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ABSTRACT: Single-domain antibodies, known as nanobodies, have great
potential as biorecognition elements for sensors because of their small size,
affinity, specificity, and robustness. However, facile and efficient methods of
nanobody immobilization are sought that retain their maximum functionality.
Herein, we describe the direct immobilization of nanobodies on gold sensors
by exploiting a modified cysteine strategically positioned at the C-terminal
end of the nanobody. The experimental data based on secondary ion mass
spectrometry, circular dichroism, and surface plasmon resonance, taken
together with a detailed computational work (molecular dynamics
simulations), support the formation of stable and well-oriented nanobody
monolayers. Furthermore, the nanobody structure and activity is preserved,
wherein the nanobody is immobilized at a high density (approximately 1 nanobody per 13 nm2). The strategy for the spontaneous
nanobody self-assembly is simple and effective and possesses exceptional potential to be used in numerous sensing platforms, ranging
from clinical diagnosis to environmental monitoring.

KEYWORDS: nanobody, single-domain antibody, surface plasmon resonance, sensor, molecular dynamic simulations

■ INTRODUCTION

Single-domain antibodies, generally referred to as nanobodies,
are emerging as robust and versatile affinity reagents for
research, diagnostics, and therapeutics.1,2 They are an
attractive alternative to antibodies because they offer a similar
high affinity and high selectivity for a broad range of analytes
(small organic molecules, proteins, cell epitopes), but they are
smaller in size (∼15 kDa). This latter characteristic confers
them with increased solubility and stability, easier production,
and low steric hindrance to reach targets.3,4 This unique set of
properties makes nanobodies ideal building blocks for a wide
range of sensing devices and assays for use in medical,
biotechnology, environmental, food, and even military settings.
Despite great advances in the nanobody technology, few

approaches have been reported for the immobilization of
nanobodies on sensing platforms.5−7 Physical adsorption has
been investigated for nanobody immobilization on gold
nanoparticles which are used as immunoassay detection
labels.6 While stable nanobody−gold nanoparticle conjugates
can be generated,8 this requires careful consideration of the
influence of the nanobody isoelectric point, pH, and ionic
strength of the solution. Instead of relying on direct
immobilization on a sensor surface, Adriaensens and co-
workers5 established a two-step protocol in which the sensor
surface was initially functionalized with an azide-terminated
monolayer and then exposed to an engineered nanobody
carrying a C-terminal alkyne function. Taking advantage of the

copper(I)-catalyzed cycloaddition reaction (“click” chemistry),
the formation of a stable and well-oriented nanobody
monolayer was achieved. In a recent example, nanobodies
have been tagged with histidines, which served to couple the
nanobody to cobalt-nitrilotriacetic acid metal-chelate beads.7

In spite of these and other efforts in the literature,9−11

efficient, alternative immobilization methods are still needed to
meet the requirements of a wide range of sensing applications.
In this context, gold surfaces are widely employed as interfaces
in various biochemical and chemical sensors because of their
high electrical conductivity, unique optical properties, bio-
compatibility, and chemical stability.12,13 The mechanisms of
these sensors are based on various detection methods,
including electrochemical (impedance spectroscopy14 and
cyclic voltammetry),15 piezoelectric (surface acoustic wave
(SAW)16 and quartz crystal microbalance (QCM)17), and
optical (e.g., surface plasmon resonance (SPR),18 localized
surface plasmon resonance (LSPR),19 and surface-enhanced
Raman spectroscopy (SERS)20) detection methods. The
prevailing involvement of gold surfaces in a diversity of
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sensing technologies highlights the necessity for strategies that
not only promote fast and robust immobilization but also
promote high-efficiency target binding.
With this proviso in mind, in this work, we investigated the

ability of an engineered nanobody comprising a modified
cysteine to readily generate stable, well-oriented, and packed
nanobody monolayers on gold surfaces. The expressed protein
ligation (EPL) technique was used to incorporate alkyne-
modified cysteine at the C-terminal of the model nanobody
NbVCAM1, which targets the vascular cell adhesion molecule-
1 (VCAM1).21 The modified cysteine group, which binds to
gold via the thiol group, is located at the opposite end of the
binding pocket (Figure 1). While the native nanobody contains
two other cysteines and four methionines, these moieties are
not expected to interact with the gold surface. The two native

cysteine residues are located in the interior core of the
nanobody, forming the typical disulfide bridge responsible for
structural stability,22 which makes the moieties unlikely to
interact with gold. Additionally, previous studies have shown
that methionines poorly interact with gold.23−25

In order to obtain a detailed insight into the interface
chemistry, structural stability, orientation, and activity of the
immobilized nanobodies, a suite of complementary surface
analysis techniques was employed, including contact angle,
ellipsometry, time-of-flight secondary ion mass spectrometry
(ToF-SIMS), three dimensional (3D) Orbitrap secondary ion
mass spectroscopy (3D OrbiSIMS), circular dichroism (CD),
and SPR. The molecular interactions occurring at the gold-
nanobody interface and the stable conformation of the

Figure 1. NbVCAM1 nanobody (14.5 kDa) visual molecular dynamics (VMD) images, shown by a new cartoon merged with bond
representations: (A) NbVCAM1 top and side views, with dimensions 3.1 nm × 4.0 nm × 5.3 nm; (B) secondary structure with colors: 310 helix
(orange), β-sheet (blue), turn (yellow), and coil (red); (C) amino acids forming the antigen binding site (van der Waals representation (VDW),
red) located at the N-terminus side of the domain; (D) cysteines (VDW, yellow) that form a disulfide bridge at the core and the one located at the
C-terminus; (E) hydrophobic (VDW, red) and hydrophilic (VDW, blue) amino acids; (F) negative (VDW, orange) and positive (VDW, green)
amino acids. The NbVCAM1 has a net charge of +2e at pH 7.0.

Figure 2. Overlay of 3D OrbiSIMS spectra (20 keV Ar3000
+ as a primary ion beam) for the peak intensities of AuS− and related ions (A-E) and the

substrate ion Au− (F) on the control bare gold (red) and NbVCAM1 SAM (blue). Intensity was normalized to the total ion counts. “a.u” refers to
arbitrary units. Comparison of (G) gold and (H) gold−sulfur and gold−nitrogen containing species ion peak intensities in the gold reference
samples (red) and NbVCAM1 SAM samples (blue). Average and standard deviation for four 3D OrbiSIMS measurements. Intensity was
normalized to the total ion counts.
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immobilized nanobodies are further validated using molecular
dynamic (MD) simulations.

■ RESULTS AND DISCUSSION

NbVCAM1 monolayers were formed by immersing freshly
cleaned gold substrates in a solution of 1 μM NbVCAM1 in

phosphate buffer saline (PBS) for 24 h, which provides the
time for the formation of a gold-thiolate bond between the
gold surface and the NbVCAM1 nanobody.26 Contact angle
data show the formation of a hydrophilic surface, with the
NbVCAM1 monolayers exhibiting the advancing and receding
contact angles of 62.6 ± 2.3 and 26.0 ± 6.5o, respectively.

Figure 3. (A) ToF-SIMS spectra and (B) respective normalized peak intensity areas showing the presence of the AuSC6H8ON
− ion fragment on

the NbVCAM1 SAM but its absence on the clean gold control surface. Average and standard deviation for three measurements over two samples.
‘a.u’ refers to the arbitrary units.

Figure 4. (A) Spectra overlay of amino-acid fragments (proline, tryptophan, and tyrosine) assigned in the positive polarity spectra of NbVCAM1
(blue) and gold reference (red); intensity was normalized to the total ion counts. ‘a.u’ refers to arbitrary units. (B) Respective ToF-SIMS images of
gold chips incubated with NbVCAM1 SAM. (C) Amino-acid fragments are not detected in the ToF-SIMS images of bare gold reference. All the
ion images have been normalized to the total ion counts.
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These values are comparable to those obtained for protein
monolayers,27 with the large contact hysteresis (36.6°),
indicating the presence of a heterogeneous surface due likely
to the exposure at the interface of hydrophobic and hydrophilic
amino acids from the nanobody and/or nanobody packing
arrangement. The ellipsometric thickness observed for the
NbVCAM1 monolayer is 1.99 ± 0.09 nm, which is less than
the theoretical molecular length of the nanobody from the C-
terminally added cysteine−alkyne linker to the N-terminal, that
is, 5.3 nm (Figure 1). This discrepancy, between the molecular
length and the self-assembly monolayer (SAM) thickness, can
be explained by the presence of air voids between the
nanobodies and within the nanobodies themselves.28,29

Following these initial results providing the evidence of
NbVCAM1 monolayer formation, 3D OrbiSIMS and ToF-
SIMS were used to investigate whether or not the gold-thiolate
bond was formed upon adsorption. 3D OrbiSIMS and ToF-
SIMS survey spectra (Figure S1) along with the high-
resolution spectra (Figure 2) are shown for the NbVCAM1
SAM and control bare gold. The mass resolving power of the
3D OrbiSIMS allows the assignment of secondary ion peaks
associated with the proposed Au-S bond (shown in Figure 2),
which could not be confidently distinguished in the ToF-SIMS
spectra (Figure S2). The negative polarity 3D OrbiSIMS
spectra of the NbVCAM1 monolayer on gold are illustrated in
Figure 2, together with clean gold as a control. Secondary ions
associated with the AuS− ion and related fragments (AuSH−,
AuS2

−, AuS2H
−, and AuS2H2

−) can be observed clearly for the
NbVCAM1 monolayer, but they are absent in the clean gold
control. Additionally, the NbVCAM1 monolayer attenuated
the intensity of Au− ion fragments, which were less accessible
to be ionized because of the presence of NbVCAM1 (Figure
2F). In addition to providing further evidence supporting the
formation of the NbVCAM1 monolayer on gold, these results
also confirm the formation of a thiolate bond between the
NbVCAM1 and the gold surface, wherein adventitious sulfur is
excluded as a possible source of AuS− ions.
Along with the fragments associated with the Au-thiolate

bond, the presence of ions containing Au and nitrogen is also
observed (Figure 3A). They are present at a much higher
intensity than those on clean gold surfaces, indicating the
interactions between the amino-acid residues in the
NbVCAM1 and the gold surface. These interactions can
arise from nitrogen atoms located in positions close to the
cysteine−alkyne linker because there is a possibility of the

nanobody making more than one point of contact with the
gold surface. However, we cannot exclude the possibility that
some nanobodies might be randomly oriented on the surface.
The 3D OrbiSIMS results are further supported by the ToF-
SIMS analysis (TOF IV instrument with 25 keV Bi3

+ primary
ion beam), wherein a peak for the ion fragment AuSC6H8ON

−

can be distinguished from the clean gold control surface
(Figure 3B). This distinctive fragment belongs to the alkyne-
modified cysteine, thus supporting the formation of a thiolate
bond between the thiol group in the modified NbVCAM1’s
cysteine and the gold surface.
ToF-SIMS can also directly map the distribution of different

nanobody fragments on the gold surface to provide insights
into the chemical interactions between the nanobody and the
gold surface. Distribution maps have been plotted for amino-
acid fragments (Figure 4A,B). While the lateral resolution of
the technique is not sufficient to resolve individual nanobodies,
the uniform ion distribution across the surface does indicate
that the NbVCAM1 nanobodies are uniformly distributed on
the gold surface (Figure 4B). The amino-acid fragments
(proline, tryptophan, and tyrosine) were assigned according to
Lhoest et al.30 These amino-acid fragments are not present on
clean bare gold surfaces, as illustrated in Figure 4A,C.
Following the analysis determining the nature of the gold-

nanobody interactions, attention was turned toward under-
standing the structure of surface-immobilized NbVCAM1 by
CD. Nanobody monolayers were formed on copper-ion-
functionalized quartz slides31 onto which NbVCAM1 can
chemisorb, in a similar manner as on gold, through the
modified cysteine. Quartz was used rather than gold substrates
to avoid a low signal-to-noise ratio because of the high
absorption of gold in the UV region. The CD spectrum of the
surface-tethered NbVCAM1, shown in Figure 5A, is similar to
that of the nanobody in solution (insert in Figure 5A), both
illustrating that the NbVCAM1 is composed largely of β-sheets
(typified by a negative band at 217 nm and a positive band at
195 nm). These findings are in agreement with the
literature4,32,33 that had shown that the VHH domain is
composed of folded β-sheets with three loops in the regions
homologous to the CDRs of the IgG VH domains. These
results suggest that the nanobody conformation is not altered
when they are organized in a two-dimensional monolayer.
Further evidence of the conformational stability of NbVCAM1
was obtained by increasing the temperature of the NbVCAM1-
functionalized quartz substrate from 20 to 70 °C (Figure 5B).

Figure 5. CD spectra of NbVCAM1 on a surface immobilized on a Cu2+-terminated SAM on a quartz slide. (A) Average spectra of three
measurements at room temperature; inset: NbVCAM1 in solution as a control; (B) spectra overlay at temperatures ranging from 20 to 70 °C by an
increment of 5 °C.
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The CD spectra taken at different temperatures show similar
features, with the β-sheet peak remaining unchanged.
Having established that the nanobody retains its structure

while forming a homogeneous, covalently bound monolayer on
the gold surface, we assessed its antigen (hVCAM1)-binding
capacity by SPR. Figure 6 portrays the formation of a
NbVCAM1 monolayer in real-time, followed by hVCAM1
antigen binding. From a stable baseline of PBS flowing over a
clean gold chip, an injection of NbVCAM1 shows a response
of ∼2000 response units (RU), which reduces to 1800 RU as
the solution is washed away with PBS. Following the initial
removal of nonspecifically bound NbVCAM1, prolonged
rinsing (i.e., ∼2 h) had no effect on the integrity of the
NbVCAM1 monolayer, indicating the presence of a stable
monolayer (Figure 6A). Because 1000 RU is equivalent to a
change in the surface concentration of approximately 1 ng/
mm2,34 the amount of immobilized nanobody (i.e., nanobody
loading capacity on the gold surface) achieved was 1.8 ng/
mm2, corresponding to approximately one NbVCAM1 nano-
body (14.5 kDa) per 13 nm2. Based on the size of NbVCAM1
(i.e., 3.1 × 4.0 × 5.3 nm), the results imply the formation of a
high-packed nanobody monolayer on the gold surface that
enables the specific capture of the antigen. The injection of the
hVCAM1 antigen produced a change in the SPR response of
∼600 RU (Figure 6B), with rinsing having a minimal effect on
the final response. Following similar calculations as above, one
hVCAM1 antigen (74.1 kDa) occupies an area of approx-
imately 205 nm2. The hVCAM1 antigen with the dimensions
of 12.9 × 7.4 × 7.6 nm is eleven times larger in volume than
NbVCAM1; thus, the hVCAM1 antigen was shown to be
immobilized at a high density on the NbVCAM1 monolayer.
These findings confirm the high capability for the NbVCAM1
monolayer to bind its antigen (KD = 1.61 ± 0.14 nM5),
wherein a high degree of well-oriented nanobodies must be in
place; otherwise, antigen binding would have been consid-
erably affected. These results contrast with those obtained
when an unmodified NbVCAM1 containing no cysteine at the
C-terminal is immobilized on a gold surface (Figure 6C).
Exposure of the gold surface to the unmodified NbVCAM1 led
to a much lower SPR response of ∼180 RU, a 10-fold decrease
in immobilization compared with the modified cysteine-
containing NbVCAM1 at the C-terminal. These results further
support the role of the added cysteine in enabling a gold-
thiolate bond and the formation of a high-packed nanobody
monolayer on the gold surface. Antigen binding is also reduced
to half of the one observed in the NbVCAM1 monolayer.
Because of the low coverage of the unmodified NbVCAM1 on
the gold surface, the binding properties are difficult to interpret
because the hVCAM1 antigen can be not only specifically

bound to some of the nanobodies but also nonspecifically
adsorbed on the gold surface.
To complement our experimental findings, we have

developed a straightforward model to simulate NbVCAM1
adsorption onto a gold surface. These simulations yield insights
into several aspects of nanobody adsorption, including (i) the
protein’s structural behavior before, during, and after
adsorption, (ii) the interactions between the protein and
gold during and after adsorption, and (iii) the footprint of the
adsorbed protein, which is relevant to the monolayer density
that it might subsequently form. The model was built with the
NbVCAM1 in water/0.15 M NaCl with a starting position at a
distance of 20 Å from the gold surface. As an approach to
randomize the results, the nanobody was placed at different
starting orientations in a sequence of separate trajectories: with
the C- to N-terminal axis approximately perpendicular to the
surface (C-terminal either facing the gold surface or the bulk
solution) or with the axis parallel to the surface.
We find that the physical adsorption process can yield

various adsorbed nanobody orientations, as might be expected
for adsorption to a gold surface.35 Among these, we observe
the desired orientation with the modified cysteine adsorbed to
the surface and the N-terminal exposed to the solution (Figure
7A). The simulations do not directly simulate the formation of
the thiolate bond but do show that these are likely to form
because of the close approach of sulfur to the gold surface.
Indeed, the literature widely reports that thiolate formation
starts with physisorption followed by chemisorption,36 which
stabilizes the adsorbed orientation.37 In contrast, the adsorbed

Figure 6. SPR results for NbVCAM1 adsorption followed by antigen injection. (A) Overview of NbVCAM1 adsorption (1 μM) followed by blank
injection with running buffer (RB) and posterior antigen hVCAM1 injection (0.27 μM). (B) hVCAM1 injection response. (C) Unmodified
NbVCAM1 adsorption (1 μM) followed by blank injection with RB and posterior antigen hVCAM1 injection (0.27 μM).

Figure 7. Representative VMD images from the MD simulations of
the physical adsorption of NbVCAM1 on gold, resulting in (A) well-
oriented and (B) nonoriented nanobodies. The NbVCAM1
representation highlights the modified cysteine at the C-terminal
(white: hydrogen; cyan: carbon; red: oxygen; blue: nitrogen; and
yellow: sulfur) and the amino acids that belong to the antigen binding
site located at the N-terminus side in the folded domain (all atoms
red) with the gold slab (yellow).
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nanobody with undesired orientations (e.g., Figure 7B) is likely
to be less stable, allowing the reorientation of the nanobody
over time to create a more stable thiolate-bonded structure.
The root-mean-square deviation (RMSD) and root-mean-

square-fluctuation (RMSF) are the tools of analysis to quantify
the conformation variability within a protein.38 RMSD
measures the degree of similarity between two 3D structures
with the same number of atoms. In this case, the NbVCAM1
was compared at each step of the trajectory (step = 0.04 ns)
with its initial structure (at t = 0). For RMSF, the RMSD is
calculated for each nanobody’s residue, reflecting its
fluctuations across the total trajectory. Figure 8 shows the
RMSD and RMSF results for the trajectories taken before and
after adsorption compared with the control trajectory obtained
for NbVCAM1 in solution (with no model gold surface). At
the time of adsorption (Figure 8B, identified with arrows),
there is no evident spike in the RMSD data, and indeed, for the
whole duration of the simulations, there is no indication of
significant structural changes from the control.
Similarly, a brief analysis of the RMSF data (Figure 8C)

yields the same conclusion, as the residues at the adsorption
site do not vary significantly from the NbVCAM1 control. This
means that the successfully adsorbed NbVCAM1 on the gold
surface did not have major differences in its conformation
when compared with the NbVCAM1 conformation while in
solution. These findings support our experimental results
showing that the nanobody structure and activity is preserved
upon monolayer formation.
Thereafter, a deeper analysis of each individual residue

allows us to infer which ones approach the surface and
contribute to the NbVCAM1 adsorption (Figure 8C). As
expected, higher RMSF values were observed for the amino
acids that belong to the nanobody’s loops (especially, the
CDR3 loop starting at amino-acid 99 to 11133,39) and at the N-
and C-terminals. The exception is when one of these regions is
underneath the nanobody and interacts with the gold surface,
slightly reducing the flexibility and lowering the RMSF values

compared to the control. On the other hand, some nonloop
amino acids showed a slightly higher RMSF than the control,
which meant that they contributed to the approach to the
surface, resulting in an increased movement. These amino
acids were SER30, 101, 104, and 126 (serine), ASN29, 106,
108, 112, 114 (asparagine), PHE53, 105 (phenylalanine), and
TYR103, 115, 126, and 129 (tyrosine). LYS (lysine)40 and
amine interactions with gold41 have been previously reported,
and likewise, with intermittent contact, LYS43, 44, and 76
contributed to the NbVCAM1 immobilization at the surface.
Finally, in order to understand how the adsorbed

NbVCAM1 orientation might change over time and how it
might be affected by the creation of the thiolate bond, a second
model was developed with NbVCAM1 tethered by a thiolate
bond to the gold surface (Figure 9A,B). This model allowed us
to observe the flexing of the nanobody above the surface. The
simulations reveal nitrogen−gold interactions from the amino
acids (CYS130, LEU127, TYR129 and GLN13) near to the
thiolate bond site, which are involved in creating a rather tilted
orientation. We note that these features are also present in the
simulations where the thiolate bond was not created, with
additional nitrogen interactions (LYS44, 45, GLN87, ASN84,
85, 87, 108) (Figure 9C,D). These observations further
confirm our earlier findings from the SIMS analysis, wherein
nanobody immobilization on the gold surface can be attributed
to the simultaneous formation of a gold−thiolate bond and
nitrogen−gold interactions.

■ CONCLUSIONS

The nanobodies’ relatively small size (∼15 kDa) and their
prominent stability meet the highly desired characteristics
when designing and developing a vast range of biosensors and
diagnostic tools. In order to take advantage of these
characteristics, we hypothesized that adding a modified
cysteine would promote direct surface functionalization on
gold. Our findings demonstrated, through ToF-SIMS and 3D
OrbiSIMS, the formation of a thiolate bond between the

Figure 8. (A) MD results at various simulation time points for NbVCAM1 adsorption onto the model gold surface. (B) Root-mean-square
deviation (RMSD) for the NbVCAM1 α-carbons during the adsorption process on gold over several different trajectories of 100 ns duration. The
steady trend indicates that the NbVCAM1 structure was kept before, during, and after adsorption. Arrows indicate the time of adsorption in each
trajectory. (C) RMS fluctuation for the same trajectories for each NbVCAM1 residue (0 to 130 residues from N to C-terminal). Residues with
higher RMSF values belong to the loop areas, revealing higher mobility. (B-C) In black, the control represents the trajectory of NbVCAM1 in
solution, while green and red colors represent NbVCAM1 that adsorbed nonoriented or oriented, respectively, onto the gold surface.
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NbVCAM1 nanobody and the gold surface. The secondary ion
imaging results also provided compelling evidence of the
formation of a homogenous, stable, and well-packed nanobody
monolayer. Our experimental and theoretical findings
furthermore support the presence of a high degree of well-
oriented nanobodies on the gold surface, leading to a high
capacity for antigen binding. The strategy for nanobody
immobilization is simple and effective and can be adopted to
other highly relevant nanobody−antigen systems. Considering
all these attributes, this work opens up new avenues for the
design and scalable fabrication of stable, reliable, and robust
biosensing platforms for a wide range of medical, biotechno-
logical, environmental, and food applications.
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