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We propose a scheme that drastically improves the efficiency of Widom’s particle insertion method
by efficiently sampling cavities while calculating the integrals providing the chemical potentials of
a physical system. This idea enables us to calculate chemical potentials of liquids directly from
first-principles without the help of any reference system, which is necessary in the commonly used
thermodynamic integration method. As an example, we apply our scheme, combined with the density
functional formalism, to the calculation of the chemical potential of liquid copper. The calculated
chemical potential is further used to locate the melting temperature. The calculated results closely
agree with experiments. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4749287]

I. INTRODUCTION

Free energy and chemical potential are of fundamental
importance in thermodynamics, particularly in the study of
phase equilibria. However, unlike quantities such as energy,
temperature, and pressure, chemical potential is not in general
possible to obtain directly by molecular dynamics (MD) or
metropolis Monte Carlo (MC) simulations. Rather than sim-
ply computing the temporal average of an explicit function of
dynamical variables, the value of chemical potential is related
to an integral over the accessible phase space.1, 2 Although
this problem can be fortunately circumvented for solid by an
appropriate treatment of phonon density of states under the
quasiharmonic approximation and further correction using the
thermodynamic integration method, the complexity still per-
sists for liquids due to the lack of a natural universal reference
system.

Chemical potentials of liquids are usually calculated in
an indirect approach, which connects the system of interest to
a reference system with known chemical potential and then
calculates the difference of the two systems by thermody-
namic integration. The development of density functional the-
ory (DFT)3–5 has raised great interests to calculate chemical
potentials and to study phase equilibia from first-principles.
Car and Sugino,6 pioneering in the field, successfully calcu-
lated the chemical potentials of liquid-state silicon and fur-
ther computed the melting point within an error of 100 K.
The method was then applied to liquid aluminum by de Wijs
et al.7 The melting point they calculated differs from the true
value by less than 5%. Employing similar techniques, Alfè
et al.8, 9 further simulated the melting of iron under Earth’s
core conditions. Since directly experimental measurement is
challenging under such extreme conditions, their results can
help determine the temperature of the Earth’s inner core.

a)qhong@caltech.edu.

Despite of these successful examples, one apparent draw-
back of the thermodynamic integration method lies in its
heavy dependence on the reference system, which is required
to be sufficiently close to the actual system, so that the cost
needed to compute the chemical potential difference would
not be prohibitively expensive.10 Unfortunately, such a refer-
ence system is not universally available. Even if it is obtain-
able, it would demand detailed study of material properties
and precise fitting to ab initio results, which require a large
amount of both computer and human effort. As a result, the
application of this method is limited.

As an alternative approach, Widom’s test-particle inser-
tion scheme11 is a popular method to directly calculate the
chemical potential of a liquid. Chemical potential is calcu-
lated as an additional free energy, namely, a change of free
energy after inserting one more particle. Consequently, the
chemical potential is related to the ensemble average and in-
tegration of Boltzmann’s factors exp (−β�U), where �U is
insertion energy, the energy change during particle insertion.
In practice, the average is evaluated by occasionally insert-
ing the test particle into the simulation volume, measuring
�U and then removing it before continuing the simulation.
This approach has been applied to some simple empirical
potentials,12–16 mostly Lennard-Jones potentials. The major
problem of the Widom’s method is that it is usually consid-
ered computationally too expensive, because most insertion
attempts lead to a vanishingly small value of exp (−β�U)
(due to high energy cost of inserting the test-particle in a small
cavity in the dense system) and the corresponding computa-
tional efforts are thus wasted. Probably because of the pro-
hibitive computational cost, there have been apparently no at-
tempts so far to compute first-principles chemical potential
directly with Widom’s method.

Nevertheless, compared to the thermodynamic integra-
tion approach, the Widom’s method holds a great advantage,
since it does not require any reference system. This property
makes it possible to find a universal solution to first-principles
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calculations of liquid-state chemical potentials. This is espe-
cially useful in automated materials screening effort in which
melting point is a design parameter, since one does not need to
develop empirical potentials for each of the chemical system
explored. In this article, we revisit the Widom’s particle inser-
tion method and modify it with an efficient cavity-sampling
scheme, which achieves a drastic reduction in computational
cost. The theoretical backgrounds are described in Sec. II.
Chemical potential and melting temperature calculations can
be found in Sec. III. Discussions and future directions are pre-
sented in Sec. IV.

II. THEORY

A. Particle insertion method

We briefly reiterate the Widom’s particle insertion
method here. By definition, chemical potential μ is the par-
tial derivative of free energy F with respect to number of par-
ticles N, μi = (∂F/∂Ni)V,T ,Nj �=i

, where V is volume and T

is temperature. Thus, it can be calculated by evaluating the
additional free energy, namely the free energy change after
inserting one more particle,

μi = F (V, T ,Ni + 1, Nj �=i) − F (V, T ,Ni, Nj �=i)

+O

(

∂2F

∂N2
i

)

. (1)

The higher-order derivative, which leads to finite-size correc-
tion, will be discussed later in Sec. III A. Assume the system
of interest contains N homogeneous atoms. The Helmholtz
free energy of such a system is (using a classical partition
function)

F (V, T ,N ) = −kT ln

(

1

�3NN !

∫

exp

[

−
U (rN )

kT

]

dr
N

)

,

(2)

where k is the Boltzmann constant, � is de Broglie wave-
length, � =

√

h2/(2πmkT ), U is potential energy and rN is
a 3N-dimensional vector of atomic positions. Combining Eqs.
(1) and (2), the expression for chemical potential can be writ-
ten as

μ ≃ �FN→N+1 = μid + μex, (3)

μid = −kT ln

(

V

�3(N + 1)

)

, (4)

μex = −kT ln

(

1

V

∫

exp[−U (rN+1)/kT ]dr
N+1

∫

exp[−U (rN )/kT ]drN

)

. (5)

Notice that the approximation sign in Eq. (3) is due to the
omission of higher-order derivative in Eq. (1), which we will
discuss and correct later.

In Eq. (3), we separate the chemical potential into two
parts, the ideal gas term μid and the excess term μex. The
chemical potential of ideal gas is trivial to calculate. To com-
pute the excess part μex, we further write it as an ensemble
average,

μex = −kT ln

(

1

V

〈∫

exp

(

−
�U

kT

)

drN+1

〉

N

)

, (6)

where �U is the potential energy change during inser-
tion, �U (rN , rN+1) = U (rN+1 = {rN , rN+1}) − U (rN ). No-
tice the difference between ri and r

N . ri denotes the position
of the ith atom, while r

N contains the coordinates of all atoms
in the configuration, which has a dimension of 3N. The no-
tation 〈· · · 〉N means the canonical ensemble average of a N-
particle system

〈A〉N =

∫

A exp[−U (rN )/kT ]dr
N

∫

exp[−U (rN )/kT ]drN
. (7)

In practice, the evaluation of Eq. (6) involves the calculation
of two averages, namely the ensemble average 〈· · · 〉N and the
spatial average

∫

exp(−�U/kT )drN+1/V . The ensemble av-
erage can be achieved by picking snapshots of configurations
r
N randomly from MD or MC trajectories, while the spatial

average is calculated by thoroughly scanning over rN+1, the
position of the additional particle, in each snapshot.

B. Selective sampling

An obvious way to calculate the spatial average would be
to carry out a uniform random sampling of the additional par-
ticle in the rN+1 space. However, this is not a very practical
approach. In practice, one can sample only a limited num-
ber of positions, and few of them would actually fall in the
low energy region of interest. In the end, such a random sam-
pling could turn out to be extremely expensive and wasteful.
Therefore an efficient sampling scheme is essential to avoid
the random-sampling catastrophe.

It is more useful to regard the average in Eq. (6) as an
one-dimensional integral over the insertion energy �U, i.e.,

μex = −kT ln

(∫ +∞

−∞

ρ(�U ) exp

(

−
�U

kT

)

d(�U )

)

, (8)

where ρ(�U) is the probability density defined as

1

V

〈∫

δ(U ({rN , rN+1}) − U (rN ) − �U )drN+1

〉

N

. (9)

Notice again that 〈· · · 〉N is the canonical ensemble average of
a N-particle system, according to Eq. (7).

In order to determine accurately the right-hand side of
Eq. (8), one has to produce good estimates of the values of
ρ(�U) for the range of �U over which the product ρ(�U)
exp (−�U/kT) takes on its large values. In other words, the
sampling should be exclusively focused on the region near
the cavities that can accommodate the additional particle at a
small energy cost.

Here, we give an example of liquid copper at 2000 K (see
Fig. 1). Since chemical potential is determined by the area be-
low the curve ρ(�U) exp (−�U/kT), which decays exponen-
tially in high-�U region, we introduce here an energy ceiling
(e.g., �U = 0.6 eV in the figure) to focus on the study of low-
�U region, ignoring the rest. The energy ceiling is simply de-
termined as a value where the product ρ(�U) exp (−�U/kT)
becomes negligible, thus the converged excess chemical po-
tential μex is captured at the lowest computational cost, which
is proportional to the area below the probability density curve.
(Throughout the text, we choose as reference state (zero level
in energy) the enthalpy of Cu(s) at 298 K and zero pressure,
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FIG. 1. (a) Probability density ρ(�U) and the product ρ(�U) exp (−�U/kT)
of liquid copper at 2000 K. (b) Volumetric display of the insertion energy
�U for a single snapshot in configuration r

N . The colored region with low
�U contributes most to the chemical potential, despite of its small size and
correspondingly modest computational cost, compared to the whole cube.

which closely agrees with the definition employed in experi-
ments.)

C. Algorithm

We propose here an algorithm to efficiently find the cavi-
ties and calculate the spatial average. For a N-particle config-
uration r

N
0 in a parallelepiped, the integral can, in principle,

be evaluated numerically on a uniform grid,

1

V

∫

exp

(

−
�U

(

r
N
0 , rN+1

)

kT

)

drN+1

=
1

NaNbNc

Na,b,c
∑

i,j,k=1

exp

(

−
�U

(

r
N
0 , rN+1 = rijk

)

kT

)

, (10)

where

rijk =
i

Na

a +
j

Nb

b +
k

Nc

c. (11)

a, b, c are the vectors defining the parallelepiped. Instead of
running ab initio calculations on all grid points, we employ
the following algorithm to search for cavities and to study the
potential energy surfaces near them.

Let Fig. 2 be the potential energy (�U) surface near the
cavity of interest. We find this cavity and map out the nearby
potential energy surface in four steps.

1. Locate

We first estimate the position rN+1,0 of the cavity based
on an approximate energy function. This function should tell
us roughly where the cavity is, but does not need to be ac-
curate, because it is never used to calculate the chemical po-
tential. There are plenty of choices available to take this task.
For example, an appropriate empirical potential is definitely
sufficient to predict the position of the cavity. In practice, we
find that even a function as simple as nearest neighbor dis-
tance can help locate the cavity, as shown in Fig. 3. This idea
of prescreening has been successfully used before.17, 18

2. Minimize

DFT calculation is performed at the predicted position
rN+1,0. Based on the force calculated on the (N + 1)th par-
ticle, the position is optimized as rN+1,1. This move attempt
is checked by DFT, and will be accepted if U ({rN

0 , rN+1,1})
< U ({rN

0 , rN+1,0}). The optimization continues and gen-
erates a series of positions {rN+1,i, i = 1, 2, . . .}, until the
minimum is found. This procedure is equivalent to structure
optimization under the constraint that all atoms are fixed

r
0

r
1

r
2

r
3

r
4

r
5

r
min

0.25

0.500.751.001.502.002.50

(a)

0.25

0.50

0.751.001.502.002.50

(b)

FIG. 2. Diagrammatic illustration of the algorithm in two dimensions. Assume the contour lines above represent the energy surface near the cavity we are
interested in. (a) Step 1: We first estimate the position of the cavity (purple, rN+1,0) based on an approximate energy function. Step 2: Then DFT calculations
are carried out and, based on the force calculated, the position of the (N + 1)th particle (green, rN+1,i ) is optimized, until the minimum grid point (red star,
rN+1,min) is found. The optimization proceeds as move attempts are accepted if U ({rN

0 , rN+1,i+1}) < U ({rN
0 , rN+1,i}). The green arrows are accepted move

attempts, while the red ones are denied. (b) Step 3: All grid points below the energy ceiling (red circle) are studied with DFT, by gradually climbing up the
energy surface from the bottom, until all frontier points (red solid dots) are above the energy ceiling. As a result, we need to calculate �U for the colored points
only. Step 4: In case the dynamic energy ceiling needs to be increased (red dash circle), the “exploration” step restarts and demands additional calculations on
new frontier points (red open dots).
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FIG. 3. Nearest neighbor distance analysis on 256 configurations r
N of liq-

uid copper at 2000 K. The nearest neighbor distance rmin is calculated as the
shortest distance from the grid point rijk to the N atoms and their periodic im-
ages. Large rmin corresponds to the center of a large cavity, which is optimal
for particle insertion at a low energy cost.

except the last one, which is allowed to move only on grid
points.

3. Explore

We explore the cavity by gradually climbing up the po-
tential energy surface. If the bottom is lower than the energy
ceiling, all its neighboring grid points will be studied. And if
some of them are also below the ceiling, their neighbors will
also be further calculated. This procedure spreads the “seeds”
out, until all “seeds” hit the energy ceiling, which tells us that
we have reached the inaccessible space region and there is
no need to explore anymore. The exploration will end only
if all points on the frontier of the cavity are above the energy
ceiling.

4. Converge

An appropriate value for the energy ceiling is required in
Step 3. However, unlike what has been discussed in Fig. 1, the
probability density ρ(�U) is never known before we calculate
it, rendering the energy ceiling a priori unknown. We circum-
vent this problem by introducing a dynamic, rather than static,
energy ceiling. Starting from a relatively low trial value (e.g.,
−0.5 eV in Fig. 1), we first calculate the probability density
below it (by Step 3), and then decide whether or not we should
raise the energy ceiling, depending on the up-to-date ρ(�U)
exp (−�U/kT). The new energy ceiling, if it happens, may
enclose some of the frontier points, thus restarting the explo-
ration of the cavity (returning to Step 3). After the additional
calculation is finished, the same question is asked again about
whether to further increase the energy ceiling. Steps 3 and 4
are performed repeatedly, increasing the energy ceiling gradu-
ally and mapping out Fig. 1 from left to right, until the energy
ceiling is high enough to give an excess chemical potential
converged within some prespecified tolerance.

III. RESULTS

A. Chemical potential of liquid copper at 2000 K

We employ the scheme described above to calculate
the chemical potential of liquid copper from first-principles.

Before we describe the detailed methodology, we would like
to first estimate the precision required in our calculation,
because we want to further apply the results to the theoretical
prediction of material properties, e.g., locating a melting
point. We notice that the calculation of melting properties
demands very high precision for chemical potentials. The
melting temperature is determined by the intersection of
chemical potential curves of a solid and a liquid. However,
in practice these two curves usually cross at a shallow
angle. Consequently, a small error in chemical potential may
translate into a relatively large error in melting temperature.
Typically, an error of 10 meV in chemical potential will
result in an error of 100 K in melting point. Therefore, we
need to make sure numerical and statistical errors are under
control.

In the process of isochoric particle insertion, we use
a periodic cube of edge length 11.66 Å with 108 copper
atoms in it. All DFT calculations are performed using the
Vienna Ab-initio Simulation Package (VASP),19, 20 with the
projector-augmented-wave (PAW) implementation21, 22 and
the generalized gradient approximation (GGA) for exchange-
correlation energy, in the form known as Perdew-Burke-
Ernzerhof (PBE).23 Electronic temperature and its contribu-
tion to entropy are counted by imposing Fermi distribution of
the electrons on the energy level density of states. The size
of the plane-wave basis is carefully checked to reach the re-
quired accuracy. The energy cutoff (Ecutoff) is set to 273 eV
in MD runs and particle insertion attempts. When we make
corrections for pressure and energy, Ecutoff is increased to 500
eV, in order to remove Pulay stress (error in pressure within 1
kbar) and achieve convergence (error in energy within 1 meV)
with respect to the basis size.

The sampling in k-space is also studied very carefully,
to compromise between accuracy and computation cost. A
dense k-point gird is necessary to meet the accuracy require-
ment. Indeed, we would like to use a 4 × 4 × 4 Monkhorst-
Pack (MP) mesh in the first Brillouin zone (FBZ). How-
ever, since the point-group symmetry of our cubic supercell
is broken by disorder, this would require all the 32 k-points
included in the calculation, which is computationally too
demanding. Kresse et al.7 have addressed this problem by
replacing the original 32 k-points with four special k-points
in the irreducible FBZ, as if full cubic symmetry were still
applied. This reduction can be well justified by the follow-
ing argument. In the case of weak potential and nearly free
electron gas, the dominant part in electronic Hamiltonian is
the kinetic energy, which is approximately ¯2/(2me)(G + k)2

(G is a reciprocal lattice vector and k a k-point in FBZ), a
term invariant under point-group operation with respect to
the choice of k. As simple metals are close to the free elec-
tron gas model, the same property should hold true, thus
rationalizing the reduction of k-points by symmetry. Inspired
by this idea and making a further improvement in which we
seek a relatively even distribution of k-points in FBZ (while
in the calculation of Kresse et al., the k-space sampling fo-
cuses exclusively in the first octant), we represent the 4 × 4
× 4 MP grid by eight special k-points, whose coordinates are
listed in Table I. To evaluate the accuracy, different k-space
sampling methods are tested on ten randomly chosen MD
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TABLE I. Comparison of different k-space sampling in terms of computa-
tional cost and error (in unit of meV/atom).

k-space sampling Number Error in MD Error in �U

Ŵ point 1 46 106
MP 2 × 2 × 2 4 2 6
MP 4 × 4 × 4 32 <0.1 1
8 special k-pointsa 8 <0.1 3
4 special k-pointsb 4 0.5 19

aThe coordinates of the k-points are: (1/8 1/8 1/8), (−3/8 1/8 1/8), (1/8 −3/8 1/8), (−1/8
−1/8 3/8), (−1/8 3/8 3/8), (3/8 −1/8 3/8), (−3/8 −3/8 1/8), (3/8 3/8 3/8).
bThe coordinates and weights of the k-points are: (1/8 1/8 1/8), 1/8; (3/8 1/8 1/8), 3/8;
(3/8 3/8 1/8), 3/8; (3/8 3/8 3/8), 1/8.

configurations (calculated as U (rN )/N ) and insertion at-
tempts (calculated as �U = U (rN+1) − U (rN )). As Table I
shows, sampling with the eight special k-points is comparable
to the 4 × 4 × 4 MP grid, while the computational cost is
significantly reduced by a factor of four.

The ensemble average is computed numerically by run-
ning ab initio MD simulations within a canonical (NVT) en-
semble with the Nosé-Hoover chain thermostat.24–27 The MD
simulation proceeds with a time step of 3 fs and lasts for 1280
steps. Forces acting on atoms are accurately calculated, as
the convergency threshold for electronic structure optimiza-
tion is set to 1 × 10−8 eV/atom. We capture snapshots ev-
ery 5 ionic steps from the MD trajectory, thus generating 256
snapshots in total, from which the ensemble average is eval-
uated. The configuration r

N in each snapshot is then studied
by making particle insertion attempts, to compute the spatial
average over rN+1. The spatial average is calculated numeri-
cally on a uniform 40 × 40 × 40 grid, according to Eq. (10).
Only on selected grid points ab initio insertion energies �U

are calculated, following the efficient scheme we proposed in
Sec. II C. Finally, we compute the chemical potential by com-
bining the ensemble and spatial averages.

As shown in Table II, we “measured” the chemical poten-
tial of liquid copper at 2000 K five times, based on five inde-
pendent MD trajectories. The Helmholtz free energy change
during particle insertion �FN→N+1 is −1.273 ± 0.011 eV.

The selective calculation scheme helps us reduce the
computational cost drastically. Instead of running ab initio

calculations on all 1.6 × 107 grid points, the scheme demands
calculations on only 5 × 103 grid points, reducing the com-
putational cost by a factor of 3 × 103 and thus making the
computation possible.

Now we make correction for the finite-size effect, which
was alluded to earlier in Eqs. (1) and (3). Several analytical
expressions have been proposed28, 29 for this type of correc-
tion. Despite of the differences, they all share the same lead-
ing term, −(∂p/∂ρ)/(2N ), where ρ is the density of particles.
Here, we would like to account for the finite-size effect in the

TABLE II. Calculation of Helmholtz free energy change �FN→N+1 by par-
ticle insertion. (Cu, 2000 K, N = 108, a = 11.66 Å, in eV.)

μex 0.748 ± 0.011
μid −2.021
�FN→N+1 −1.273 ± 0.011

N, T, p1, V particle insertion
isochoric

μ(V, T, N ) = ∆FN→N+1 − (p2 − p1) · V/(2N )

N + 1, T, p2, V

FIG. 4. Finite-size correction to the calculation of chemical potential by iso-
choric particle insertion method.

following way. The flaw of isochoric particle insertion lies
in the fact that the next higher-order derivative may be sig-
nificant and has to be included, which can be seen from the
following Taylor expansion:

�FN→N+1 = F (V, T ,N + 1) − F (V, T ,N ),

.
= μ(V, T ,N ) +

1

2

∂μ(V, T , n)

∂n

∣

∣

∣

∣

n=N

, (12)

where �FN→N+1 is the free energy change computed from
particle insertion, μ(V, T ,N ) is the exact chemical potential,
and (∂μ/∂n) is the leading correction term. Notice that this
term is large for condensed phase materials, i.e., when n in-
creases, μ will change significantly, as a result of the large
increase in pressure. Simplifying the expression, we have the
finite-size correction

∂μ(V, T , n)

∂n
=

∂μ(p, T )

∂p
·
∂p(V, T , n)

∂n
=

V

N
(p2 − p1),

(13)

μ(V, T ,N ) = �FN→N+1 −
V

2N
(p2 − p1), (14)

where p1 and p2 are the pressures before and after particle
insertion, as shown in Fig. 4.

It is straightforward to show that this correction is equiv-
alent to −(∂p/∂ρ)/(2N ), the leading term in the corrections
proposed by Smit28 and Siepmann29

−
V

2N
(p2 − p1) = −

V

2N

∂p(V, T , n)

∂n
= −

1

2N

∂p(V, T , n)

∂ρ
.

(15)

Another type of finite-size effect can be understood as the
following. Compared to an infinite system, the test particle in-
serted in a small box will interact with its periodic images. In
the case of charged atoms, the image charge interaction can
be very large due to the long-range Coulomb interaction. In
our small periodic model, image interactions must be exam-
ined to make sure that they are small enough to be neglected.
To estimate this effect, we perform particle insertion tests on a
864-atom system (eight times larger than our original model)
and make comparisons with the original results. The calcu-
lated insertion energies �U differ only by less than 3 meV.
Thus, it is safe to neglect the weak image interactions in our
model.

We have now calculated μ(p1, 2000 K). We further con-
vert μ(p1, T) to μ(p◦ = 1 bars ≃ 0 kbar, T ), the chemical po-
tential at standard atmospheric pressure, to simplify the com-
parison of our theoretical results with experiments

μp1→p◦ = μ(p◦, T ) − μ(p1, T ) ≃ −
p1V

N
. (16)
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TABLE III. Theoretical chemical potential of liquid copper at 2000 K (in
eV, N = 108, a = 11.66 Å, p1 = 5.5 kbar, p2 = 10.6 kbar).

�FN→N+1 −1.273 ± 0.011
−(p2 − p1)V/(2N ) −0.023
−p1V/N −0.050
μ(p◦, 2000 K) −1.347 ± 0.011
μ(p◦, 2000 K, exp.) −1.342

The chemical potential is finally computed by combin-
ing Widom’s particle insertion method and the corrections for
finite-size effect and non-zero pressure

μ(p◦, T ) = �FN→N+1 −
V

2N
(p2 − p1) −

p1V

N
. (17)

As shown in Table III, the theoretical chemical potential is
predicted to be −1.347 ± 0.011 eV, which agrees very well
with the experimental value −1.342 eV.

B. Chemical potential at various temperatures

The Gibbs free energies G at different temperatures and
pressures are connected by the following thermodynamic
relations:

[

∂(G/T )

∂(1/T )

]

p

= H ,

[

∂G

∂p

]

T

= V. (18)

Since enthalpy H and volume V can be obtained directly from
MD simulation, free energy changes among different (p, T)
conditions can be readily computed by thermodynamic inte-
gration method.

We start from the calculated μ(p◦, 2000 K) and map
out the chemical potential curve in region T ∈ [1300, 2000]
K and zero pressure. To compute enthalpy H in Eq. (18),
ab initio canonical (NV T ) MD simulation is performed
at various temperatures in the region. Detailed settings in
DFT calculations and MD thermostat have been described in
Sec. III A. Enthalpy is calculated as an average of energies
over MD trajectory at each temperature. Volume search is
conducted to make sure p ≃ 0 kbar. As shown in Table IV,
the calculated enthalpy and chemical potential agree very well
with experiments.

TABLE IV. Enthalpies and chemical potentials of liquid copper (in
eV/atom).

T H Hexp μ μexp

2000 . . . . . . −1.347 ± 0.011 −1.342
1950 0.642 0.645 −1.297 ± 0.011 −1.292
1850 0.609 0.611 −1.198 ± 0.010 −1.194
1750 0.575 0.577 −1.102 ± 0.010 −1.097
1650 0.540 0.543 −1.007 ± 0.009 −1.002
1550 0.505 0.509 −0.914 ± 0.009 −0.910
1450 0.470 0.475 −0.824 ± 0.008 −0.819
1350 0.434 0.441 −0.736 ± 0.008 −0.731

C. Calculation of melting temperature

The chemical potential of liquid copper is further used
to calculate the theoretical melting temperature, which is
determined by the intersection of chemical potential curves
of the solid and of the liquid. The chemical potential of solid
is computed within the quasiharmonic approximation30 and
is further corrected by thermodynamic integration (to account
for anharmonicity at high temperatures). Phonon density of
states, vibrational free energies, and thermal expansion are
calculated using the “supercell” method as implemented in
the Alloy Theoretic Automated Toolkit (ATAT).31, 32 Anhar-
monicity effect is included as further correction through the
thermodynamic integration method, in which MD simulation
is carried out with an effective Hamiltonian

Hλ = (1 − λ)Hα + λHβ (19)

that gradually switches from the Hamiltonian Hα of a
harmonic potential surface to the real Hamiltonian Hβ . The
chemical potential difference is calculated as

μβ = μα +
1

N

∫ 1

0
〈Hβ − Hα〉λdλ, (20)

where 〈A〉λ is the average of observable A in MD simulation
with Hamiltonian Hλ.

The chemical potentials of solid and liquid copper, from
both theory and experiment, are shown in Fig. 5. Compared
with experiments, the errors of liquid and solid are −5 and
−11 meV, respectively, in the melting region. The calculated
melting temperature is 1440 K, about 80 K higher than the
experimental value. This error is translated from both solid
and liquid chemical potentials, as a combined effect. Since we
focus mostly on the calculation of liquid chemical potentials
in this article, we are more concerned about the impact purely
from the liquid part, which is more accurate than the solid
part and thus should lead to a smaller error. Indeed, the errors
in melting point caused by solid and by liquid are 120 and
−40 K, respectively, as shown in Fig. 5.

1300 1350 1400 1450 1500

−0.84

−0.82

−0.8

−0.78

−0.76

−0.74

−0.72

−0.7 μsolid,theory

μliquid,theory

μsolid,exp

μliquid,exp

T / K

μ
/

eV

1360 K (μs,exp = μl,exp)

1440 K
(μs,theory = μl,theory)

FIG. 5. Determine melting temperature from where solid and liquid chem-
ical potential curves intersect on a μ-T plot. Tm from experiments is
1360 K. According to the liquid chemical potential we calculated by Widom’s
method, the theoretical Tm is 1320 or 1440 K, depending on whether we use
experimental or theoretical results for the chemical potential of solid.
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FIG. 6. This two-dimensional energy surface illustrates why our four-step
algorithm works more efficiently than pre-screening. While traditional pre-
screening labels all colored (both red and black) points as “important” based
on the approximate energy model, the “locate” step in our algorithm out-
puts only the approximate minimum (a single grid point at the black star).
Then the cavity is studied by the “minimize” and “explore” steps relying on
ab initio calculations. As a result, our scheme calculates only the red points,
and significantly cuts the unnecessary cost (all the surrounding black points).

IV. DISCUSSIONS AND CONCLUSIONS

Although the “locate” step in our algorithm appears to
be similar to pre-screening, it is different in many aspects.
Working in ab initio context, which is computationally much
more expensive than empirical potentials, we need to de-
sign an algorithm highly selective about what should be cal-
culated by DFT. In traditional pre-screening, the approxi-
mate energy model is used to find an approximate cavity that
must completely enclose the true cavity, so the pre-screening
criterion must necessarily be conservative and the more
accurate/expensive energy model is invoked too often. The
key distinction in our scheme is that the approximate energy
model is only used to find a trial point at or near a cavity. The
shape of the cavity is instead determined in the “explore” step
relying on ab initio calculations and the only “wasted” calcu-
lations are those immediately at the boundary of the cavity.
In traditional pre-screening, the set of “wasted” calculation
points is three-dimensional, while in our scheme it is two-
dimensional. An example is shown in Fig. 6. We save costs
on several layers of black points, which are labeled as “im-
portant” by pre-screening but proven to be unnecessary by
our algorithm.

One may argue that near the boundary of the cavity there
could exist multiple minima, which could be ignored by mis-
take in our algorithm. Although it is true theoretical, this is
very unlikely to happen in reality. First of all, if the multiple
minima are connected by path lying below the energy ceil-
ing, we will not miss them in the “explore” step. In the case
of multiple minima not connected, we will miss them only if
the “locate” step provides a single starting point when there
should have been more than two. But this is not only very rare
but also insignificant, because only small-size shallow cav-
ities can escape from the examination of the “locate” step.

Furthermore, the multiple minima issue is more a numerical
convergence aspect than a fundamental limitation. As the ceil-
ing is dynamically increased up to convergence, all minima
that were previously missed will eventually be connected to
existing cavities by a path below the energy ceiling.

Although the absolute error in DFT energies is likely
larger than our target accuracy of 10 meV/atom, we benefit
from the fact that our results (the melting point and chemical
potentials relative to a reference state) are actually functions
of energy differences between states of similar atomic den-
sities and average coordination number, so that considerable
error cancellation is to be expected.

Potential DFT errors aside, we are very careful about
controlling the errors both from numerical and statistical ori-
gins. The errors in the ab initio calculations are mainly due to
electronic structure calculations implementation details, e.g.,
the use of PAW method, the size of basis set, and k-space
sampling. These problems have been carefully handled and
discussed either in the above paragraph, or in Sec. III A. The
errors in statistical methods are caused by detailed physical
approaches to calculate the chemical potentials of the solid
and of the liquid, i.e., quasi-harmonic approximation, thermo-
dynamic integration, and Widom’s particle insertion method.
Because the chemical potentials of two phases are calculated
with different statistical mechanics methods, we have to make
sure that the calculations achieve absolute convergence with
respect to the methods, since there is no chance that errors of
the two phases will cancel.

Due to computational cost issues of DFT calculations,
our chemical potential calculations can be performed only on
a small system with around 100 atoms. The error caused by
the small system size is studied systematically, as we gradu-
ally increase the system size and check the convergence. We
first note that this error is inherent in the physical method of
particle insertion itself and is irrelevant to the DFT formalism.
Therefore, it is better to work with empirical potentials, as it is
a practical way to test our method on large system size, with-
out losing the accurate description of interatomic interactions.
We implement the particle insertion method into the large-
scale atomic/molecular massively parallel simulator package
(LAMMPS)33 to automate and accelerate the calculations.
Two embedded atom model (EAM) potentials, namely cop-
per (Mendelev, 2008)34 and tantalum (Y.-H. Li, 2003),35 are
tested on system size up to 2000 atoms. The results are shown
in Fig. 7. We find the chemical potential finally converges af-
ter we increase the system size beyond 1000 atoms. With the
system size of approximately 100 atoms, the finite size error
is 10−20 meV. Considering the huge computation cost we
have to pay to work on larger systems from first principles,
this amount of error is still acceptable.

The convergence with respect to grid resolution is studied
with the same empirical potentials. We have tested different
grid resolutions up to eight times denser than the grid in our
reported DFT calculations. We analyze the results in two
levels, namely the integral I (or spatial average mentioned be-
fore in Eq. (10)) in each individual snapshot and the chemical
potential μ according to Eq. (6), which is related to the en-
semble average of the above-mentioned integrals I, μ = −kT

ln 〈I〉N. Errors of spatial average in individual snapshots are
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FIG. 7. Finite size error of chemical potential calculations, tested on two
empirical potentials. The errors are 17 and 11 meV for Cu (108 atoms) and
Ta (128 atoms), respectively.

plotted in Fig. 8 (blue cross). Although for a single snapshot
it requires a very fine grid to achieve convergence, the error
mostly cancels out in the ensemble average, therefore the
chemical potential calculated from them converges quickly
with respect to the grid resolution, as shown in Fig. 8 (red cir-
cle). We find that the results have already converged with a 40
× 40 × 40 grid, which is employed in our DFT calculations.

The success or failure of the particle insertion scheme
depends heavily on whether sufficiently many large cavities
are sampled and explored. Therefore, higher temperatures are
preferable, since rare events occur more frequently (config-
urations with large cavities usually locate in the high-energy
region of phase space and are rarely visited). We find that it is
much easier to measure the chemical potential at 2000 K than
at 1500 K. At the latter temperature, the chemical potential is
significantly overestimated by a few tens of meV due to the
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FIG. 8. Convergence tests carried out on different grids. Results from the
densest grid (80 × 80 × 80) are chosen as benchmarks. The error of each sin-
gle snapshot integral In × n × n is calculated as ln (In×n×n/I80×80×80). Chemi-
cal potentials converge quickly with respect to grid resolution.

lack of large cavities explored during the limited time of MD
simulation.

The method is easily generalizable to multi-component
system, since one can compute the chemical potential of each
species separately and exploit their partial molar property to
obtain the Gibbs free energy of the phase from

∑

iniμi. The
only exception to this simple approach occurs when there are
large electrostatic interactions that give rise to sharply vary-
ing free energies as a function of deviations from perfect stoi-
chiometry, so that finite size effects are highly non-negligible.
In this case, one way to avoid this issue is to insert multiple
particles simultaneously to preserve stoichiometry, in which
case the method would directly provide the Gibbs free energy
of the phase, at the expense of higher computational require-
ments because the integrals become 3 ×

∑m
i=1 ni dimensional

(for An1Bn2 · · · Mnm
).

In this article, we demonstrate that it is computationally
practical to calculate chemical potential of a liquid directly
from first principles using a modification of Widom’s particle
insertion method. This, to the authors’ knowledge, is the first
attempt to evaluate the chemical potential of a liquid without
the help of any high-quality empirical potentials, which are
available only for a limited number and type of materials. This
distinct advantage is crucial when such empirical potentials
are difficult to obtain, e.g., for multi-component materials. An
algorithm is proposed to efficiently find and study cavities. It
reduces the computational cost drastically, e.g., by more than
three orders of magnitude for the example we study, relative
to Widom’s original method. After finite-size correction, the
calculated chemical potential of liquid copper at 2000 K is
−1.347 eV, only 5 meV lower than the corresponding ex-
perimental value. This result is used to further map out the
chemical potential curve of liquid-state copper as a function
of temperature at zero pressure, by the thermodynamic inte-
gration method. Finally, a melting point is predicted by locat-
ing the intersection of the calculated chemical potential curves
of the solid and of the liquid. The error in calculated melting
temperature is 80 K.
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