
Direct imaging of topological edge states in
cold-atom systems
Nathan Goldmana,1, Jean Dalibardb,c, Alexandre Dauphina,d, Fabrice Gerbierb, Maciej Lewensteine,f, Peter Zollerg,h,
and Ian B. Spielmani

aCenter for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, B-1050 Brussels, Belgium; bLaboratoire Kastler Brossel, Centre National
de la Recherche Scientifique, Ecole Normale Supérieure, Université Pierre et Marie Curie, 75005 Paris, France; cCollège de France, 75005 Paris, France;
dDepartamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain; eICFO-Institut de Ciències Fotòniques, 08860 Barcelona, Spain;
fICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain; gInstitute for Quantum Optics and Quantum Information, Austrian Academy
of Sciences, A-6020 Innsbruck, Austria; hInstitute for Theoretical Physics, Innsbruck University, A-6020 Innsbruck, Austria; and iJoint Quantum Institute,
National Institute of Standards and Technology and University of Maryland, Gaithersburg, MD 20899

Edited by Allan H. MacDonald, University of Texas at Austin, Austin, TX, and approved March 7, 2013 (received for review January 4, 2013)

Detecting topological order in cold-atom experiments is an ongoing
challenge, the resolution of which offers novel perspectives on topo-
logical matter. In material systems, unambiguous signatures of to-
pological order exist for topological insulators and quantum Hall
devices. In quantum Hall systems, the quantized conductivity
and the associated robust propagating edge modes—guaranteed
by the existence of nontrivial topological invariants—have been
observed through transport and spectroscopy measurements. Here,
we show that optical-lattice-based experiments can be tailored to
directly visualize the propagation of topological edge modes. Our
method is rooted in the unique capability for initially shaping the
atomic gas and imaging its time evolution after suddenly removing
the shaping potentials. Our scheme, applicable to an assortment of
atomic topological phases, provides a method for imaging the
dynamics of topological edgemodes, directly revealing their angular
velocity and spin structure.

optical lattices | degenerate atomic gases | quantum Hall effects |
chiral edge states

The integer quantum Hall (QH) effect revolutionized our un-
derstanding of quantummatter, revealing the existence of exotic

phases not described by the standard theory of phase transitions
(1, 2). In this phenomenon, the Hall conductivity is quantized,
σH = ðe2=hÞ  ν—where e is the electron charge, h is Planck’s con-
stant and ν is an integer—whenever the Fermi energy resides in an
energy gap. The integers ν are related to topological invariants—
Chern numbers—that are associated with the bulk energy bands (1,
3, 4). Their topological origin guarantees that the Chern numbers
are constant as long as the bulk gaps remain open, explaining the
signature plateaus in the Hall resistivity, present when external
parameters, such as magnetic fields, are varied. Moreover, a holo-
graphic principle stipulates that a topologically ordered bulk gap,
with topological invariant ν, necessarily hosts ν propagating modes
localized on the sample’s edge (5). These topological edge states
are chiral—their motion has a well-defined orientation—inhibiting
scattering processes in the presence of disorder.
In condensed matter physics, direct observations of edge states

remain relatively rare. A first signature was obtained from mag-
netoplasmons created by pulsed voltages (6). Other evidence
arises from edge transport in engineered Aharonov–Bohm inter-
ferometers with QH systems (7, 8). By contrast, the “routinely
used” spectroscopic reconstruction of mid-gap states (1) is con-
sistent with the expected topological band structure but does not
prove their chiral nature.
Cold atoms trapped in optical lattices and subjected to synthetic

gauge fields (9, 10) are an ideal platform for realizing topological
insulating phases. Making topology manifest in experiments,
however, is a fundamental challenge. In this context, transport
experiments are conceivable (11) but technically demanding.
Existing proposals for measuring topological invariants (12–16)
have experimental drawbacks and can only be applied to very
specific configurations. Likewise, detecting topological edge states
(17–22), for example through light-scattering methods (23),

requires complicated manipulations to separate the small
edge-state signal from the bulk background (20, 24).
Here, we introduce a simple method to directly visualize the

propagation of topological edge modes, by studying the time
evolution of an atomic QH system after suddenly releasing con-
straining walls (Fig. 1). We show that the movement of the chiral
edge states, encircling the initially vacant regions, is directly
visible in the atomic density. This reveals the edge states’ angular
velocity and provides an unambiguous signature of chiral edge
modes in the atomic system (Fig. 1). Our method is straight-
forward and insensitive to experimental imperfections: It only
relies on a large initial occupancy of edge states. Crucially, our
method requires that the edge states contribution to the density
remains spatially separated from the bulk, which can be realized
by populating a dispersionless bulk band with a nonzero Chern
number. We present several detection techniques, applicable to
both flat and dispersive bands, that demonstrate the universal
applicability to atomic systems with propagating edge modes.
We consider a two-dimensional optical lattice filled with non-

interacting fermions, subjected to a uniform synthetic magnetic flux
Φ (25, 26), and confined by a circular potential, VconfðrÞ=V0ðr=r0Þγ .
In the experiment, VconfðrÞ can be made nearly arbitrarily sharp
ðγ→∞Þ (27, 28); this configuration is of particular interest for our
scheme, as demonstrated below. The resulting system realizes the
Hofstadter model (29) with second-quantized Hamiltonian

Ĥ = − J
X

m;n

ĉ†m+1;nĉm;n + ei2πΦmĉ†m;n+1ĉm;n + h:c:

+
X

m;n

VconfðrÞ  ĉ†m;nĉm;n: [1]

ĉ†m;n describes the creation of a fermion at lattice site x=a= ðm; nÞ,
where m; n are integers; J is the tunneling amplitude; and we take
the lattice period a as our unit of length. This model has a topo-
logical band structure (1, 4): When Φ= p=q∈Q, the bulk energy
spectrum splits into q subbands (29), each associated with a nonzero
Chern number (4). This guarantees the existence of robust edge
states in the bulk energy gaps (5). These edge states are chiral in
the sense that they propagate along the Fermi radius RF (i.e., the
edge of the atomic cloud delimited by the confining potential Vconf)
with a definite orientation of propagation. It is convenient to rep-
resent such nontrivial spectra by diagonalizing the Hamiltonian
Eq. 1 on a cylindrical geometry (5) (Fig. 2). This picture shows a
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clear separation of the bulk and edge states dispersions that survive
in the experimental circular geometry produced by Vconf (20,
24, 30). In the following, we specifically study the configurations
Φ= 1=3 and Φ= 1=5 and set the Fermi energy EF = − 1:5J inside
the lowest bulk energy gap (Fig. 2). In both these situations, the
lowest energy band is associated with the Chern number ν= − 1,
which guarantees the occupancy of a single edge mode with same
chirality signðνÞ= ð−Þ. These two configurations differ significantly
in that the occupied bulk band is nearly flat (dispersionless) in the
case Φ= 1=5, while it is dispersive for Φ= 1=3 (Fig. 2).
Our scheme (i) demonstrates the existence of propagating

modes that are localized close to the Fermi radius and (ii) iden-
tifies their chirality and angular velocity _θ. To achieve this goal, we
consider a geometry that constrains the QH system within two
regions of the trap, as sketched in Fig. 1, resembling a bat in flight.
This initial “bat” geometry is shaped by a pair of sharp potential
walls Vhole =Vhole1 +Vhole2 defined by ðx± r0=2Þ2 + ðy= ffiffiffi

2
p Þ2 < r20=4,

creating holes in the density distribution (SI Appendix). In the bat
geometry, we set the Fermi energy within the lowest bulk gap
EF = − 1:5J and suddenly remove Vhole at time t= 0. We then
study the dynamics of the atomic density with all other parameters
unchanged. The bat shape is optimized for visualizing the time-
evolving chiral edge states in the density ρðx; tÞ for t> 0 (Fig. 1B).
In the following, we discuss how this “wall-removal” strategy can
be exploited to reveal the edge states properties, as they pro-
gressively encircle the initially empty regions in a chiral manner.

Results
Time-Evolving Density for Dispersive Systems. Fig. 3A shows the
time-evolving density distribution ρðx; tÞ forΦ= 1=3. This example
highlights the importance of the bulk band structure, because it
demonstrates the drawbacks encountered when preparing a sys-
tem with dispersive bulk bands (Fig. 2A). The time evolution in
Fig. 3A illustrates two main effects: (i) the progressive encircling
of the holes by particles at the system’s radial-edge (with locali-
zation length ∼ a) and (ii) the undesired and rapid filling of the
holes by bulk states (Fig. 1B). Once t≈ 10− 20Z=J, the atomic
cloud’s initial bat shape has become cyclonic, already indicating
the presence of chiral edge states. To provide further insight, we
separately calculated the contribution stemming from the initially
populated edge states, ρedgeðx; tÞ (Materials and Methods). In the
corresponding Fig. 3B, we observe that the edge states, which
propagated along the edges delimited by the bat potential at t< 0,
become localized along the circular edge at r=RF , and that they

follow a “chiral” motion. These edge states remain localized on
the edge for very long times and only slightly disperse into the bulk
of the system, as can be anticipated from the small wavefunction
overlap between edge and bulk states. Fig. 3A emphasizes the
problematic (nonchiral) filling of the holes by the many dispersive
bulk states, which strongly inhibits the detection of the edge states
in experiments. The speed at which this filling occurs is to be
compared with the circular motion of the edge states, which can be
estimated from the group velocities v= ð1=ZÞ∂E=∂k associated
with the bulk and edge states (Fig. 2A). Additional interference
takes place within the system, leading to small but visible patterns
in the density. Fig. 3B shows that these patterns mainly originate
from interferences between bulk states.

square optical lattice

external confinement

+ synthetic uniform 
   magnetic flux
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Equilibrium at t=0 (with walls) After walls removalB

Fig. 1. Experimental scheme and general strategy.
(A) Trapped cold atomic fermions move on a square
optical lattice in the presence of a synthetic uniform
magnetic flux Φ. Two repulsive potentials, initially
forming holes in the atomic cloud, are suddenly
removed at time t = 0. At all times, atoms are con-
fined by an additional circular potential. We gener-
ally assume that the confining barriers are perfectly
sharp but eventually discuss the case of smoother
potentials. (B) The system is initially prepared in
a quantum Hall phase: Chiral edge states propagate
along the edges determined by the repulsive walls
and the external confinement. After releasing the
walls, the edge states tend to propagate along the
Fermi radius determined by the circular confine-
ment: They encircle the initially vacant regions.
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Fig. 2. Bulk and edge states spectrum: dispersive vs. flat bands. Energy
spectrum Eðky Þ as a function of the quasi-momentum ky for (A) Φ= 1=3 and
(B) Φ= 1=5, obtained by diagonalizing the Hamiltonian Eq. 1 on a finite
cylinder directed along the x direction, with Vconf =0. The projected bulk
bands Eðkx ; ky Þ→EðkyÞ, shown in blue, are separated by large gaps of order
∼ J. The red dispersion branches that are visible within the bulk gaps cor-
respond to propagating modes that are localized on the opposite edges of
the cylinder. When the Fermi energy is set within the first bulk gap, a single
edge mode is populated on each edge of the cylinder (the lowest bulk band
corresponds to the Chern number ν= − 1 for Φ= 1=q). When considering the
circular geometry realized in an experiment ðVconf ≠ 0Þ and setting EF = − 1:5J,
one is guaranteed that a single edge mode will be populated because the
Chern number ν does not rely on the specific geometry used (20, 24, 30). When
Φ= 1=5, the lowest energy band is characterized by the tiny flatness ratio,
f =W=Δ≈ 0:04, where WðΔÞ denotes the first band (gap) width; in this to-
pological quasi-flat band configuration, the populated edge states are
expected to propagate more rapidly than the bulk.
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Flat Topological Bulk Bands. For Φ= 1=5 and EF = − 1:5J, the dis-
persionless (flat) bulk band represented in Fig. 2B is totally filled,
and most of the edge states lying in the first bulk gap are populated.
The corresponding time-evolving density ρðx; tÞ, depicted in Fig.
4A, is radically different than for Φ= 1=3 (Fig. 3A). For Φ= 1=5,
the edge states encircle the initially forbidden regions in a chiral
manner, largely unperturbed by the now motionless bulk, making
them directly visible in in situ images of the cloud. The dis-
persionless nature of the bulk states is further illustrated in Fig. 4C,
which shows the evolution of ρbulkðx; tÞ= ρðx; tÞ− ρedgeðx; tÞ. The
initial bulk states are immobile for times ∼ 30Z=J. In Fig. 4B, the
evolution of the initially populated edge states ρedgeðx; tÞ shows an
interesting behavior: Some edge states with energies close to the
flat bulk band are almost dispersionless and remain localized on
the edges delimited by the bat potential. In contrast, the many edge
states at higher energies are dispersive, encircling the holes in a
clear and chiral manner. The instructive dynamics of the density
ρðx; tÞ, which is due to the clear separation of the edge and bulk
states during the evolution, can also be understood by studying the
population of the single-particle eigenstates (SI Appendix). More-
over, our method is highly robust against perturbations in the
density (or equivalently in the Fermi energy, EF ≈−1:5J + δ), be-
cause it only relies on the occupation of dispersionless bulk states
and sufficiently many edge states. We verified that the edge-state
signal is unambiguous when a high energy (dispersive) band is
initially filled (SI Appendix). Thanks to the topological quasi-flat
band configuration, the edge states propagation can be visualized
on long time scales, without being affected by the bulk dispersion.
For Φ= 1=5 and a typical system size RF ∼ 100a, we find _θ∼
0:01J=Z, which would require a realistic time t∼ 70Z=J to observe
the π=4-rotation undergone by the edge states. We verified that
our results are stable when the spacious ellipsoidal walls are
replaced by small perturbative potentials (SI Appendix). Finally,
the edge/bulk ratio can be further improved by initially confining
the entire atomic cloud to a small region located in the vicinity of
the circular edge (SI Appendix).

Revealing Topological Edge States in Dispersive Systems. We now
describe two methods for isolating the edge-states contribution
ρedge from that of the bulk states, useful for systems with dis-
persive bulk bands. The first method consists in performing two
successive experiments, using the same apparatus and param-
eters, but with opposite fluxes Φ and −Φ. The difference be-
tween the two images δρðx; tÞ= ρðx; t; +ΦÞ− ρðx; t; −ΦÞ lacks
the nonchiral contribution of the bulk states and is simply given

by δρ≈ ρedgeð+ΦÞ− ρedgeð−ΦÞ (Fig. 5). For our bat geometry,
ρedgeð+ΦÞ≈ ρedgeð−ΦÞ when the edge states have undergone a
rotation of θ= π=2. This determines the time t*= π=ð2 _θÞ when the
signal δρðx; t*Þ disappears, giving the angular velocity of the edge
states. This situation is illustrated in Fig. 5 for the Φ= 1=3 “dis-
persive” case, where we find δρðx; t* ≈ 49Z=JÞ≈ 0, in good agree-
ment with the angular velocity _θe ≈ 0:03J=Z of the populated edge
states (20, 24). We verified that slight differences in the filling [e.g.,
EFðΦ+ = + 1=3Þ≈EFðΦ− = − 1=3Þ± 0:1J], for example due to fi-
nite temperature effects between the two successive experiments,
or variations in the flux (e.g., Φ+ = 1=3 and Φ− ≈−Φ+ ± 0:01),
do not significantly affect the signal δρðx; tÞ, highlighting the
robustness of this method against experimental imperfections.
The second method aims to efficiently reduce the bulk disper-

sion by suddenly lowering the potential walls Vhole at t= 0, instead
of removing them completely. This operation can be achieved in
such a way that only the edge states with sufficiently high energies
are allowed to propagate, while leaving the bulk states away from
the holes. This “edge-filter method” can be realized by setting the
Fermi energy within the first bulk gap and then suddenly lowering
the potential Vhole to the value V t>0

hole ∼W at t= 0, where W is the
width of the lowest bulk band. The great efficiency of this method
is presented in SI Appendix for the case Φ= 1=3.

Robustness of the Edge States Against Disorder.We now investigate
the robustness of the edge states motion in the presence of
disorder. This perturbation, which plays a fundamental role in
solid-state systems, can be engineered in optical-lattice setups,
for instance using speckle potentials (31). We study the effects of
disorder by considering a random potential Vrand, with energies
uniformly distributed within the range VrandðxÞ∈ ½−D;D�. The
results are presented in Fig. 6 for the case Φ= 1=5. We find that
the chiral edge states signal remains robust for disorder strengths
D(1:5J ≈Δ, where Δ is the size of the bulk gap. Interestingly, we
can still distinguish a cyclonic cloud—a signature of the edge
states chirality—for values up to D∼ 3J ≈ 2Δ. The immunity of

A

B

x

y

0

50

100

0 50 100 0

0.1

0.2

0.3

0

0.1

0.2

Fig. 3. Evolution of the spatial densities after releasing the walls. (A) The
spatial density ρðx; tÞ, and (B) the contribution of the initially populated
edge states ρedgeðx; tÞ. The chiral motion is a signature of the nontrivial
Chern number ν≠ 0. In all the figures, Φ= 1=3, EF = − 1:5J, and we considered
infinitely sharp circular confinement ðr0 = 27aÞ and ellipsoidal walls Vhole.
The total number of particles is Npart = 210, whereas the number of initially
populated edge states is Nedge ≈ 80.
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Fig. 4. The topological quasi-flat band configuration. (A) The spatial den-
sity ρðx; tÞ, (B) the contribution of the initially populated edge states
ρedgeðx; tÞ, and (C) the contribution of the initially populated bulk states
ρbulkðx; tÞ. In all the figures, Φ= 1=5 and EF = − 1:5J. The total number of
particles is Npart = 146, whereas the number of initially populated edge states
is Nedge ≈ 64. Note the dispersionless nature of the occupied bulk states,
which highly improves the detection of the edge-state signal.
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the chiral edge states against disorder, a hallmark of the QH
effect, could thus be demonstrated using our cold-atom setup.

Gaussian Walls and Smooth Circular Confinements. In the absence of
walls Vhole = 0, the edge states lying in the first bulk gap are
radially localized, with a radius determined by their energy and
the circular confinement. Writing the circular confinement as
VconfðrÞ=V0ðr=r0Þγ , we find that an edge state ϕe with energy ee
is characterized by a localization radius

Re = r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jee − eminj=V0

γ
p

; [2]

where emin is the minimum of the bulk band. This result is illus-
trated in Fig. 7, for r0 = 21a, V0 = J, and γ =∞; 10; 4, where the
wavefunctions amplitudes jϕλðx; yÞj2 are plotted as a function of
the x coordinate, and their corresponding energies eλ. For an
infinitely abrupt trap (27), γ =∞, all the edge states are located
at the constant Fermi radius RF = r0. Therefore, the edge states
contribution to the density ρedge yields a clear circular signal, with
localization length of the order of the lattice spacing a. In con-
trast, for finite γ, the populated edge states are localized on
different radii Re ∈ ½RF − δr;RF�, leading to a broadening of the
edge-state signal ρedge. For the situation illustrated in Fig. 7, this
broadening is of the order δr∼ 5a for γ = 10 and δr∼ 10a for
γ = 4. Let us stress another crucial aspect of these smoothly con-
fined QH systems, which is the fact that the angular velocity _θ of
the chiral edge states, as well as the number Nedge of available
edge states within a bulk gap, highly depend on the potential’s
smoothness γ: The angular velocity is maximized for highly
abrupt confinements ðγ→∞Þ, whereas the number Nedge is larger
for smooth potentials (19, 20, 24, 30). We numerically evaluated
the angular velocity of the edge states (20, 24) for Φ= 1=5 and
r0 = 21a, and we found _θe ≈ 0:06J=Z for γ =∞, _θe ≈ 0:02J=Z for
γ = 10, and _θe < 0:01J=Z for γ = 4 (and we note that the angular

velocity _θe ∝ 1=Re). Scaling to a more realistic radius r0 = 100a, we
find that the edge states, which are populated below EF = − 1:5J,
undergo a rotation of π=5 after a time

tðθ= π=5Þ∼ 50Z=J;  γ =∞ ðr0 = 100aÞ;
tðθ= π=5Þ∼ 150Z=J;   γ = 10 ðr0 = 100aÞ;
tðθ= π=5Þ∼ 300Z=J;   γ = 4 ðr0 = 100aÞ;

indicating that it is highly desirable to design a sharp circular
confining trap γ � 10 (27), to clearly observe the edge states rotat-
ing motion during reasonable experimental times t∼ 10− 100Z=J.
We now investigate the density evolution ρðx; tÞ for smooth con-

fining traps and initial Gaussian walls Vhole. First of all, we note that
the presence of Gaussian walls does not destroy the edge states lying
within the first bulk gap. In this bat geometry, the edge states are
localized on the outer edge delimited by VconfðrÞ, but also on the
smooth boundary delimited by the Gaussian potentials. Therefore,
when γ ∼∞, the edge states behave as in Fig. 7A in the vicinity of the
outer circular edge r≈ r0, whereas they behave similarly as in Fig. 7C
in the vicinity of the Gaussian walls. We point out that, in our
scheme, it is the behavior of the edge states near the outer circular
edge that plays an important role. Indeed, as shown in Fig. 8A,
replacing the infinitely abrupt walls Vhole by Gaussian potentials does
not qualitatively affect the evolution of the density ρðx; tÞ presented
in Fig. 4A.
However, as can be anticipated from the discussion above,

replacing the perfectly sharp potential VconfðrÞ by smoother
confinements, γ =∞→ 4, has dramatic consequences on the
dynamics. In Fig. 8B, which shows the evolution of the density
for γ = 10, we clearly observe the broadening δr∼ 5a of the edge-
state contribution ρedgeðx; tÞ, as they progressively encircle the holes.
We also note the slower motion undergone by the edge states,
which have a reduced angular velocity _θðγ = 10Þ∼ _θðγ =∞Þ=3,
as seen above. An even more dramatic situation is illustrated for
the case γ = 4 in Fig. 8C. These results demonstrate the robustness
of the edge-state motion in the presence of smooth confining
traps and Gaussian walls, but they greatly emphasize the impor-
tance of designing sharp external confinements to improve the
experimental detectability of the topological edge states.

Conclusions
In this article, we introduced a simple, yet powerful, method to
image the dynamics of topological edge states in atomic systems.
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Fig. 5. The opposite-flux method for dispersive systems. (A) Evolution of
the difference δρ= ρðx; t;Φ= + 1=3Þ− ρðx; t;Φ= − 1=3Þ, for the same con-
figuration as in Fig. 3. This method yields a clear manifestation of the edge
states, δρ≈ ρedgeð+ΦÞ− ρedgeð−ΦÞ, by eliminating the undesired contribution
of the many bulk states. The edge states chirality is deduced from the evo-
lution of the red and blue patterns. (B) The edge-states contribution
ρedgeðx; tÞ for Φ= + 1=3 and (C) for Φ= − 1=3. In the central column, we note
the vanishing of the signal δρðxÞ≈ 0 that occurs at time t*≈ 49Z=J, indicating
that the edge states angular velocity is _θ∼0:03J=Z for RF = 27a and γ =∞
(SI Appendix).
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Fig. 6. Effects of disorder. The spatial density ρðx; tÞ for Φ= 1=5, EF = − 1:5J,
r0 = 27a, and γ =∞. The disorder strength is (A) D= 0:5J, (B) D= 1J, and (C)
D= 1:5J.
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Our scheme shapes an atomic gas, initially prepared in a topo-
logical phase, and directly images its time evolution. By explicitly
revealing the presence of propagating chiral edge modes, this
method provides an unambiguous signature of topological order
in the context of cold atomic gases. Importantly, we have dis-
cussed the applicability of our method under realistic experi-
mental conditions, emphasizing the importance of using sharp
confining potentials to improve the detection of the edge-states
signal. The schemes introduced in this work to reduce, or even
eliminate, the irrelevant contribution of dispersive bulk states can
be applied to a wide family of topological atomic systems, such as
the promising Haldane-like optical lattice (12, 14) and fractional
QH atomic gases (32–34). Finally, our method can be directly
extended to visualize the propagation of Z2 topological (spin-po-
larized) edge states, both in 2D (18, 35) and 3D (36), by using
standard spin-dependent imaging methods (28).

Materials and Methods
The system is prepared in the ground-state of the initial Hamiltonian,

Ĥ0 = Ĥ +
X

m;n

Vholeðm;nÞ  ĉ†m;nĉm;n; [3]

where the potential Vhole describes the walls initially present in the trap
and where Ĥ is given by Eq. 1. We denote the number of available sites

before and after removing the walls by n0
sites and nsites, respectively, and we

define the ratio ð1− ηÞ=n0
sites=nsites. When Vhole = 0, the total number of sites

within the trap is approximatively given by the area nsite ≈ πðr0=aÞ2, while the
outer circular edge contains about nedge ≈ 2πr0=a lattice sites. The holes in the
density created by Vhole correspond to nhole =nsites −n0

sites ≈ πðr0=aÞ2=
ffiffiffi
2

p
vacant

sites, leading to the large ratio η=nhole=nsites ≈ 1=
ffiffiffi
2

p
. For r0 = 27a, the system

initially contains n0
site ≈ 700 sites and the number of sites delimiting the edge

of the bat is n0
edge ≈ 320 sites. Thus, the spacious holes used in our calculations

lead to a large edge/bulk ratio. For Φ≈p=q∈Q, and initially setting the Fermi
energy in the lowest bulk gap, leads to the filling factor ν0 =Npart=n0

sites ∼ 1=q.
After removing the walls Vhole, the filling factor is reduced to the smaller
value ν=Npart=nsites ∼ ð1− ηÞ=q � ν0.

The groundstate of Hamiltonian Eq. 3 is written as

jΨ0æ= ∏
Eα<EF

f̂α†j0=æ; [4]

where the operator f̂α† creates a particle in the single-particle state jχαæ, with
energy Eα located below the Fermi energy EF. Here fjχαæ; Eαg represents the
complete set of single-particle eigenstates and eigenvalues satisfying the
stationary Schrödinger equation

Ĥ0jχαæ= Eαjχαæ: [5]

We are interested in the time evolution of the spatial density ρðx; tÞ after
removing the walls Vhole at t = 0. The evolution of the single-particle states
jχαæ is then entirely governed by the Hamiltonian Ĥ. It is therefore conve-
nient to introduce the eigenstates and eigenvalues fjϕλæ; eλg corresponding
to the Hamiltonian Ĥ,

Ĥjϕλæ=   eλjϕλæ: [6]

We then define jχαðtÞæ as the time evolution of the initial state jχαæ according
to the Hamiltonian Ĥ,

jχαðtÞæ=
X

λ

Æϕλjχαæe−ieλt=Zjϕλæ: [7]

The spatial density ρðx; tÞ at time t is given by

ρðx; tÞ=
X

Eα<EF

jχαðx; tÞj2; [8]

namely, the particle density ρðx; tÞ is entirely governed by the time-evolution of
the initially occupied single-particle states. The time evolution of the atomic
cloud, after releasing the walls Vhole at t = 0, can therefore be numerically
evaluated through a direct diagonalization of the Hamiltonians Ĥ and Ĥ0. In
our study, a crucial aspect consists in identifying the regimes for which the
edge states propagating around the initially forbidden regions provide a clear
signal, which is not perturbed by the many bulk states. It is therefore desirable
to separately evaluate the contributions of the initially populated bulk and
edge states. We introduce the corresponding quantities

ρedgeðx; tÞ=
X

Ee<EF

jχeðx; tÞj2;

ρbulkðx; tÞ= ρðx; tÞ− ρedgeðx; tÞ;

where the sum
P

Ee<EF is restrained to the populated edge states with
energies Ee located within the bulk gap.
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