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Abstract

A new tracing algorithm is described that supports haptic
rendering of NURBS surfaces without the use of any
intermediate representation. By using this tracing algorithm
in conjunction with algorithms for surface proximity testing
and surface transitions, a complete haptic rendering system
for sculptured models has been developed. The system
links an advanced CAD modeling system with a Sarcos
force-reflecting exo-skeleton arm. A method for measuring
the quality of the tracking component of the haptic rendering
separately from the haptic device and force computation is
also described.

CR Descriptors: H.1.2 [Models and Principles]
User/Machine Systems; C.3 [Special-Purpose and
Application-Based Systems] Real-Time Systems; I.3.7
[Computer Graphics] Three-Dimensional Graphics and Re-
alism; I.6.4 [Simulation and Modeling] Types of Simulation
- Distributed; F.2.2 [Analysis of Algorithms and Problem
Complexity] Nonnumerical Algorithms and Problems; J.6
[Computer-Aided Engineering].

Additional Keywords: haptic, force feedback, NURBS
evaluation, virtual environment, closest point calculation,
distributed simulation.

1 Introduction

Current modeling systems offer limited feedback to a model
designer. One promising approach for increasing the infor-
mation available to a designer is haptic rendering. Haptic
rendering is the process of simulating the forces generated
by contact with a virtual model so that a person’s sense of
touch can be used to interrogate the model. In conjunction
with visual feedback, haptic rendering can facilitate under-
standing of complex models and add a sense of realism to
interactive systems [10].

In CAD/CAM design, parametric surfaces have become
the surface representation of choice. Parametric surfaces
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Figure 1: A NURBS surface showing the important state
variables for direct haptic rendering.

such as NURBS have the advantage of compact represen-
tation, higher order continuity, and exact computation of
surface normals. These properties are all useful in complex,
realistic virtual environments [22]. Current haptic systems
tend to use polygonal representations to calculate appropri-
ate haptic responses [21], making correct conversion from
parametric CAD models a non-trivial task.

We introduce direct haptic rendering of sculptured mod-
els. In order to support direct haptic rendering, we have de-
veloped and tested algorithms for surface proximity testing,
fast updates to local closest point on a surface, and smooth
transitions between surface patches. These algorithms are
tested on a complete system that integrates Alpha 1, a re-
search modeling package [18, 19], with a Sarcos Dextrous
Arm Master [12]. We compare the results of these algorithms
with an intermediate representation and demonstrate results
of testing the algorithms against theoretically optimal meth-
ods.

2 Background

Haptic rendering systems generate forces that are applied to
a person’s hand or arm to create a sense of contact with a
virtual model. The counterforce needed to prevent penetra-
tion into a virtual surface is called the restoring force, and
is calculated using a wall model. Wall models often have
a restoring force proportional [6] to the penetration depth
and in the direction of the surface normal (Figure 1). The
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wall model used in our experiments is a nonlinear damping
model developed by Marhefka and Orin [13]. The wall model
is defined as Fv = kpx

n+ kvx
nx′ where x is the penetration

depth, x′ is the velocity of the end-effector, kp is the spring
coefficient, and kv is the damping coefficient. For the Sarcos
arm we found n = 1

2
to be effective.

The penetration depth and surface normal to use in the
wall model are found by tracking the closest point on the sur-
face to the end-effector. The surface normal at the closest
point provides the normal to use in the wall model. The pen-
etration depth is calculated by projecting the end-effector
onto the surface normal, with positive penetration defined
as into the surface. In order to maintain the stiffness of
the virtual surface, the force servo loop must calculate the
closest point and response forces at several hundred Hz [15].
This fast update rate limits the complexity of algorithms
that can be used to find the closest point on the surface.

In order to maintain fast force servo rates, current haptic
rendering systems tend to use simple intermediate surface
representations instead of sculptured surfaces in their force
calculations. Adachi [1] and Mark [14] advocate the use
of a sequence of relatively slowly changing planar approxi-
mations as an intermediate representation, since the closest
point can be quickly computed with planes. However, pla-
nar representations are fundamentally limited when trying
to approximate surfaces with high curvature [14]. In addi-
tion, the intermediate planar approximations are sampled
in a time-dependent fashion, not by position, so that the
surface “felt” by a user is not necessarily repeatable during
multiple tracings.

We directly track the closest point on the parametric sur-
face. Finding the closest point on a surface S to a point
E is a fundamental query for a surface representation. A
common approach [16] is to solve for the roots of

(S − E) × (Su × Sv) = 0. (1)

The roots of Eq. 1 can be found through iterative Newton
methods [17], with various means of guaranteeing a glob-
ally correct solution. However, the system may involve high
degree polynomials, making the solution difficult.

The CAD community has developed methods of tracking
points on surfaces during intersection operations [11]. Many
of these methods find the Euclidean closest point directly,
requiring surface-plane intersections to be computed. These
methods are too slow for haptic environments. Barnhill de-
veloped a parametric marching algorithm [3] for closest point
tracking that minimizes error to a first order surface approx-
imation. Snyder [22] uses Newton iteration to improve an
approximation to the closest point on a surface during colli-
sion detection, as does Baraff [2].

3 System Overview

A useful computation model to come out of virtual environ-
ment research is decoupling the simulation and interactive
processes. In haptic systems, this model has been applied to
decouple the simulation and haptic processes [1, 14]. This
decoupling allows the haptic loop to run on a real-time sys-
tem, while the more computationally intensive simulation
loop can run on a standard workstation. In our system (Fig-
ure 2), the simulation process runs on an SGI workstation
and is used for visual display and global computations. The
haptic process runs on Motorola 68040 microprocessors un-
der the VxWorks real-time kernel and is used for haptic dis-
play and local computations. The two sides communicate

over Ethernet using TCP/IP and UDP packets [9].
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Figure 2: The system is divided into three portions: opera-
tor, micros, and workstation.

In haptic research, this system setup may vary in the type
of workstation on the simulation side and with PC’s often
substituted on the haptic side. These systems share several
characteristics. There is usually limited bandwidth between
the simulation and haptic processes, the haptic process usu-
ally has limited memory (at least in relation to the simula-
tion side) and the computational capacity of the simulation
process is usually far superior to that of the haptic process.
These constraints influence system design.

3.1 Haptic Process

With limited memory and computational power, the haptic
process must be restricted to only those computations that
must complete for each iteration of the force loop and to
data that is necessary to perform those computations. To
calculate the restoring force for the haptic display three main
computations must take place within the haptic process: sur-
face tracking, contact, and transitioning. The restoring force
is then communicated to the Sarcos Dextrous Arm Master
(Figure 3), an advanced hydraulic force-reflecting exoskele-
ton.

The local geometric environment is stored within the hap-
tic process. This environment consists of all surfaces that
are “active” (currently being tracked, see Section 4.2) and
other surfaces that were active but since have become in-
active. The contents of this environment are regulated by
the simulation side since determining the contents involves
global computations such as surface proximity. The re-
stricted memory on the micros and the need for multiple
surfaces to be cached within the haptic process again points
out an advantage of a compact parametric surface represen-
tation over faceted models.

3.2 Simulation Process

The simulation process runs within the Alpha 1 CAD mod-
eling environment. Alpha 1 is a research modeling pack-
age that aids in the creation, manipulation and display of
NURBS models. A high-powered graphics engine, such as
an SGI workstation, is required to both maintain high visual
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Figure 3: The Sarcos Dextrous Arm Master.

frame rates and perform the global computations necessary
for the haptic simulation.

Maintaining the local environment of the haptic process
is the main function of the simulation process. Using the
arm location, the workstation does surface proximity checks
to determine nearby surfaces (see Section 4.1).

When a surface is deemed “nearby” for the first time, the
surface’s control points, knot vectors, and approximate clos-
est point are sent to the haptic process along with a unique
surface number. Subsequent encounters with the surface re-
sult in a small activation record being sent. Conversely, a de-
activation record is sent when proximity testing determines
a surface is no longer near the arm.

3.3 Communications

The haptic process and simulation process are in constant
communication over an Ethernet network (Figure 2). The
simulation process must be continually updated with the
current position of the arm in order to maintain synchroniza-
tion between haptic and visual display as well as to perform
correct global computations. The haptic process must have
its local environment updated continually so that appropri-
ate forces are calculated.

The arm controller continually sends filtered position in-
formation to the workstation via UDP packets. UDP is ac-
ceptable for this channel since the haptic loop runs much
faster than the simulation process, and sends several pack-
ets per simulation time frame.

Transmissions to the haptic process are received by a
dedicated networking board. The small size of activa-
tion/deactivation packets reduces network overhead. The
surface patch information and activation/deactivation pack-
ets are sent by TCP/IP, since they must be guaranteed to
arrive.

4 Direct Haptic Rendering

We break the problem of rendering sculptured surfaces into
several phases. Surface proximity testing determines when
the arm is near enough to a surface to potentially contact
it. When a surface becomes proximal it is made active and
the closest point on the surface is tracked along with arm
movement. Contact occurs as the arm penetrates into the
surface. Tracing is the result of lateral motion during con-
tact, and the closest point must continue to be tracked in
the haptic loop in order to compute restoring forces that
create an accurate sense of touch. Transitions occur when
tracking a point across surface patch boundaries, and must
be determined in the haptic loop.

4.1 Surface Proximity Testing

Surface proximity testing approximates the distance from
the end-effector point, E, to the nearest point on a surface,
S. This information is used to maintain the proper local
geometry within the haptic process. Since this testing must
occur for all the models in the environment, it is done within
the simulation process on the workstation.

A rough check for surface proximity is done using bound-
ing boxes around each surface. The distance from E to a
bounding box is a trivial computation. The majority of the
surfaces in the environment are too distant to warrant a
better distance approximation.

For the remaining surfaces, we use a method [22] we refer
to as “nodal mapping” to find a first order approximation to
the closest point on the surface (Figure 4). The end-effector
point is projected onto the control mesh of the NURBS sur-
face resulting in a point Q. Each vertex of the control mesh
has an associated (u,v) parametric value that is called the
“node” [5]. An approximate (u,v) for Q is determined by
interpolating between node values using the barycentric co-
ordinates of Q. The surface is evaluated at the interpolated
(u,v) point and the distance between S(u, v) and E is used
as the surface proximity distance.

Figure 4: The projected distance along the control polygon
is used as the parametric distance between associated nodes.

4.2 Tracking Phase

When a surface becomes active, the approximate closest
point sent with the surface is used to initialize a local closest
point tracking method (Figure 5a). Each active surface has
its local closest point tracked until it is deactivated. This
tracking method works directly on the parametric surface
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and is fast enough to track at force servo rates, making it
suitable for direct haptic rendering of a surface.

For simplicity, we present the direct parametric tracing
(DPT) method on a B-spline curve rather than a surface.
Appendix A defines basic B-spline curves and surfaces and
some of their properties. The DPT method uses the previous
point on the curve γ(u), the tangent vector at γ(u), γ′(u),
and the current end-effector location, E, to determine a new
approximate closest point on the curve (Figure 5b).

(a) (b)

(c) (d)

Figure 5: (a) Initial state. (b) End-effector moves. (c) Pro-
jection of position onto surface tangent plane. (d) New sur-
face point and tangent plane found via parametric projec-
tion.

The velocity curve, γ′(u), relates changes in position along
the curve in Euclidean space to changes in position in para-
metric space (Eq. 2).

γ′(u) =
dγ

du
≈

∆γ

∆u
. (2)

Given an Euclidean movement along γ, the corresponding
movement in the parametric space of the curve is calculated
as

|∆u| ≈
‖∆γ‖

‖γ′(u)‖
. (3)

In order to use Eq. 3 as a closest point tracking method,
movement of the end-effector needs to be related to move-
ment of the closest point on the curve. The exact ∆γ, corre-
sponding to movement of the closest point along the curve,
clearly involves finding the desired new closest point. In-
stead of finding an exact ∆γ, a linear approximation to the
curve, the tangent γ′(u), is used to compute an approximate
∆γ. The movement of the end-effector can now be related
to movement of the closest point along the curve by project-
ing the offset vector, ψ, formed by subtracting γ(u) from E,
onto the curve tangent vector (Figure 5c). Thus,

∆γ ≈
〈 ψ , γ′(u) 〉
‖γ′(u)‖2

γ′(u). (4)

The equation for the velocity of a B-spline curve is derived
in detail in Appendix B. The general form of the equation
is given by,

γ′(u) = (k − 1)

n∑
i=1

(Pi − Pi−1)Bi,k−1(u)

ui+k−1 − ui
. (5)

Eq. 5 can be simplified greatly if the curve is refined with
k − 1 knots at index i∗ with the value u∗. The resulting
simplified equation is

γ′(u∗) =
(k − 1)

ui∗+k − ui∗+1
(Pi∗+1 − Pi∗). (6)

Since we wish to track points that are actually on the
curve, Eq. 3 is used to convert back into parametric space.
The key to efficient computation of ∆u is Eq. 6. The control
polygon through γ(u∗) lies in the tangent to the curve, and
the parametric velocity is calculated using only the control
polygon, knot vector, and curve order.

Using this simple relation and the linear equation for ∆γ
(Eq. 4), Eq. 3 can be expanded into

|∆u| ≈
‖∆γ‖

‖γ′(u∗)‖
≈

∣∣∣∣ 〈 ψ , γ′(u∗) 〉‖γ′(u∗)‖2

∣∣∣∣ . (7)

The sign of ∆u is determined by the sign of the projection
in Eq. 4. This is directly related to the dot product in the
numerator of Eq. 7. Since the numerator is the only term in
Eq. 7 that is signed, the absolute value signs can be removed.
The constant term representing the parametric speed can be
factored out leaving the result,

∆u ≈
〈 ψ , (Pi∗+1 − Pi∗) 〉

‖Pi∗+1 − Pi∗‖2

(
ui∗+k − ui∗+1

k − 1

)
. (8)

The new curve location, γ(u∗ + ∆u), is a good approx-
imation to the closest point to E. The new closest point
is evaluated through multiple knot insertions at u∗ + ∆u,
which maintains the conditions needed to use Eq. 8 at the
next time step (Figure 5d).

Essentially, we make a first order approximation of the
closest point movement in Euclidean space with the tan-
gent projection. The closest point movement is converted
into parametric movement through a first order approxima-
tion to the parametric velocity at the previous closest point.
The new closest point is then converted back into Euclidean
space through curve refinement and evaluation. For small
step sizes and penetration depths, this provides an excellent
approximation.

For surfaces, the method is essentially the same, although
the projection step now requires projection onto the tangent
plane, S′(u, v), of the surface. Barycentric coordinates are
used to derive ∆u and ∆v. Our implementation of the DPT
method, when used to trace a single surface, runs at 1400Hz
on the Motorola 68040 processor that is used in the haptic
process. As a basis for comparison of processor rates, on a
SGI workstation with a R4400 processor the DPT method
runs at 9000Hz.

4.3 Contact and Tracing

Contact is initiated when the penetration depth of the clos-
est active surface becomes larger than zero. The penetration
depth is calculated by projecting the arm location onto the
surface normal. In our system, surface normals point out of
a model so the negation of the projection results in a pos-
itive penetration depth when the end-effector is within the
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model. When a surface has been contacted it is considered
“current”.

During contact, the current surface’s local closest point,
C∗, is updated as during the tracking phase. However, the
remaining active surface’s have their local closest points, Ci,
updated using C∗ in the tracking algorithm instead of E.
This is to allow for efficient surface transitioning calculations
and is covered in more detail in Section 4.4.

Once a surface has become current it remains current until
a transition either off the model or onto an adjacent surface
occurs. [23] states several problems with methods that do
not exhibit this characteristic. Among these problems are
pushing through a model, force discontinuities, and inability
to generate sufficient restoring forces due to lack of penetra-
tion depth.

All three of these problems are illustrated in Figure 6.
The model in this figure is a narrow rectangle constructed
from multiple surfaces. Figure 6a shows the end-effector
entering the model through surface γ1, which results in C∗

being established as the current local closest point. The end-
effector then continues to move into the model resulting in
one of two possible new configurations.

(a) (b)

Figure 6: (a) Contact established. (b) Use of global closest
point would accelerate the end-effector through the model.

Our method holds γ1 as the current surface, therefore C∗

stays on that surface resulting in a restoring force that is
larger in magnitude but in the same direction as the previ-
ous iteration (Figure 6b). However, if a global closest point,
G, was used then a force smaller in magnitude and oppo-
site in direction than that of the previous iteration would
result(Figure 6b). This clearly is not the characteristic one
would want as the end-effector is able to push through the
surface, the force becomes discontinuous, and the penetra-
tion depth does not grow high enough to generate a sufficient
restoring force.

Generating a discontinuous force is not only possible when
pushing through an object, it is possible any time the global
closest point differs from the local closest point. Consider
the case in Figure 7. In this example, contact has been es-
tablished with γ1 resulting in the given C∗ (Figure 7a). The
end-effector then moves to a position that results in a G that
is not equal to C∗ (Figure 7b). Our system would continue
to generate restoring forces toward γ1, but a system that
uses G would end up pushing the end-effector in a direction
that it is already traveling, accelerating the end-effector off
the surface.

Another reason for using a current surface and its local
closest point instead of G is the ability to trace out sharp
edges (Figure 8). Consider a configuration where the end-
effector has established contact with a model as in Figure 8a.

(a) (b)

Figure 7: (a) Contact established. (b) Use of global closest
point would cause a slip to be induced off the model.

The end-effector then moves out towards the edge (Figure
8b). C∗ rests out near the edge of γ1 while G not only is on
γ2 but has a negative penetration depth. This results in a
zero restoring force, effectively portraying falling off an edge
that is not present in the model. Our method would use
C∗ until the end-effector moved out past the edge of γ1 and
then transition off the edge, reentering free-flight.

(a) (b)

Figure 8: (a) Contact established. (b) Use of the global
closest point would induce an artificial edge.

4.4 Transitions

Most sculptured models consist of multiple surfaces. It is
necessary for the tracing algorithm to transition from one
surface and onto another if the end-effector traces out such a
path. This computation directly affects the resulting closest
point, surface normal and penetration depth and therefore
must be performed in the haptic process.

There are three main stages to the transitioning prob-
lem: edge detection, selection of an appropriate surface onto
which to transition, and the calculation of an appropriate
normal. One special form of transitioning is that of tran-
sitioning off the current surface and into free-flight. This
type of transitioning is the opposite of the contact problem.
If the penetration depth becomes negative then the current
surface is returned to active status and tracking returns to
nontracing mode (i.e. all active surfaces tracked from E).

All remaining forms of transitioning occur at an edge.
Detecting an edge crossing on the current surface by C∗ in
Euclidean space would be a difficult problem. This problem
would involve determining when a three-space point, C∗,
crosses from one side of a three-space curve onto the other
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side, the curve being the extraction of the iso-curve along the
boundary of the surface. However, this problem is greatly
simplified since the surface has a parametric representation.
Furthermore, the point C∗ also has a parametric value on the
surface. Edge detection is then reduced to detecting when
the parametric value of C∗, (u, v), is on the boundary of the
parametric domain (Figure 9). The domain of a B-spline
surface is defined as (uku−1 · · ·um+1, vkv−1 · · · vn+1).

Figure 9: Edge detection performed in parametric domain.

Once contact with an edge has been confirmed, the next
step is to determine the appropriate surface onto which to
transition. Each of the active surfaces is tracked using C∗

instead of E. Each Ci is therefore an approximation to the
closest point on neighboring surfaces to C∗. When C∗ lies
an edge, there will be a corresponding Cj on the adjacent
surface that equals (within some numerical epsilon) C∗. This
surface is made current and the previous current surface is
returned to active status. The tracking algorithm is applied
to the new current surface using E so that Cj will represent
the local closest point to E and can therefore be referred to
as C∗.

If the new C∗ is not on an edge, then the normal on the
new current surface at C∗ is used in the penetration depth
and force calculations. If it is still on the edge special care
must be taken in choosing the normal. Consider Figure 10a.
If the point E lies in either shaded area then C∗ will be
on the edge between γ1 and γ2. If the normal for γ1, n1,
is chosen and E is within the lower shaded area, a positive
penetration depth would be calculated. But E is outside
the model so this would be an incorrect answer. Similarly,
if E is within the shaded area at the top and n2, the normal
from γ2, is chosen, an incorrect penetration depth would be
computed. Figure 10b illustrates the opposite case. In this
figure if E lies within one of the shaded areas a negative
penetration depth can be computed if the incorrect normal
is chosen.

To solve this special case, and still keep the algorithm as
computationally simple as possible, a new normal is com-
puted when a transition results in a new C∗ that lies on an
edge. This new normal, N , is the normalized sum of n1 and
n2 (Figure 10). This resulting normal solves the problem
but also induces the side effect of beveling (Figure 11a) the
interior of such trouble areas. Another choice for the normal
would be a vector pointing along a line from E to C∗ that is
directed to be out of the surface. This normal is more diffi-
cult to compute and results in the side effect of the interior
being rounded (Figure 11b). If penetration depth is kept
small, neither side effect would be noticeable. Therefore,
the choice of the computationally more efficient approach of
normal summation was made.

This transitioning algorithm allows models constructed
from multiple surfaces to be traced. It also allows these
surfaces to be aligned in any fashion, as long as the edges

(a) (b)

Figure 10: The choice of the normal when on an edge re-
quires special care. Notice that in both (a) and (b) the
normal N results in the correct classification of the shaded
areas.

(a) (b)

Figure 11: The choice for the new normal N results in two
different side effects: (a) beveling and (b) rounding.

of the surfaces are adjacent. This means that a patchwork
of dissimilar-sized surfaces can be used instead of surfaces
that would have to share an entire edge. No intermediate
iteration is necessary such as in [23] to solve special cases.
However, there are pathological cases in which the algorithm
will not return the best result. One such case would be a
model that contains surfaces smaller that the distance the
end-effector can travel in a single cycle. Transitioning would
need to take place across these surfaces instead of onto them
so the algorithm would fall behind. However, even under
these circumstances the algorithm is designed to correct it-
self within a small number of cycles. Furthermore, since the
algorithm runs at high cycle rates the erroneous results occur
only briefly in time, most likely passing without notice.

5 Intermediate Representation

To help evaluate the quality of the direct parametric trac-
ing method, we also implemented an intermediate geometry
representation to use in the haptic loop. The intermedi-
ate representation chosen is a mesh of points and associated
normals calculated by refinement techniques [4, 20]. The
haptic loop determines arm penetration depth by projecting
the arm location onto the closest mesh point’s normal. The
point normal is used to determine the direction of the restor-
ing force. This model is equivalent to a set of disconnected
planar facets whose edges are determined by the Voronoi re-
gions of the point set. In our tests, we used a mesh of 12
by 12 points and updated the mesh at 10Hz. This update

6
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rate is comparable to that used in other haptic work [1][14],
and the representation allows for curvature approximation,
while simple intermediate planar representation do not.

6 Results

We tested the quality of the direct parametric tracing in two
ways. Using the Sarcos arm, we traced a number of virtual
models with both the direct parametric tracing method and
the point mesh intermediate representation (Figure 12). In
addition, simulations of a surface tracing were run and com-
pared to optimal global methods.

Figure 12: A goblet is traced by the user (represented as a
small sphere). The goblet model consists of three parametric
surfaces.

6.1 Experimental Results

During a tracing, one measure of the quality of a haptic
rendering is the amount of arm penetration into the surface.
For the same wall model, less penetration indicates better
surface normal and penetration depth calculation.

We tested the direct haptic rendering method on several
models. The models filled the usable workspace, about 1m3,
of the Sarcos arm. The force servo loop ran at 330Hz for the
mesh method and at 250Hz for the multiple surface goblet
using the DPT method.

Sample Average

Model Method Points Depth (cm)

Flat mesh 832 1.852
DPT 1450 0.837

Bumpy mesh 699 1.515
DPT 2030 0.661

Cylinder mesh 2541 1.787
DPT 694 0.629

Goblet DPT 1125 0.336

Table 1: Average penetration depth for mesh vs. direct
parametric tracing of different models. Sample points is the
number of distinct contact evaluations.

Table 1 shows that the average penetration depth for the
parametric method was 1/3 to 1/2 the penetration depth of

the point mesh method. There is a non-intuitive relation-
ship in the results between penetration depth and model
complexity, with smaller penetration depths produced by
the more complex models. During the testing process, the
person using the Sarcos arm tested the limits of the force re-
sponse by punching and pushing as hard as possible against
the simpler virtual models, skewing the collected penetration
depths.

6.2 Simulation Results

In order to separate out error introduced by limitations
in the Sarcos Arm and in the wall model, we also ran a
number of simulated tracings on a bumpy surface. The di-
rect parametric tracing method was compared to a hybrid
symbolic/numeric solver [8] for global closest point on sur-
face. The tracing path was generated by creating a non-
isoparametric offset curve from the surface and evaluating
the curve at fixed parametric steps. Figure 13 shows the
difference in penetration depth found using the direct para-
metric tracing method with that found using the optimal
solution.

Figure 13: Average penetration depth error vs. trace curve
offset depth. Each line represents a different sampling of the
trace curve, with a higher sampling implying a smaller arm
movement.

Note that the method was tested under a wide range of
conditions. The largest offset curve depth corresponds to
a tracking distance of 20cm and the largest step size (50
samples) corresponds to a Euclidean movement of roughly
4cm between each sample. Even under these extreme (and
unlikely to be encountered) conditions, the algorithm per-
formed reasonably well. This graceful degradation shows
the algorithm has time-critical qualities [7], a useful prop-
erty in real-time systems. In more typical cases, with small
penetration and small step sizes, the penetration error was
below our numerical precision and the difference in surface
normals was in the hundredths of a degree (Table 2).

The Euclidean distance error (Table 2) shows that under
the best conditions we measured, the parametric tracing was
capable of resolving the closest point on the surface to within
0.0143cm. This implies that the 4m2 surface would have to
be tessellated into roughly a 7,000 by 7,000 mesh in order
to maintain the same resolution of tracing. Similarly, for
a 2 second trace across the surface, an intermediate planar
representation would have to be updated at 3500Hz.
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Depth (cm)
Error Metric 0.5 1.0 2.0

Penetration(cm) 0.0000 0.0000 0.0000
Normal (degrees) 0.0120 0.0145 0.0209
Parametric (percent) 0.0069 0.0080 0.0104
Euclidean (cm) 0.0143 0.0160 0.0200

Table 2: Error values as compared to an optimal solution
when tracing at a step size of 3mm at three different depths
beneath the surface.

7 Discussion

Intermediate surface representations have been used because
of the difficulty in tracking the closest point on a sculptured
surface. Direct parametric tracing allows fast tracking of an
approximate closest point on a sculptured surface. Haptic
rendering is improved because the DPT method supports ex-
act computation of surface normals as well as higher order
continuity of surface representation. The parametric sur-
faces being rendered have compact representations, allowing
for haptic rendering of complex environments. In addition,
some of the complications of using an intermediate represen-
tation, such as the force discontinuity artifacts mentioned in
[14], do not appear in direct haptic rendering.

8 Future Work

Our goal is to create a haptic environment where complex
models can be manipulated intuitively. In support of this
goal, we need to add several capabilities to this system:

• Trimmed surfaces are common in realistic models.
Transitioning over trimmed edges adds complexity to
the transition phase.

• Moving surfaces are necessary to allow interesting
model manipulation.

• Collision contact and response are difficult to compute,
yet low latency methods need to be developed for real-
istic force response.

• Kinematics and dynamics add a sense of realism to a de-
sign environment. Again, how to deal with complicated
global phenomena with the severe latency requirements
of haptic systems is in need of study.

9 Conclusion

We have demonstrated a powerful new method for haptic
rendering of sculptured models, the direct parametric trac-
ing method. The direct parametric tracing method tracks
the closest point on a surface at rates suitable for inclu-
sion in a haptic controller, and provides excellent results on
sculptured models when compared to simple intermediate
representations. Tracking the closest point on multiple sur-
faces simplifies transitions between the surfaces and reduces
artifacts during surface tracing. In addition, we hope the
introduced method of comparing our algorithm against an
optimal method provides a useful basis of comparison for
future work on closest point tracking algorithms.
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A B-spline curves and surfaces

A B-spline curve, γ(u), of order k is determined by a set of

points, P = {Pi}
n
i=0, its knot vector, u = {ui}

k+n
i=0 , and its

basis functions, B = {Bi,k}
n
i=0. The definition of the curve

is given by,

γ(u) =

n∑
i=0

PiBi,k(u). (9)

The basis functions have a nice recursive form and are
a generalization of the Bernstein/Bezier blending functions.
The definition for the basis functions is given by,

Bi,1(u) =
{

1, ui ≤ u < ui+1

0, otherwise

and for k > 1,

Bi,k(u) =


u−ui

ui+k−1−ui
Bi,k−1(u) +

ui+k−u

ui+k−ui+1
Bi+1,k−1(u), ui < ui+k

0, otherwise

There is more than one way to evaluate a B-spline. The
weighted combination of control points can be computed
through evaluation of the basis functions as in Eq. 9, or
curve refinement may be used [4, 20]. Inserting k − 1 knots
into u with the value u∗ will create a new B-spline with a
control point Pi∗ that is the value of γ(u∗). This point is
called an evaluation point and results because only one basis
function, Bi∗,k , has a value at time u∗. The value of i∗ is
one less than the index of the first new knot of value u∗. The
curve refinement method is computationally efficient.

The tensor product B-spline surface has a similar defini-
tion. The surface S(u, v) with the collection P = {Pi,j} as
it’s control mesh is defined as

S(u, v) =

m∑
i=0

n∑
j=0

Pi,jBj,kv (v)Ni,ku (u), (10)

where ku is the order, u = {ui}
ku+m
i=0 is the knot vector, and

N = {Ni,ku}
m
i=0 are the basis functions for the rows of the

control mesh. Similarly, kv is the order, v = {vj}
kv+n
j=0 is the

knot vector, and B = {Bj,kv }
n
j=0 are the basis functions for

the columns of the control mesh.

B Curve velocity at an evaluation point

In this appendix a compact, computationally efficient equa-
tion for the velocity of a curve at an evaluation point is
derived. The velocity of a B-spline (when it exists) is given
by,

γ′(u) =

n∑
i=0

PiB
′
i,k(u), (11)

where

B′i,k(u) = (k − 1)

[
Bi,k−1(u)

ui+k−1 − ui
−
Bi+1,k−1(u)

ui+k − ui+1

]
.

Expanding Eq. 11 with the definition of B′i,k(u) yields,

γ′(u) = (k− 1)

n∑
i=0

Pi

[
Bi,k−1(u)

ui+k−1 − ui
−
Bi+1,k−1(u)

ui+k − ui+1

]
.

9
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Evaluation of this curve would be far from computation-
ally efficient, therefore we try to eliminate one of the basis
functions. By distributing the summation we get,

γ′(u) = (k − 1)

[
n∑
i=1

PiBi,k−1(u)

ui+k−1 − ui
−

n−1∑
j=0

PjBj+1,k−1(u)

uj+k − uj+1

]
.

Notice that the bounds of the two summations have
changed. This is because the basis function Bi,k−1(u) evalu-
ates to zero at i = 0 and basis functionBj+1,k−1(u) evaluates
to zero at j = n. The two summations bounds can be made
to once again agree by variable substitution. Replacing j in
the second summation with i− 1 the equation becomes,

γ′(u) = (k− 1)

[
n∑
i=1

PiBi,k−1(u)

ui+k−1 − ui
−

n∑
i=1

Pi−1Bi,k−1(u)

ui+k−1 − ui

]
,

and then combining the two summations we get,

γ′(u) = (k − 1)

n∑
i=1

(Pi − Pi−1)Bi,k−1(u)

ui+k−1 − ui
. (12)

Consider now that γ(u) has been refined with k− 1 knots
at index i∗ with the value u∗. Then Pi∗ is an evaluation
point. In Eq. 12, only basis function Bi∗+1,k−1(u) has a
value at time u∗. Noting this we get the equation,

γ′(u∗) =
(k − 1)

ui∗+k − ui∗+1
(Pi∗+1 − Pi∗), (13)

for the velocity of the curve at time u∗. An important point
to notice in Eq. 13 is that the velocity at time u∗ can be
determined by two control points and a scaling factor. This
relates the Euclidean tangent direction to the parametric
speed.

Therefore, refining the original curve with k − 1 knots
of value u∗ yields both the evaluation point, Pi∗ , and the
tangent vector, γ′(u∗).
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