is immediately seen that the anisotropic
interactions dominate over the isotropic interactions and the
system is very far away from the pure Heisenberg limit, in
which case the spatial correlations must be spin-component-
independent with three zigzag peaks having equal intensities by
symmetry (as in the spin-averaged correlation shown in Fig. 2c
preserving C3 symmetry). A measure of how close the system is
to either the Heisenberg or the Kitaev limits is provided by the
intensity ratio of the weakest peak to the two bright peaks in the
spin-component-resolved correlations (Fig. 2b). To quantify this
measure, represented by a variable linearly interpolating between
these two limits, ξ , requires specifying the Hamiltonian, which
is not precisely known. For an estimation at a semi-quantitative
level, we adopt a simple Hamiltonian that neglects all anisotropic
terms beyond the K term. (This in turn requires including further-
neighbour Heisenberg couplings J2 and J3 to stabilize the zigzag
order32, whichwe take to be equal to J1 for simplicity.) Figure 3 shows
the simulated patterns for selected ξ . It is clear that the observed
diffuse pattern is consistent with the simulated pattern for the large
ξ limit. In fact, the observed intensity ratio of ≈0.2 is even smaller
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by 120◦.

than calculated (Fig. 3) for the largest ξ in the zigzag phase, which
confirms the predominant anisotropic interactions.

Interpreted within this model, our calculations would imply that
the system is very close to the Kitaev limit. However, it is becoming
increasingly evident that other anisotropic terms beyond the Kitaev
interaction do play a role22,23. This is, in fact, evident from the static
spin not pointing along one of the cubic axes favoured by theK term;
all other anisotropic terms conspire to rotate the spin away from
the principal axes. This in turn suggests that the zigzag structure is
further stabilized by other anisotropic terms. The zigzag correlations
survive at least up to ∼70K (see Supplementary Fig. 3), which is in
accord with the observation that coherent spin waves15 disperse up
to ≈5meV. This energy scale coincides with the temperature scale
(≈100K) below which the magnetic susceptibility deviates from the
Curie–Weiss behaviour33. This energy scale is, however, still far too
small in comparison with the energy (≈100meV) spanned by the
magnetic excitations (Fig. 4), suggesting that the zigzag order is an
emergent phenomenon. Despite the macroscopic degeneracy in the
Kitaev QSL phase being reduced down to three zigzags, the high-
energy Kitaev interactions leave their signature in the low-energy
sector: the three spin components, each carrying its own zigzag,
compete andmelt the long-range order at a temperaturemuch lower
than that suggested by the Weiss temperature (ΘW), leading to a
large frustration parameter33 (≡ΘW/TN) approximately equal to 8.

The fluctuations among three zigzag states remain even below
TN, albeit with subtle spectral changes (Supplementary Fig. 3d),
implying that they are primarily quantum rather than thermal
fluctuations. At Ψ = 180◦ (Fig. 4), the intensity remains highest
at Q = ±(0.5, 0.5) and Q = ±(0.5, −0.5), away from the Bragg
peaks at Q=±(0, 1), and peaked at zero energy within the energy
resolution of 24meV. Note that this scattering geometry probes two
spin components transverse to the static component. A profound
consequence of the unusual nature of the fluctuations is that the soft
excitations are located away from the Bragg peak15. This is a notable
exception to the universality held in conventional magnets that
spin waves emanate from Bragg peaks by virtue of the Goldstone
theorem, and magnetic anisotropy is manifested as a spin-wave
gap, even in systems with extremely large magnetic anisotropy34.
By contrast, the spin gap in our system is small (unresolved in our
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spectra and estimated to be smaller than 2meV from INS data15)
in comparison with the overall energy scale of the system, despite
the fact that the magnetism is dominated by the anisotropic terms.
Rather, the anisotropy is manifested as the separation of the long-
wavelength spin waves from the Bragg peaks, which is a natural
consequence of each spin component exhibiting its own real-space
correlations. Our results directly reveal the key building blocks of
the Kitaev model in Na2IrO3, and establish a new design strategy
for the long-sought quantum spin liquids via the bond-directional
magnetic coupling.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Single-crystal growth. Single crystals of Na2IrO3 were grown following two
different recipes using Na2CO3 flux (Sample 1) and self-flux (Sample 2). For
Sample 1, a mixture of Na2CO3 and IrO2 with a molar ratio of 50:1 was melted at
1,050 ◦C for 6 h followed by fast cooling at a rate of 100 ◦Ch−1 down to 1,000 ◦C,
slow cooling at a rate of 1 ◦Ch−1 down to 800 ◦C and furnace cooling to room
temperature in sequence. Hexagonal pillar-shaped crystals with typical dimensions
of 0.2mm × 0.2mm × 0.4mm were obtained after dissolving Na2CO3 flux in
acetone and water. For Sample 2, powders of Na2CO3 were mixed with 10–20%
excess IrO2 and were calcined at 700 ◦C for 24 h. Single crystals were grown on top
of a powder matrix in a subsequent heating at 1,050 ◦C. Plate-like crystals with
typical dimensions of 5mm × 5mm × 0.1mm were physically extracted.

Resonant X-ray scattering. Incident X-rays were tuned to the Ir L3 edge
(11.2145 keV). The resonant X-ray diffraction experiments were carried out at the
6 ID-B beamline of the Advanced Photon Source. The polarization analysis was
performed in the vertical scattering geometry using a pyrolytic graphite analyser

probing the σ–π ′ channel. The RIXS was performed at ID20 of the European
Synchrotron Radiation Facility. The total instrumental energy resolution of 24meV
was achieved with a monochromator and a diced spherical analyser made from Si
(844) and a position-sensitive area detector placed on a Rowland circle with a 2m
radius. The diffuse magnetic scattering was performed using the RIXS
spectrometers at the 9 ID, 27 ID and 30 ID (MERIX) beamlines of the Advanced
Photon Source, where a monochromator of 90meV bandwidth was used for an
order-of-magnitude higher incident photon flux than that from the Si (844)
monochromator. In these experiments, a horizontal scattering geometry was used
with the π-incident X-ray polarization measuring the sum of π–σ ′ and π–π ′

channels. The 2θ angle was fixed at 90◦ to minimize the contribution from
Thompson elastic scattering. As a result, L values in the HK maps shown in Fig. 2a
vary in the range between 6.5 and 7. The in-plane momentum resolution of the
RIXS spectrometer was ±0.048 Å−1. The use of RIXS spectrometers rejecting all
inelastically scattered X-rays outside of the 100meV energy window centred at the
elastic line led to a significant improvement in the signal-to-noise ratio. A typical
counting time of 2 h was required for a map shown in Fig. 2.
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