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Abstract A situation where training and test samples follow different input
distributions is called covariate shift. Under covariate shift, standard learning methods
such as maximum likelihood estimation are no longer consistent—weighted variants
according to the ratio of test and training input densities are consistent. Therefore,
accurately estimating the density ratio, called the importance, is one of the key issues
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700 M. Sugiyama et al.

in covariate shift adaptation. A naive approach to this task is to first estimate training
and test input densities separately and then estimate the importance by taking the ratio
of the estimated densities. However, this naive approach tends to perform poorly since
density estimation is a hard task particularly in high dimensional cases. In this paper,
we propose a direct importance estimation method that does not involve density esti-
mation. Our method is equipped with a natural cross validation procedure and hence
tuning parameters such as the kernel width can be objectively optimized. Furthermore,
we give rigorous mathematical proofs for the convergence of the proposed algorithm.
Simulations illustrate the usefulness of our approach.

Keywords Covariate shift · Importance sampling · Model misspecification ·
Kullback–Leibler divergence · Likelihood cross validation

1 Introduction

A common assumption in supervised learning is that training and test samples follow
the same distribution. However, this basic assumption is often violated in practice
and then standard machine learning methods do not work as desired. A situation
where the input distribution P(x) is different in the training and test phases but the
conditional distribution of output values, P(y|x), remains unchanged is called covar-
iate shift (Shimodaira 2000). In many real-world applications such as robot control
(Sutton and Barto 1998; Shelton 2001; Hachiya et al. 2008), bioinformatics (Baldi
and Brunak 1998; Borgwardt et al. 2006), spam filtering (Bickel and Scheffer 2007),
brain-computer interfacing (Wolpaw et al. 2002; Sugiyama et al. 2007), or economet-
rics (Heckman 1979), covariate shift is conceivable and thus learning under covariate
shift is gathering a lot of attention these days.

The influence of covariate shift could be alleviated by weighting the log likelihood
terms according to the importance (Shimodaira 2000):

w(x) := pte(x)

ptr(x)
,

where pte(x) and ptr(x) are test and training input densities. Since the importance
is usually unknown, the key issue of covariate shift adaptation is how to accurately
estimate the importance.

Covariate shift matters in parameter learning only when the model used for func-
tion learning is misspecified (i.e., the model is so simple that the true learning target
function can not be expressed) (Shimodaira 2000)—when the model is correctly (or
overly) specified, ordinary maximum likelihood estimation is still consistent. Follow-
ing this fact, there is a criticism that importance weighting is not needed; just the use
of a complex enough model can settle the problem. However, too complex models
result in huge variance and thus we practically need to choose a complex enough but
not too complex model. For choosing such an appropriate model, we usually use a
model selection technique such as cross validation (CV). However, the ordinary CV
score is heavily biased due to covariate shift and we also need to importance-weight
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Direct importance estimation for covariate shift adaptation 701

the CV score (or any other model selection criteria) for unbiasedness (Shimodaira
2000; Sugiyama and Müller 2005; Sugiyama et al. 2007). For this reason, estimating
the importance is indispensable when covariate shift occurs.

A naive approach to importance estimation would be to first estimate the training
and test densities separately from training and test input samples, and then estimate the
importance by taking the ratio of the estimated densities. However, density estimation
is known to be a hard problem particularly in high-dimensional cases (Härdle et al.
2004). Therefore, this naive approach may not be effective—directly estimating the
importance without estimating the densities would be more promising.

Following this spirit, the kernel mean matching (KMM) method has been proposed
recently (Huang et al. 2007), which directly gives importance estimates without going
through density estimation. KMM is shown to work well, given that tuning param-
eters such as the kernel width are chosen appropriately. Intuitively, model selection
of importance estimation algorithms (such as KMM) is straightforward by cross val-
idation (CV) over the performance of subsequent learning algorithms. However, this
is highly unreliable since the ordinary CV score is heavily biased under covariate
shift—for unbiased estimation of the prediction performance of subsequent learning
algorithms, the CV procedure itself needs to be importance-weighted (Sugiyama et al.
2007). Since the importance weight has to have been fixed when model selection
is carried out by importance weighted CV, it can not be used for model selection
of importance estimation algorithms. Note that once the importance weight has been
fixed, importance weighted CV can be used for model selection of subsequent learning
algorithms.

The above fact implies that model selection of importance estimation algorithms
should be performed within the importance estimation step in an unsupervised manner.
However, since KMM can only estimate the values of the importance at training input
points, it can not be directly applied in the CV framework; an out-of-sample extension
is needed, but this seems to be an open research issue currently.

In this paper, we propose a new importance estimation method which can over-
come the above problems, i.e., the proposed method directly estimates the importance
without density estimation and is equipped with a natural model selection proce-
dure. Our basic idea is to find an importance estimate ŵ(x) such that the Kullback–
Leibler divergence from the true test input density pte(x) to its estimate p̂te(x) =
ŵ(x)ptr(x) is minimized. We propose an algorithm that can carry out this minimiza-
tion without explicitly modeling ptr(x) and pte(x). We call the proposed method the
Kullback–Leibler Importance Estimation Procedure (KLIEP). The optimization prob-
lem involved in KLIEP is convex, so the unique global solution can be obtained.
Furthermore, the solution tends to be sparse, which contributes to reducing the com-
putational cost in the test phase.

Since KLIEP is based on the minimization of the Kullback–Leibler divergence, its
model selection can be naturally carried out through a variant of likelihood CV, which
is a standard model selection technique in density estimation (Härdle et al. 2004). A
key advantage of our CV procedure is that, not the training samples, but the test input
samples are cross-validated. This highly contributes to improving the model selection
accuracy when the number of training samples is limited but test input samples are
abundantly available.
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702 M. Sugiyama et al.

The simulation studies show that KLIEP tends to outperform existing approaches
in importance estimation including the logistic regression based method (Bickel et al.
2007), and it contributes to improving the prediction performance in covariate shift
scenarios.

2 New importance estimation method

In this section, we propose a new importance estimation method.

2.1 Formulation and notation

Let D ⊂ (Rd) be the input domain and suppose we are given i.i.d. training input sam-
ples {xtr

i }ntr
i=1 from a training input distribution with density ptr(x) and i.i.d. test input

samples {xte
j }nte

j=1 from a test input distribution with density pte(x). We assume that
ptr(x) > 0 for all x ∈ D. The goal of this paper is to develop a method of estimating
the importance w(x) from {xtr

i }ntr
i=1 and {xte

j }nte
j=1:

w(x) := pte(x)

ptr(x)
.

Our key restriction is that we avoid estimating densities pte(x) and ptr(x) when esti-
mating the importance w(x).

Importance estimation is a pre-processing step of supervised learning tasks where
training output samples {ytr

i }ntr
i=1 at the training input points {xtr

i }ntr
i=1 are also available

(Shimodaira 2000; Sugiyama and Müller 2005; Huang et al. 2007; Sugiyama et al.
2007). However, we do not use {ytr

i }ntr
i=1 in the importance estimation step since they

are irrelevant to the importance.

2.2 Kullback–Leibler importance estimation procedure (KLIEP)

Let us model the importance w(x) by the following linear model:

ŵ(x) =
b
∑

�=1

α�ϕ�(x), (1)

where {α�}b�=1 are parameters to be learned from data samples and {ϕ�(x)}b�=1 are
basis functions such that

ϕ�(x) ≥ 0 for all x ∈ D and for � = 1, 2, . . . , b.

Note that b and {ϕ�(x)}b�=1 could be dependent on the samples {xtr
i }ntr

i=1 and {xte
j }nte

j=1,

i.e., kernel models are also allowed—we explain how the basis functions {ϕ�(x)}b�=1
are chosen in Sect. 2.3.
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Direct importance estimation for covariate shift adaptation 703

Using the model ŵ(x), we can estimate the test input density pte(x) by

p̂te(x) = ŵ(x)ptr(x).

We determine the parameters {α�}b�=1 in the model (1) so that the Kullback–Leibler
divergence from pte(x) to p̂te(x) is minimized:

KL[pte(x)‖ p̂te(x)] =
∫

D
pte(x) log

pte(x)

ŵ(x)ptr(x)
dx

=
∫

D
pte(x) log

pte(x)

ptr(x)
dx −

∫

D
pte(x) log ŵ(x)dx. (2)

One may also consider an alternative scenario where the inverse importance w−1(x)

is parameterized and the parameters are learned so that the Kullback–Leibler diver-
gence from ptr(x) to p̂tr(x) (= ŵ−1(x)pte(x)) is minimized. We may also consider
using KL[ p̂te(x)‖pte(x)]—however, this involves the model ŵ(x) in a more complex
manner and does not seem to result in a simple optimization problem.

Since the first term in Eq. (2) is independent of {α�}b�=1, we ignore it and focus on
the second term. We denote it by J :

J :=
∫

D
pte(x) log ŵ(x)dx

≈ 1

nte

nte
∑

j=1

log ŵ(xte
j ) =

1

nte

nte
∑

j=1

log

(

b
∑

�=1

α�ϕ�(x
te
j )

)

, (3)

where the empirical approximation based on the test input samples {xte
j }nte

j=1 is used
from the first line to the second line above. This is our objective function to be maxi-
mized with respect to the parameters {α�}b�=1, which is concave
(Boyd and Vandenberghe 2004). Note that the above objective function only involves
the test input samples {xte

j }nte
j=1, i.e., we did not use the training input samples {xtr

i }ntr
i=1

yet. As shown below, {xtr
i }ntr

i=1 will be used in the constraint.
ŵ(x) is an estimate of the importance w(x) which is non-negative by definition.

Therefore, it is natural to impose ŵ(x) ≥ 0 for all x ∈ D, which can be achieved by
restricting

α� ≥ 0 for � = 1, 2, . . . , b.

In addition to the non-negativity, ŵ(x) should be properly normalized since p̂te(x)

(= ŵ(x)ptr(x)) is a probability density function:

1 =
∫

D
p̂te(x)dx =

∫

D
ŵ(x)ptr(x)dx

≈ 1

ntr

ntr
∑

i=1

ŵ(xtr
i ) =

1

ntr

ntr
∑

i=1

b
∑

�=1

α�ϕ�(x
tr
i ), (4)
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704 M. Sugiyama et al.

where the empirical approximation based on the training input samples {xtr
i }ntr

i=1 is
used from the first line to the second line above. Now our optimization criterion is
summarized as follows.

maximize
{α�}b�=1

⎡

⎣

nte
∑

j=1

log

(

b
∑

�=1

α�ϕ�(x
te
j )

)

⎤

⎦

subject to
ntr
∑

i=1

b
∑

�=1

α�ϕ�(x
tr
i ) = ntr and α1, α2, . . . , αb ≥ 0.

This is a convex optimization problem and the global solution can be obtained, e.g., by
simply performing gradient ascent and feasibility satisfaction iteratively. If necessary,
we may regularize the solution, e.g., by adding a penalty term (say,

∑b
�=1 α

2
� ) to the

objective function or by imposing an upper bound on the solution. The normalization
constraint (4) may also be weakened by allowing a small deviation. These modifica-
tion is possible without sacrificing the convexity. A pseudo code is described in Fig. 1.
Note that the solution {̂α�}b�=1 tends to be sparse (Boyd and Vandenberghe 2004),
which contributes to reducing the computational cost in the test phase. We refer to the
above method as Kullback–Leibler Importance Estimation Procedure (KLIEP).

2.3 Model selection by likelihood cross validation

The performance of KLIEP depends on the choice of basis functions {ϕ�(x)}b�=1. Here
we explain how they can be appropriately chosen from data samples.

Since KLIEP is based on the maximization of the score J (see Eq. 3), it would
be natural to select the model such that J is maximized. The expectation over pte(x)

involved in J can be numerically approximated by likelihood cross validation (LCV)
as follows: First, divide the test samples {xte

j }nte
j=1 into R disjoint subsets {X te

r }R
r=1.

Then obtain an importance estimate ŵr (x) from {X te
j } j �=r and approximate the score

J using X te
r as

̂Jr := 1

|X te
r |

∑

x∈X te
r

log ŵr (x).

We repeat this procedure for r = 1, 2, . . . , R, compute the average of ̂Jr over all r ,
and use the average ̂J as an estimate of J :

̂J := 1

R

R
∑

r=1

̂Jr . (5)

For model selection, we compute ̂J for all model candidates (the basis functions
{ϕ�(x)}b�=1 in the current setting) and choose the one that minimizes ̂J . A pseudo code
of the LCV procedure is summarized in Fig. 1.
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Direct importance estimation for covariate shift adaptation 705

Fig. 1 The KLIEP algorithm in pseudo code. ‘./’ indicates the element-wise division and � denotes the
transpose. Inequalities and the ‘max’ operation for vectors are applied element-wise. A MATLAB imple-
mentation of the KLIEP algorithm is available from ‘http://sugiyama-www.cs.titech.ac.jp/~sugi/software/
KLIEP’

One of the potential limitations of CV in general is that it is not reliable in small
sample cases since data splitting by CV further reduces the sample size. On the other
hand, in our CV procedure, the data splitting is performed only over the test input
samples, not over the training samples. Therefore, even when the number of training
samples is small, our CV procedure does not suffer from the small sample problem as
long as a large number of test input samples are available.

A good model may be chosen by the above CV procedure, given that a set of prom-
ising model candidates is prepared. As model candidates, we propose using a Gaussian
kernel model centered at the test input points {xte

j }nte
j=1, i.e.,

ŵ(x) =
nte
∑

�=1

α�Kσ (x, x
te
� ),
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706 M. Sugiyama et al.

where Kσ (x, x′) is the Gaussian kernel with kernel width σ :

Kσ (x, x
′) := exp

(

−‖x − x′‖2

2σ 2

)

. (6)

The reason why we chose the test input points {xte
j }nte

j=1 as the Gaussian centers, not

the training input points {xtr
i }ntr

i=1, is as follows. By definition, the importance w(x)
tends to take large values if the training input density ptr(x) is small and the test input
density pte(x) is large; conversely,w(x) tends to be small (i.e., close to zero) if ptr(x)

is large and pte(x) is small. When a function is approximated by a Gaussian kernel
model, many kernels may be needed in the region where the output of the target func-
tion is large; on the other hand, only a small number of kernels would be enough in the
region where the output of the target function is close to zero. Following this heuristic,
we decided to allocate many kernels at high test input density regions, which can be
achieved by setting the Gaussian centers at the test input points {xte

j }nte
j=1.

Alternatively, we may locate (ntr + nte) Gaussian kernels at both {xtr
i }ntr

i=1 and
{xte

j }nte
j=1. However, in our preliminary experiments, this did not further improve the

performance, but slightly increased the computational cost. When nte is very large,
just using all the test input points {xte

j }nte
j=1 as Gaussian centers is already computation-

ally rather demanding. To ease this problem, we practically propose using a subset of
{xte

j }nte
j=1 as Gaussian centers for computational efficiency, i.e.,

ŵ(x) =
b
∑

�=1

α�Kσ (x, c�), (7)

where c� is a template point randomly chosen from {xte
j }nte

j=1 and b(≤ nte) is a prefixed
number.

3 Theoretical analyses

In this section, we investigate the convergence properties of the KLIEP algorithm. The
theoretical statements we prove in this section are roughly summarized as follows.

– When a non-parametric model (e.g., kernel basis functions centered at test samples)
is used for importance estimation, KLIEP converges to the optimal solution with

convergence rate slightly slower than Op(n−
1
2 ) under n = ntr = nte (Theorem 1

and Theorem 2).
– When a fixed set of basis functions is used for importance estimation, KLIEP

converges to the optimal solution with convergence rate Op(n−
1
2 ). Furthermore,

KLIEP has asymptotic normality around the optimal solution (Theorem 3 and
Theorem 4).
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Direct importance estimation for covariate shift adaptation 707

3.1 Mathematical preliminaries

Since we give rigorous mathematical convergence proofs, we first slightly change our
notation for clearer mathematical exposition.

Below, we assume that the numbers of training and test samples are the same, i.e.,

n = nte = ntr.

We note that this assumption is just for simplicity; without this assumption, the con-
vergence rate is solely determined by the sample size with the slower rate.

For arbitrary measure P̃ and P̃-integrable function f , we express its “expectation”
as

P̃ f :=
∫

f d P̃ .

Let P and Q be the probability measures which generate test and training samples,
respectively. In a similar fashion, we define the empirical distributions of test and
training samples by Pn and Qn , i.e.,

Pn f = 1

n

n
∑

j=1

f (xte
j ), Qn f = 1

n

n
∑

i=1

f (xtr
i ).

The set of basis functions is denoted by

F := {ϕθ | θ ∈ �},

where � is some parameter or index set. The set of basis functions at n samples are
denoted using �n ⊆ � by

Fn := {ϕθ | θ ∈ �n} ⊂ F ,

which can behave stochastically. The set of finite linear combinations ofF with positive
coefficients and its bounded subset are denoted by

G :=
{

∑

l

αlϕθl

∣

∣

∣αl ≥ 0, ϕθl ∈ F
}

,

GM := {g ∈ G | ‖g‖∞ ≤ M} ,

and their subsets at n samples are denoted by

Gn :=
{

∑

l

αlϕθl

∣

∣

∣αl ≥ 0, ϕθl ∈ Fn

}

⊂ G,

GM
n := {g ∈ Gn | ‖g‖∞ ≤ M} ⊂ GM .
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708 M. Sugiyama et al.

Let Ĝn be the feasible set of KLIEP:

Ĝn := {g ∈ Gn | Qng = 1}.

Under the notations described above, the solution ĝn of (generalized) KLIEP is given
as follows:

ĝn := arg max
g∈Ĝn

Pn log (g) .

For simplicity, we assume the optimal solution is uniquely determined. In order to
derive the convergence rates of KLIEP, we make the following assumptions.

Assumption 1

1. P and Q are mutually absolutely continuous and have the following property:

0 < η0 ≤ dP

dQ
≤ η1

on the support of P and Q. Let g0 denote

g0 := dP

dQ
.

2. ϕθ ≥ 0 (∀ϕθ ∈ F), and ∃ε0, ξ0 > 0 such that

Qϕθ ≥ ε0, ‖ϕθ‖∞ ≤ ξ0, (∀ϕθ ∈ F).

3. For some constants 0 < γ < 2 and K ,

sup
Q̃

log N (ε,GM , L2(Q̃)) ≤ K

(

M

ε

)γ

, (8)

where the supremum is taken over all finitely discrete probability measures Q̃, or

log N[](ε,GM , L2(Q)) ≤ K

(

M

ε

)γ

. (9)

N (ε,F , d) and N[](ε,F , d) are the ε-covering number and the ε-bracketing num-
ber of F with norm d, respectively (van der Vaart and Wellner 1996).

��
We define the (generalized) Hellinger distance with respect to Q as

hQ(g, g′) :=
(∫

(
√

g −√

g′)2dQ

)1/2

,
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Direct importance estimation for covariate shift adaptation 709

where g and g′ are non-negative measurable functions (not necessarily probability
densities). The lower bound of g0 appeared in Assumption 1.1 will be used to ensure
the existence of a Lipschitz continuous function that bounds the Hellinger distance
from the true. The bound of g0 is needed only on the support of P and Q. Assumption
1.3 controls the complexity of the model. By this complexity assumption, we can
bound the tail probability of the difference between the empirical risk and the true risk
uniformly over the function class GM .

3.2 Non-parametric case

First, we introduce a very important inequality that is a version of Talagrand’s con-
centration inequality. The original form of Talagrand’s concentration inequality is an
inequality about the expectation of a general function f (X1, . . . , Xn) of n variables,
so the range of applications is quite large (Talagrand 1996a,b).

Let

σP (F)2 := sup
f ∈F

(P f 2 − (P f )2).

For a functional Y : G → R defined on a set of measurable functions G, we define its
norm as

‖Y‖G := sup
g∈G

|Y (g)|.

For a class F of measurable functions such that ∀ f ∈ F , ‖ f ‖∞ ≤ 1, the following
bound holds, which we refer to as the Bousquet bound (Bousquet 2002):

P

{

‖Pn − P‖F ≥ E‖Pn − P‖F

+
√

2t

n

(

σP (F)2 + 2E‖Pn − P‖F
)+ t

3n

}

≤ e−t . (10)

We can easily see that E‖Pn− P‖F and σP (F) in the Bousquet bound can be replaced
by other functions bounding from above. For example, E‖Pn − P‖F can be upper-
bounded by the Rademacher complexity and σP (F) can be bounded by using the
L2(P)-norm (Bartlett et al. 2005)D By using the above inequality, we obtain the
following theorem. The proof is summarized in Appendix 7.

Theorem 1 Let

an
0 := (Qng0)

−1,

γn := max{−Pn log(ĝn)+ Pn log(an
0 g0), 0}.

Then

hQ(a
n
0 g0, ĝn) = Op(n

− 1
2+γ +√γn).
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710 M. Sugiyama et al.

The technical advantage of using the Hellinger distance instead of the KL-divergence
is that the Hellinger distance is bounded from above by a Lipschitz continuous func-
tion while the KL-divergence is not Lipschitz continuous because log(x) diverges to
−∞ as x → 0. This allows us to utilize uniform convergence results of empirical
processes. See the proof for more details.

Remark 1 If there exists N such that ∀n ≥ N , g0 ∈ Gn , then γn = 0 (∀n ≥ N ). In
this setting,

hQ(ĝn/a
n
0 , g0) = Op(n

− 1
2+γ ).

Remark 2 an
0 can be removed because

hQ(a
n
0 g0, g0) =

√

∫

g0(1−
√

an
0 )

2dQ

= |1−
√

an
0 | = Op(1/

√
n) = Op(n

− 1
2+γ ).

Thus,

hQ(ĝn, g0) ≤ hQ(ĝn, an
0 g0)+ hQ(a

n
0 g0, g0) = Op(n

− 1
2+γ +√γn).

We can derive another convergence theorem based on a different representation of
the bias term from Theorem 1. The proof is also included in Appendix 7.

Theorem 2 In addition to Assumption 1, if there is g∗n ∈ Ĝn such that for some con-
stant c0, on the support of P and Q

g0

g∗n
≤ c2

0,

then

hQ(g0, ĝn) = Op(n
− 1

2+γ + hQ(g
∗
n , g0)).

Example 1 We briefly evaluate the convergence rate in a simple example in which
d = 1, the support of P is [0, 1] ⊆ R, F = {K1(x, x ′) | x ′ ∈ [0, 1]}, and Fn =
{K1(x, x te

j ) | j = 1, . . . , n} (for simplicity, we consider the case where the Gaussian
width σ is 1, but we can apply the same argument to another choice of σ ). Assume
that P has a density p(x) with a constant η2 such that p(x) ≥ η2 > 0 (∀x ∈ [−1, 1]).
We also assume that the true importance g0 is a mixture of Gaussian kernels, i.e.,

g0(x) =
∫

K1(x, x ′)dF(x ′) (∀x ∈ [0, 1]),

where F is a positive finite measure the support of which is contained in [0, 1].
For a measure F ′, we define gF ′(x) :=

∫

K1(x, x ′)dF ′(x ′). By Lemma 3.1 of
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Direct importance estimation for covariate shift adaptation 711

Ghosal and van der Vaart (2001), for every 0 < εn < 1/2, there exits a discrete
positive finite measure F ′ on [0, 1] such that

‖g0 − gF ′‖∞ ≤ εn, F ′([0, 1]) = F([0, 1]).
Now divide [0, 1] into bins with width εn , then the number of sample points x te

j that
fall in a bin is a binomial random variable. Let us consider the Chernoff bound—let
{Xi }ni=1 be independent random variables taking values on 0 or 1, then P(

∑n
i=1 Xi <

(1−δ)∑n
i=1 E[Xi ])<exp(−δ2 ∑n

i=1 E[Xi ]/2) for any δ>0. If exp(−η2nεn/4)/εn →
0, then by the Chernoff bound, the probability of the event

Wn := {max
j

min
x∈supp(F ′)

|x − x te
j | ≤ εn}

converges to 1 (supp(F ′)means the support of F ′) because the density p(x) is bounded
from below across the support. One can show that |K1(x, x1) − K1(x, x2)| ≤ |x1 −
x2|/√e + |x1 − x2|2/2 (∀x) because

|K1(x, x1)− K1(x, x2)|
= exp(−(x − x1)

2/2)[1− exp(x(x2 − x1)+ (x2
1 − x2

2 )/2)]
≤ exp(−(x − x1)

2/2)|x(x2 − x1)+ (x2
1 − x2

2 )/2|
≤ exp(−(x − x1)

2/2)(|x − x1||x1 − x2| + |x1 − x2|2/2)
≤ |x1 − x2|/√e + |x1 − x2|2/2.

Thus there exists α̃ j ≥ 0 ( j = 1, . . . , n) such that for g̃∗n :=
∑

j α̃ j K1(x, x te
j ), the

following is satisfied on the event Wn : ‖g̃∗n − gF ′ ‖∞ ≤ F ′([0, 1])(εn/
√

e + ε2
n/2) =

O(εn). Now define

g∗n :=
g̃∗n

Qng̃∗n
.

Then g∗n ∈ Ĝn .
Set εn = 1/

√
n. Noticing |1 − Qng̃∗n | = |1 − Qn(g̃∗n − gF ′ + gF ′ − g0 + g0)| ≤

O(εn)+ |1− Qng0| = Op(1/
√

n), we have

‖g∗n − g̃∗n‖∞ = ‖g∗n‖∞|1− Qng̃∗n | = Op(1/
√

n).

From the above discussion, we obtain

‖g∗n − g0‖∞ = Op(1/
√

n).

This indicates

hQ(g
∗
n , g0) = Op(1/

√
n),

and that g0/g∗n ≤ c2
0 is satisfied with high probability.
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For the bias term of Theorem 1, set εn = C log(n)/n for sufficiently large C > 0
and replace g0 with an

0 g0. Then we obtain γn = Op(log(n)/n).
As for the complexity of the model, a similar argument to Theorem 3.1 of Ghosal

and van der Vaart (2001) gives

log N (ε,GM , ‖ · ‖∞) ≤ K

(

log
M

ε

)2

for 0 < ε < M/2. This gives both conditions (8) and (9) of Assumption 1.3 for
arbitrary small γ > 0 (but the constant K depends on γ ). Thus the convergence rate
is evaluated as hQ(g0, ĝn) = Op(n−1/(2+γ )) for arbitrary small γ > 0.

3.3 Parametric case

Next, we show asymptotic normality of KLIEP in a finite-dimensional case. We do not
assume that g0 is contained in the model, but it can be shown that KLIEP has asymp-
totic normality around the point that is “nearest” to the true. The finite-dimensional
model we consider here is

F = Fn = {ϕl | l = 1, . . . , b} (∀n).

We define ϕ as

ϕ(x) :=
⎡

⎢

⎣

ϕ1(x)
...

ϕb(x)

⎤

⎥

⎦ .

Gn and GM
n are independent of n and we can write them as

Gn = G =
{

αTϕ | α ≥ 0
}

,

GM
n = GM =

{

αTϕ | α ≥ 0, ‖αTϕ‖∞ ≤ M
}

.

We define g∗ as the optimal solution in the model, and α∗ as the coefficient of g∗:

g∗ := arg max
g∈G,Qg=1

P log g, g∗ = αT∗ϕ. (11)

In addition to Assumption 1, we assume the following conditions:

Assumption 2

1. Q(ϕϕT) � O (positive definite).
2. There exists η3 > 0 such that g∗ ≥ η3. ��
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Let

ψ(α)(x) = ψ(α) := log(αTϕ(x)).

Note that if Q(ϕϕT) � O is satisfied, then we obtain the following inequality:

∀β �= 0, βT∇∇T Pψ(α∗)β = βT∇P
ϕT

αTϕ

∣

∣

∣

α=α∗
β = −βT P

ϕϕT

(αT∗ϕ)2
β

= −βT Q

(

ϕϕT g0

g2∗

)

β ≤ −βT Q(ϕϕT)βη0ε
2
0/ξ

2
0 < 0.

Thus, −∇∇T Pψ(α∗) is positive definite. We write it as

I0 := −∇∇T Pψ(α∗) (� O).

We set

α̌n := α̂n

an∗
,

where an∗ := (Qng∗)−1 and α̂T
n ϕ = ĝn . We first show the

√
n-consistency of α̂n/an∗

(i.e., ‖α̌n − α∗‖ = Op(1/
√

n)). From now on, let ‖ · ‖0 denote a norm defined as

‖α‖2
0 := αT I0α.

By the positivity of I0, there exist 0 < ξ1 < ξ2 such that

ξ1‖α‖ ≤ ‖α‖0 ≤ ξ2‖α‖. (12)

Lemma 1 In a finite fixed dimensional model under Assumptions 1 and 2, the KLIEP
estimator satisfies

‖α̂n/a
n∗ − α∗‖ = ‖α̌n − α∗‖ = Op(1/

√
n).

From the relationship (12), this also implies ‖α̌n−α∗‖0 = Op(1/
√

n), which indicates

hQ(ĝn, an∗g∗) = Op(1/
√

n).

The proof is provided in Appendix 7.
Next we discuss the asymptotic law of the KLIEP estimator. To do this we should

introduce an approximating cone which is used to express the neighborhood of α∗.
Let

S := {α | QαTϕ = 1, α ≥ 0},
Sn := {α | Qnα

Tϕ = 1/an∗ , α ≥ 0}.
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Note that α∗ ∈ S and α̌n, α∗ ∈ Sn . Let the approximating cones of S and Sn at α∗ be
C and Cn , where an approximating cone is defined in the following definition.

Definition 1 Let D be a closed subset in R
k and θ ∈ D be a non-isolated point in D.

If there is a closed cone A that satisfies the following conditions, we define A as an
approximating cone at θ :

– For an arbitrary sequence yi ∈ D − θ, yi → 0

inf
x∈A

‖x − yi‖ = o(‖yi‖).

– For an arbitrary sequence xi ∈ A, xi → 0

inf
y∈D−θ ‖xi − y‖ = o(‖xi‖).

Now S and Sn are convex polytopes, so that the approximating cones at α∗ are also
convex polytopes and

C = {λ(α − α∗) | α ∈ S, λ ≥ 0, λ ∈ R},
Cn = {λ(α − α∗) | α ∈ Sn, λ ≥ 0, λ ∈ R},

for a sufficiently small ε. Without loss of generality, we assume for some j , α∗,i =
0 (i = 1, . . . , j) and α∗,i > 0 (i = j + 1, . . . , b). Let νi := Qϕi . Then the approxi-
mating cone C is spanned by µi (i = 1, . . . , b − 1) defined as

µ1 :=
[

1, 0, . . . , 0,−ν1

νb

]T

, . . . , µb−1

:=
[

0, . . . , 0, 1,−νb−1

νb

]T

.

That is,

C =
{

b−1
∑

i=1

βiµi | βi ≥ 0 (i ≤ j), βi ∈ R

}

.

Let N (µ,�) be a multivariate normal distribution with meanµ and covariance�; we
use the same notation for a degenerate normal distribution (i.e., the Gaussian distri-
bution confined to the range of a rank deficient covariance matrix�). Then we obtain
the asymptotic law of

√
n(α̌n − α∗).

Theorem 3 Let Z1 ∼ N (0, I0 − P(ϕ/g∗)P(ϕ/g∗)T) and Z2 ∼ N (0, QϕϕT −
QϕQϕT), where Z1 and Z2 are independent (since αT∗ (I0− P(ϕ/g∗)P(ϕ/g∗)T)α∗ =
0, Z1 obeys a degenerate normal distribution). Further define Z := I−1

0 (Z1 + Z2)
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and λ∗ = ∇Pψ(α∗)− Qϕ. Then

√
n(α̌n − α∗) � arg min

δ∈C,λT∗ δ=0
‖δ − Z‖0 (convergence in law).

The proof is provided in Appendix 7. If α∗ > 0 (α∗ is an inner point of the feasible
set), asymptotic normality can be proven in a simpler way. Set Rn and R as follows:

Rn := I − QnϕQnϕ
T

‖Qnϕ‖2 , R := I − QϕQϕT

‖Qϕ‖2 .

Rn and R are projection matrices to linear spaces Cn = {δ | δT Qnϕ = 0} and

C = {δ | δT Qϕ = 0} respectively. Note that Rn(α̌n − α∗) = α̌n − α∗. Now α̌n
p→ α∗

indicates that the probability of the event {α̌n > 0} goes to 1. Then on the event
{α̌n > 0}, by the KKT condition

0 = √n Rn(∇Pnψ(α̌n)− an∗Qnϕ) = √n Rn(∇Pnψ(α̌n)− Qnϕ)

= √n R(∇Pnψ(α∗)− Qnϕ)−
√

n RI0 R(α̌n − α∗)+ op(1)

⇒√
n(α̌n − α∗) = √n(RI0 R)† R(∇Pnψ(α∗)− ∇Pψ(α∗)

−Qnϕ + Qϕ)+ op(1)

� (RI0 R)† RI0 Z , (13)

where † means the Moore-Penrose pseudo-inverse and in the third equality we used
the relation ∇Pψ(α∗)− Qϕ = 0 according to the KKT condition. On the other hand,
since δ = Rδ for δ ∈ C, we have

‖Z − δ‖2
0 = (Z − δ)T I0(Z − δ) = (Z − Rδ)T I0(Z − Rδ)

= (δ − (RI0 R)† RI0 Z)T RI0 R(δ − (RI0 R)† RI0 Z)

+(the terms independent of δ).

The minimizer of the right-hand side of the above equality in C is δ = (RI0 R)† RI0 Z .
This and the result of Theorem 3 coincide with (13).

In addition to Theorem 3 we can show the asymptotic law of
√

n(α̂n − α∗). The
proof is also given in Appendix 7.

Theorem 4 Let Z, Z2 and λ∗ be as in Theorem 3.
Then

√
n(α̂n − α∗) � arg min

δ∈C,λT∗ δ=0
‖δ − Z‖0 + (ZT I0α∗)α∗ (convergence in law).

The second term of the right-hand side is expressed by (ZT I0α∗)α∗ = (ZT
2 α∗)α∗.
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Remark 3 By the KKT condition and the definition of I0, it can be easily checked that

αT∗ I0δ = 0 (∀δ ∈ C ∩ {δ′ | λT∗δ′ = 0}), ‖α∗‖0 = αT∗ I0α∗ = 1.

Thus Theorem 4 gives an orthogonal decomposition of the asymptotic law of
√

n(α̂n−
α∗) to a parallel part and an orthogonal part to C∩{δ′ | λT∗δ′ = 0}. Hence in particular,
if α∗ > 0, then λ∗ = 0 and C is a linear subspace so that

√
n(α̂n − α∗) � Z .

4 Illustrative examples

We have shown that the KLIEP algorithm has preferable convergence properties. In
this section, we illustrate the behavior of the proposed KLIEP method and how it can
be applied in covariate shift adaptation.

4.1 Setting

Let us consider a one-dimensional toy regression problem of learning

f (x) = sinc(x).

Let the training and test input densities be

ptr(x) = N (x; 1, (1/2)2),

pte(x) = N (x; 2, (1/4)2),

where N (x;µ, σ 2) denotes the Gaussian density with mean µ and variance σ 2. We
create training output value {ytr

i }ntr
i=1 by

ytr
i = f (x tr

i )+ εtr
i ,

where the noise {εtr
i }ntr

i=1 has density N (ε; 0, (1/4)2). Test output value {yte
j }nte

j=1 are
also generated in the same way. Let the number of training samples be ntr = 200 and
the number of test samples be nte = 1000. The goal is to obtain a function ̂f (x) such
that the following generalization error G (or the mean test error) is minimized:

G := 1

nte

nte
∑

j=1

(

̂f (x te
j )− yte

j

)2
. (14)

This setting implies that we are considering a (weak) extrapolation problem (see Fig. 2,
where only 100 test samples are plotted for clear visibility).
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Fig. 2 Illustrative example

4.2 Importance estimation by KLIEP

First, we illustrate the behavior of KLIEP in importance estimation, where we only
use {x tr

i }ntr
i=1 and {x te

j }nte
j=1.

Figure 3 depicts the true importance and its estimates by KLIEP; the Gaussian
kernel model (7) with b = 100 is used and three different Gaussian widths are tested.
The graphs show that the performance of KLIEP is highly dependent on the Gaussian
width; the estimated importance function ŵ(x) is highly fluctuated when σ is small,
while it is overly smoothed when σ is large. When σ is chosen appropriately, KLIEP
seems to work reasonably well for this example.

Figure 4 depicts the values of the true J (see Eq. 3) and its estimate by fivefold
LCV (see Eq. 5); the means, the 25 percentiles, and the 75 percentiles over 100 trials
are plotted as functions of the Gaussian width σ . This shows that LCV gives a very
good estimate of J , which results in an appropriate choice of σ .

4.3 Covariate shift adaptation by IWLS and IWCV

Next, we illustrate how the estimated importance could be used for covariate shift
adaptation. Here we use {(x tr

i , ytr
i )}ntr

i=1 and {x te
j }nte

j=1 for learning; the test output val-

ues {yte
j }nte

j=1 are used only for evaluating the generalization performance.
We use the following polynomial regression model:

̂f (x; θ) :=
t
∑

�=0

θi x�, (15)

where t is the order of polynomials. The parameter vector θ is learned by
importance-weighted least-squares (IWLS):
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ŵ (x
i
tr)

−0.5 0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

x

w(x)

ŵ (x)
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Fig. 3 Results of importance estimation by KLIEP. w(x) is the true importance function and ŵ(x) is its
estimation obtained by KLIEP

̂θ IWLS := argmin
θ

[

ntr
∑

i=1

ŵ(x tr
i )
(

̂f (x tr
i ; θ)− ytr

i

)2

]

.

It is known that IWLS is consistent when the true importance w(x tr
i ) is used as

weights—ordinary LS is not consistent due to covariate shift, given that the model
̂f (x; θ) is not correctly specified; a model ̂f (x; θ) is said to be correctly specified if
there exists a parameter θ∗ such that ̂f (x; θ∗) = f (x) (Shimodaira 2000). For the
linear regression model (15), the above minimizer̂θ IWLS is given analytically by

̂θ IWLS = (X�
̂WX)−1X�

̂Wy,

where

[X]i,� = (x tr
i )
�−1,

̂W = diag
(

ŵ(x tr
1 ), ŵ(x

tr
2 ), . . . , ŵ(x

tr
ntr
)
)

,

y = (ytr
1 , ytr

2 , . . . , ytr
ntr
)�. (16)

diag (a, b, . . . , c) denotes the diagonal matrix with diagonal elements a, b, . . . , c.
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Fig. 4 Model selection curve for KLIEP. J is the true score of an estimated importance (see Eq. 3) and
̂JLCV is its estimate by fivefold LCV (see Eq. 5)

We choose the order t of polynomials based on importance-weighted CV (IWCV)
(Sugiyama et al. 2007). More specifically, we first divide the training samples
{ztr

i |ztr
i = (x tr

i , ytr
i )}ntr

i=1 into R disjoint subsets {Z tr
r }R

r=1. Then we learn a function
̂fr (x) from {Z tr

j } j �=r by IWLS and compute its mean test error for the remaining

samples Z tr
r :

̂Gr := 1

|Z tr
r |

∑

(x,y)∈Z tr
r

ŵ(x)
(

̂fr (x)− y
)2
.

We repeat this procedure for r = 1, 2, . . . , R, compute the average of ̂Gr over all r ,
and use the average ̂G as an estimate of G:

̂G := 1

R

R
∑

r=1

̂Gr . (17)

For model selection, we compute ̂G for all model candidates (the order t of polyno-
mials in the current setting) and choose the one that minimizes ̂G. We set the number
of folds in IWCV at R = 5. IWCV is shown to be unbiased, while ordinary CV with
misspecified models is biased due to covariate shift (Sugiyama et al. 2007).

Figure 5 depicts the functions learned by IWLS with different orders of polynomi-
als. The results show that for all cases, the learned functions reasonably go through
the test samples (note that the test output points are not used for obtaining the learned
functions). Figure 6 depicts the true generalization error of IWLS and its estimate by
IWCV; the means, the 25 percentiles, and the 75 percentiles over 100 runs are plotted
as functions of the order of polynomials. This shows that IWCV roughly grasps the
trend of the true generalization error.
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Fig. 5 Learned functions obtained by IWLS and LS, which are denoted by ̂fIWLS(x) and ̂fLS(x), respec-
tively
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Fig. 6 Model selection curves for IWLS/LS and IWCV/CV. G denotes the true generalization error of a
learned function (see Eq. 14), while ̂GIWCV and ̂GCV denote its estimate by five fold IWCV and five fold
CV, respectively (see Eq. 17)
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Fig. 7 Box plots of generalization errors

For comparison purposes, we also include the results by ordinary LS and ordinary
CV in Figs. 5 and 6. Figure 5 shows that the functions obtained by ordinary LS go
through the training samples, but not through the test samples.

Figure 6 shows that the scores of ordinary CV tend to be biased, implying that
model selection by ordinary CV is not reliable.

Finally, we compare the generalization error obtained by IWLS/LS and IWCV/CV,
which is summarized in Fig. 7 as box plots. This shows that IWLS + IWCV tends
to outperform other methods, illustrating the usefulness of the proposed approach in
covariate shift adaptation.

5 Discussion

In this section, we discuss the relation between KLIEP and existing approaches.

5.1 Kernel density estimator

The kernel density estimator (KDE) is a non-parametric technique to estimate a den-
sity p(x) from its i.i.d. samples {xk}nk=1. For the Gaussian kernel, KDE is expressed
as

p̂(x) = 1

n(2πσ 2)d/2

n
∑

k=1

Kσ (x, xk), (18)

where Kσ (x, x′) is the Gaussian kernel (6) with width σ .
The estimation performance of KDE depends on the choice of the kernel width σ ,

which can be optimized by LCV (Härdle et al. 2004)—a subset of {xk}nk=1 is used for
density estimation and the rest is used for estimating the likelihood of the held-out
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samples. Note that model selection based on LCV corresponds to choosing σ such
that the Kullback–Leibler divergence from p(x) to p̂(x) is minimized.

KDE can be used for importance estimation by first estimating p̂tr(x) and p̂te(x)

separately from {xtr
i }ntr

i=1 and {xte
j }nte

j=1, and then estimating the importance by ŵ(x) =
p̂te(x)/ p̂tr(x). A potential limitation of this approach is that KDE suffers from the
curse of dimensionality (Härdle et al. 2004), i.e., the number of samples needed to
maintain the same approximation quality grows exponentially as the dimension of the
input space increases. Furthermore, model selection by LCV is unreliable in small
sample cases since data splitting in the CV procedure further reduces the sample size.
Therefore, the KDE-based approach may not be reliable in high-dimensional cases.

5.2 Kernel mean matching

The kernel mean matching (KMM) method avoids density estimation and directly
gives an estimate of the importance at training input points (Huang et al. 2007).

The basic idea of KMM is to find ŵ(x) such that the mean discrepancy between
nonlinearly transformed samples drawn from pte(x) and ptr(x) is minimized in a
universal reproducing kernel Hilbert space (Steinwart 2001). The Gaussian kernel (6)
is an example of kernels that induce universal reproducing kernel Hilbert spaces and
it has been shown that the solution of the following optimization problem agrees with
the true importance:

min
w(x)

∥

∥

∥

∥

∫

Kσ (x, ·)pte(x)dx −
∫

Kσ (x, ·)w(x)ptr(x)dx

∥

∥

∥

∥

2

H

subject to
∫

w(x)ptr(x)dx = 1 and w(x) ≥ 0,

where ‖ · ‖H denotes the norm in the Gaussian reproducing kernel Hilbert space and
Kσ (x, x′) is the Gaussian kernel (6) with width σ .

An empirical version of the above problem is reduced to the following quadratic
program:

min
{wi }ntr

i=1

⎡

⎣

1

2

ntr
∑

i,i ′=1

wiwi ′Kσ (x
tr
i , x

tr
i ′)−

ntr
∑

i=1

wiκi

⎤

⎦

subject to

∣

∣

∣

∣

∣

ntr
∑

i=1

wi − ntr

∣

∣

∣

∣

∣

≤ ntrε and 0 ≤ w1, w2, . . . , wntr ≤ B,

where

κi := ntr

nte

nte
∑

j=1

Kσ (x
tr
i , x

te
j ).
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B (≥ 0) and ε (≥ 0) are tuning parameters which control the regularization effects.
The solution {ŵi }ntr

i=1 is an estimate of the importance at the training input points
{xtr

i }ntr
i=1.

Since KMM does not involve density estimation, it is expected to work well even in
high-dimensional cases. However, the performance is dependent on the tuning param-
eters B, ε, and σ , and they can not be simply optimized, e.g., by CV since estimates of
the importance are available only at the training input points. Thus, an out-of-sample
extension is needed to apply KMM in the CV framework, but this seems to be an open
research issue currently.

A relation between KMM and a variant of KLIEP has been studied in Tsuboi et al.
(2008).

5.3 Logistic regression

Another approach to directly estimating the importance is to use a probabilistic clas-
sifier. Let us assign a selector variable δ = −1 to training input samples and δ = 1 to
test input samples, i.e., the training and test input densities are written as

ptr(x) = p(x|δ = −1),

pte(x) = p(x|δ = 1).

An application of the Bayes theorem immediately yields that the importance can
be expressed in terms of δ as follows (Bickel et al. 2007):

w(x) = p(x|δ = 1)

p(x|δ = −1)
= p(δ = −1)

p(δ = 1)

p(δ = 1|x)
p(δ = −1|x) .

The probability ratio of test and training samples may be simply estimated by the ratio
of the numbers of samples:

p(δ = −1)

p(δ = 1)
≈ ntr

nte
.

The conditional probability p(δ|x) could be approximated by discriminating test sam-
ples from training samples using a logistic regression (LogReg) classifier, where δ
plays the role of a class variable. Below, we briefly explain the LogReg method.

The LogReg classifier employs a parametric model of the following form for
expressing the conditional probability p(δ|x):

p̂(δ|x) := 1

1+ exp
(−δ∑u

�=1 β�φ�(x)
) ,

where u is the number of basis functions and {φ�(x)}u�=1 are fixed basis functions. The
parameter β is learned so that the negative log-likelihood is minimized:
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̂β := argmin
β

⎡

⎣

ntr
∑

i=1

log

(

1+ exp

(

u
∑

�=1

β�φ�(x
tr
i )

))

+
nte
∑

j=1

log

(

1+ exp

(

−
u
∑

�=1

β�φ�(x
tr
j )

))

⎤

⎦ .

Since the above objective function is convex, the global optimal solution can be
obtained by standard nonlinear optimization methods such as Newton’s method, con-
jugate gradient, or the BFGS method (Minka 2007). Then the importance estimate is
given by

ŵ(x) = ntr

nte
exp

(

u
∑

�=1

̂β�φ�(x)

)

.

An advantage of the LogReg method is that model selection (i.e., the choice of
basis functions {φ�(x)}u�=1) is possible by standard CV, since the learning problem
involved above is a standard supervised classification problem.

6 Experiments

In this section, we compare the experimental performance of KLIEP and existing
approaches.

6.1 Importance estimation for artificial datasets

Let ptr(x) be the d-dimensional Gaussian density with mean (0, 0, . . . , 0)� and
covariance identity and pte(x) be the d-dimensional Gaussian density with mean
(1, 0, . . . , 0)� and covariance identity. The task is to estimate the importance at train-
ing input points:

wi := w(xtr
i ) =

pte(x
tr
i )

ptr(x
tr
i )

for i = 1, 2, . . . , ntr.

We compare the following methods:

KLIEP(σ ): {wi }ntr
i=1 are estimated by KLIEP with the Gaussian kernel model (7).

The number of template points is fixed at b = 100. Since the perfor-
mance of KLIEP is dependent on the kernel width σ , we test several
different values of σ .

KLIEP(CV): The kernel width σ in KLIEP is chosen based on fivefold LCV
(see Sect. 2.3).

KDE(CV): {wi }ntr
i=1 are estimated by KDE with the Gaussian kernel (18). The

kernel widths for the training and test densities are chosen separately
based on fivefold LCV (see Sect. 5.1).
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KMM(σ ): {wi }ntr
i=1 are estimated by KMM (see Sect. 5.2). The performance of

KMM is dependent on B, ε, and σ . We set B = 1000 and ε =
(
√

ntr − 1)/
√

ntr following Huang et al. (2007), and test several dif-
ferent values of σ . We used the CPLEX software for solving quadratic
programs in the experiments.

LogReg(σ ): Gaussian kernels (7) are used as basis functions, where kernels are put
at all training and test input points. Since the performance of LogReg
is dependent on the kernel width σ , we test several different values of
σ . We used the LIBLINEAR implementation of logistic regression for
the experiments (Lin et al. 2007).
We also tested another LogReg model where only 100 Gaussian ker-
nels are used and the Gaussian centers are chosen randomly from the
test input points. Our preliminary experiments showed that this does
not degrade the performance.

LogReg(CV): The kernel width σ in LogReg is chosen based on fivefold CV.

We fixed the number of test input points at nte = 1000 and consider the following
two settings for the number ntr of training samples and the input dimension d:

(a) ntr = 100 and d = 1, 2, . . . , 20,
(b) d = 10 and ntr = 50, 60, . . . , 150.

We run the experiments 100 times for each d, each ntr , and each method, and evaluate
the quality of the importance estimates {ŵi }ntr

i=1 by the normalized mean squared error
(NMSE):

NMSE := 1

ntr

ntr
∑

i=1

(

ŵi
∑ntr

i ′=1 ŵi ′
− wi
∑ntr

i ′=1wi ′

)2

.

NMSEs averaged over 100 trials are plotted in log scale in Fig. 8. Figure 8 shows
that the error of KDE(CV) sharply increases as the input dimension grows, while
KLIEP, KMM, and LogReg with appropriate kernel widths tend to give smaller errors
than KDE(CV). This would be the fruit of directly estimating the importance with-
out going through density estimation. The graph also shows that the performance
of KLIEP, KMM, and LogReg is dependent on the kernel width σ—the results of
KLIEP(CV) and LogReg(CV) show that model selection is carried out reasonably
well. Figure 9 summarizes the results of KLIEP(CV), KDE(CV), and LogReg(CV),
where, for each input dimension, the best method in terms of the mean error and com-
parable ones based on the t-test at the significance level 5% are indicated by ‘◦’; the
methods with significant difference from the best method are indicated by ‘×’. This
shows that KLIEP(CV) works significantly better than KDE(CV) and LogReg(CV).

Figure 8 shows that the errors of all methods tend to decrease as the number of
training samples grows. Again, KLIEP, KMM, and LogReg with appropriate kernel
widths tend to give smaller errors than KDE(CV), and model selection in KLIEP(CV)
and LogReg(CV) is shown work reasonably well. Figure 9 shows that KLIEP(CV)
tends to give significantly smaller errors than KDE(CV) and LogReg(CV).

Overall, KLIEP(CV) is shown to be a useful method in importance estimation.
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Fig. 8 NMSEs averaged over 100 trials in log scale

123



Direct importance estimation for covariate shift adaptation 727

2 4 6

(a)

(b)

8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

A
ve

ra
ge

 N
M

S
E

 o
ve

r 
10

0 
T

ria
ls

 (
in

 L
og

 S
ca

le
)

d (Input Dimension)

KLIEP(CV)
KDE(CV)
LogReg(CV)

50 100 150

10
−6

10
−5

10
−4

10
−3

A
ve

ra
ge

 N
M

S
E

 o
ve

r 
10

0 
T

ria
ls

 (
in

 L
og

 S
ca

le
)

n
tr
 (Number of Training Samples)

KLIEP(CV)
KDE(CV)
LogReg(CV)

Fig. 9 NMSEs averaged over 100 trials in log scale. For each dimension/number of training samples, the
best method in terms of the mean error and comparable ones based on the t-test at the significance level 5%
are indicated by ‘◦’; the methods with significant difference from the best method are indicated by ‘×’
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6.2 Covariate shift adaptation with regression and classification benchmark datasets

Here we employ importance estimation methods for covariate shift adaptation in
regression and classification benchmark problems (see Table 1).

Each dataset consists of input/output samples {(xk, yk)}nk=1. We normalize all the
input samples {xk}nk=1 into [0, 1]d and choose the test samples {(xte

j , yte
j )}nte

j=1 from the
pool {(xk, yk)}nk=1 as follows. We randomly choose one sample (xk, yk) from the pool

and accept this with probability min(1, 4(x (c)k )2), where x (c)k is the cth element of xk

and c is randomly determined and fixed in each trial of experiments; then we remove
xk from the pool regardless of its rejection or acceptance, and repeat this procedure
until we accept nte samples. We choose the training samples {(xtr

i , ytr
i )}ntr

i=1 uniformly
from the rest. Intuitively, in this experiment, the test input density tends to be lower
than the training input density when x (c)k is small. We set the number of samples at
ntr = 100 and nte = 500 for all datasets. Note that we only use {(xtr

i , ytr
i )}ntr

i=1 and
{xte

j }nte
j=1 for training regressors or classifiers; the test output values {yte

j }nte
j=1 are used

only for evaluating the generalization performance.
We use the following kernel model for regression or classification:

̂f (x; θ) :=
t
∑

�=1

θ�Kh(x,m�),

where Kh(x, x
′) is the Gaussian kernel (6) with width h and m� is a template point

randomly chosen from {xte
j }nte

j=1. We set the number of kernels at t = 50. We fixed the

Table 1 Mean test error averaged over 100 trials

Data Dim Uniform KLIEP KDE KMM KMM KMM LogReg
(CV) (CV) (0.01) (0.3) (1) (CV)

kin-8fh 8 1.00(0.34) 0.95(0.31) 1.22(0.52) 1.00(0.34) 1.12(0.37) 1.59(0.53) 1.38(0.40)

kin-8fm 8 1.00(0.39) 0.86(0.35) 1.12(0.57) 1.00(0.39) 0.98(0.46) 1.95(1.24) 1.38(0.61)

kin-8nh 8 1.00(0.26) 0.99(0.22) 1.09(0.20) 1.00(0.27) 1.04(0.17) 1.16(0.25) 1.05(0.17)

kin-8nm 8 1.00(0.30) 0.97(0.25) 1.14(0.26) 1.00(0.30) 1.09(0.23) 1.20(0.22) 1.14(0.24)

abalone 7 1.00(0.50) 0.97(0.69) 1.02(0.41) 1.01(0.51) 0.96(0.70) 0.93(0.39) 0.90(0.40)

image 18 1.00(0.51) 0.94(0.44) 0.98(0.45) 0.97(0.50) 0.97(0.45) 1.09(0.54) 0.99(0.47)

ringnorm 20 1.00(0.04) 0.99(0.06) 0.87(0.04) 1.00(0.04) 0.87(0.05) 0.87(0.05) 0.93(0.08)

twonorm 20 1.00(0.58) 0.91(0.52) 1.16(0.71) 0.99(0.50) 0.86(0.55) 0.99(0.70) 0.92(0.56)

waveform 21 1.00(0.45) 0.93(0.34) 1.05(0.47) 1.00(0.44) 0.93(0.32) 0.98(0.31) 0.94(0.33)

Average 1.00(0.38) 0.95(0.35) 1.07(0.40) 1.00(0.36) 0.98(0.37) 1.20(0.47) 1.07(0.36)

The numbers in the brackets are the standard deviation. All the error values are normalized so that the mean
error by ‘Uniform’ (uniform weighting, or equivalently no importance weighting) is one. For each dataset,
the best method and comparable ones based on the Wilcoxon signed rank test at the significance level 5%
are described in bold face. The upper half are regression datasets taken from DELVE (Rasmussen et al.
1996) and the lower half are classification datasets taken from IDA (Rätsch et al. 2001). ‘KMM(σ )’ denotes
KMM with kernel width σ
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number of kernels at a rather small number since we are interested in investigating
the prediction performance under model misspecification; for over-specified models,
importance-weighting methods have no advantage over the no importance method.
We learn the parameter θ by importance-weighted regularized least-squares (IWRLS)
(Sugiyama et al. 2007):

̂θ IWRLS := argmin
θ

[

ntr
∑

i=1

ŵ(xtr
i )
(

̂f (xtr
i ; θ)− ytr

i

)2 + λ‖θ‖2

]

. (19)

The solution̂θ IWRLS is analytically given by

̂θ IWRLS = (K�
̂WK + λI )−1K�

̂Wy,

where I is the identity matrix, y is defined by Eq. (16), and

[K]i,� := Kh(x
tr
i ,m�),

̂W := diag
(

ŵ1, ŵ2, . . . , ŵntr

)

.

The kernel width h and the regularization parameter λ in IWRLS (19) are chosen
by fivefold IWCV. We compute the IWCV score by

1

5

5
∑

r=1

1

|Z tr
r |

∑

(x,y)∈Z tr
r

ŵ(x)L
(

̂fr (x), y
)

,

where Z tr
r is the r th held-out sample set (see Sect. 4.3) and

L (ŷ, y) :=
{

(ŷ − y)2 (Regression),
1
2 (1− sign{ŷ y}) (Classification).

We run the experiments 100 times for each dataset and evaluate the mean test error:

1

nte

nte
∑

j=1

L
(

̂f (xte
j ), yte

j

)

.

The results are summarized in Table 1, where ‘Uniform’ denotes uniform weights,
i.e., no importance weight is used. The table shows that KLIEP(CV) compares favor-
ably with Uniform, implying that the importance weighting techniques combined with
KLIEP(CV) are useful for improving the prediction performance under covariate shift.
KLIEP(CV) works much better than KDE(CV); actually KDE(CV) tends to be worse
than Uniform, which may be due to high dimensionality. We tested ten different val-
ues of the kernel width σ for KMM and described three representative results in the
table. KLIEP(CV) is slightly better than KMM with the best kernel width. Finally,
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LogReg(CV) is overall shown to work reasonably well, but it performs very poorly
for some datasets. As a result, the average performance is not good.

Overall, we conclude that the proposed KLIEP(CV) is a promising method for
covariate shift adaptation.

7 Conclusions

In this paper, we addressed the problem of estimating the importance for covariate shift
adaptation. The proposed method, called KLIEP, does not involve density estimation
so it is more advantageous than a naive KDE-based approach particularly in high-
dimensional problems. Compared with KMM which also directly gives importance
estimates, KLIEP is practically more useful since it is equipped with a model selec-
tion procedure. Our experiments highlighted these advantages and therefore KLIEP
is shown to be a promising method for covariate shift adaptation.

In KLIEP, we modeled the importance function by a linear (or kernel) model,
which resulted in a convex optimization problem with a sparse solution. However,
our framework allows the use of any models. An interesting future direction to pursue
would be to search for a class of models which has additional advantages, e.g., faster
optimization (Tsuboi et al. 2008).

LCV is a popular model selection technique in density estimation and we used a
variant of LCV for optimizing the Gaussian kernel width in KLIEP. In density estima-
tion, however, it is known that LCV is not consistent under some condition (Schuster
and Gregory 1982; Hall 1987). Thus it is important to investigate whether a similar
inconsistency phenomenon is observed also in the context of importance estimation.

We used IWCV for model selection of regressors or classifiers under covariate shift.
IWCV has smaller bias than ordinary CV and the model selection performance was
shown to be improved by IWCV. However, the variance of IWCV tends to be larger
than ordinary CV (Sugiyama et al. 2007) and therefore model selection by IWCV could
be rather unstable. In practice, slightly regularizing the importance weight involved in
IWCV can ease the problem, but this introduces an additional tuning parameter. Our
important future work in this context is to develop a method to optimally regularize
IWCV, e.g., following the line of Sugiyama et al. (2004).

Finally, the range of application of importance weights is not limited to covariate
shift adaptation. For example, the density ratio could be used for anomaly detection,
feature selection, independent component analysis, and conditional density estimation.
Exploring possible application areas will be important future directions.

Appendix A: Proof of Theorems 1 and 2

A.1 Proof of Theorem 1

The proof follows the line of Nguyen et al. (2007). From the definition of γn , it follows
that

−Pn log ĝn ≤ −Pn log(an
0 g0)+ γn .
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Then, by the convexity of − log(·), we obtain

−Pn log

(

ĝn + an
0 g0

2

)

≤ −Pn log ĝn − Pn log an
0 g0

2
≤ −Pn log an

0 g0 + γn

2

⇔ −Pn log

(

ĝn + an
0 g0

2an
0 g0

)

− γn

2
≤ 0.

log(g/g′) is unstable when g is close to 0, while log
(

g+g′
2g′

)

is a slightly increasing

function with respect to g ≥ 0, its minimum is attained at g = 0, and− log(2) > −∞.
Therefore, the above expression is easier to deal with than log(ĝn/g0). Note that this
technique can be found in van der Vaart and Wellner (1996) and van de Geer (2000).

We set g′ := an
0 g0+ĝn

2an
0

. Since Qng′ = Qng0 = 1/an
0 ,

−Pn log

(

ĝn + an
0 g0

2an
0 g0

)

− γn

2
≤ 0

⇒ (Qn − Q)(g′ − g0)− (Pn − P) log

(

g′

g0

)

− γn

2

≤ −Q(g′ − g0)+ P log

(

g′

g0

)

≤ 2P

(√

g′
g0
− 1

)

− Q(g′ − g0) = Q
(

2
√

g′g0 − 2g0

)

− Q(g′ − g0)

= Q
(

2
√

g′g0 − g′ − g0

)

= −hQ(g
′, g0)

2. (20)

The Hellinger distance between ĝn/an
0 and g0 has the following bound (van de Geer

see Lemma 4.2 in 2000):

1

16
hQ(ĝn/a

n
0 , g0) ≤ hQ(g

′, g0).

Thus it is sufficient to bound |(Qn − Q)(g′ − g0)| and |(Pn − P) log
(

g′
g0

)

| from

above.
From now on, we consider the case where the inequality (8) in Assumption 1.3

is satisfied. The proof for the setting of the inequality (9) can be carried out along
the line of Nguyen et al. (2007). We will utilize the Bousquet bound (10) to bound

|(Qn−Q)(g′ −g0)| and |(Pn− P) log
(

g′
g0

)

|. In the following, we prove the assertion

in 4 steps. In the first and second steps, we derive upper bounds of |(Qn−Q)(g′ −g0)|
and |(Pn − P) log

(

g′
g0

)

|, respectively. In the third step, we bound the∞-norm of ĝn

which is needed to prove the convergence. Finally, we combine the results of Steps
1 to 3 and obtain the assertion. The following statements heavily rely on Koltchinskii
(2006).
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Step 1. Bounding |(Qn − Q)(g′ − g0)|.
Let

ι(g) := g + g0

2
,

and

GM
n (δ) := {ι(g) | g ∈ GM

n , Q(ι(g)− g0)− P log(ι(g)/g0) ≤ δ} ∪ {g0}.

Let φM
n (δ) be

φM
n (δ) := ((M + η1)

γ /2δ1−γ /2/
√

n) ∨ ((M + η1)n
−2/(2+γ )) ∨ (δ/√n).

Then applying Lemma 2 to F = {2(g − g0)/(M + η1) | g ∈ GM
n (δ)}, we obtain that

there is a constant C that only depends on K and γ such that

EQ

[

sup
g∈GM

n ,‖g−g0‖Q,2≤δ
|(Qn − Q)(g − g0)|

]

≤ CφM
n (δ), (21)

where ‖ f ‖Q,2 :=
√

Q f 2.
Next, we define the “diameter” of a set {g − g0 | g ∈ GM

n (δ)} as

D̃M (δ) := sup
g∈GM

n (δ)

√

Q(g − g0)2 = sup
g∈GM

n (δ)

‖g − g0‖Q,2.

It is obvious that

D̃M (δ) ≥ sup
g∈GM

n (δ)

√

Q(g − g0)2 − (Q(g − g0))2.

Note that for all g ∈ GM
n (δ),

Q(g − g0)
2 = Q(

√
g −√g0)

2(
√

g +√g0)
2

≤ (M + 3η1)Q(
√

g −√g0)
2 = (M + 3η1)hQ(g, g0)

2.

Thus from the inequality (20), it follows that

∀g ∈ GM
n (δ), δ ≥ Q(g − g0)− P log(g/g0)

≥ hQ(g, g0)
2 ≥ ‖g − g0‖2

Q,2/(M + 3η1),

which implies

D̃M (δ) ≤ √

(M + 3η1)δ =: DM (δ).
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So, by the inequality (21), we obtain

EQ

[

sup
g∈GM

n (δ)

|(Qn − Q)(g − g0)|
]

≤ CφM
n (D

M (δ))

≤ CM

(

δ(1−γ /2)/2√
n

∨ n−2/(2+γ ) ∨ δ
1/2

√
n

)

,

where CM is a constant depending on M , γ , η1, and K .
Let q > 1 be an arbitrary constant. For some δ > 0, let δ j := q jδ, where j is an

integer, and let

HM
δ :=

⋃

δ j≥δ

{

δ

δ j
(g − g0) | g ∈ GM

n (δ j )

}

.

Then, by Lemma 3, there exists KM for all M > 1 such that for

U M
n,t (δ) := KM

[

φM
n (D

M (δ))+
√

t

n
DM (δ)+ t

n

]

,

and an event E M
δ

E M
n,δ :=

⎧

⎨

⎩

sup
g∈HM

δ

|(Qn − Q)g| ≤ U M
n,t (δ)

⎫

⎬

⎭

,

the following is satisfied:

Q(E M
δ ) ≥ 1− e−t .

Step 2. Bounding |(Pn − P)(log(g′/g0)|.
Along the same arguments with Step 1 using the Lipschitz continuity of the function

g �→ log
(

g+g0
2g0

)

on the support of P , we also obtain a similar inequality for

H̃M
n,δ :=

⋃

δ j≥δ

{

δ

δ j
log

(

g

g0

)

| g ∈ GM
n (δ j )

}

,

i.e., there exists a constant K̃M that depends on K , M , γ , η1, and η0 such that

P(Ẽ M
δ ) ≥ 1− e−t ,
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where Ẽ M
δ is an event defined by

Ẽ M
n,δ :=

⎧

⎨

⎩

sup
f ∈H̃M

δ

|(Pn − P) f | ≤ Ũ M
n,t (δ)

⎫

⎬

⎭

,

and

Ũ M
n,t (δ) := K̃M

[

φM
n (D

M (δ))+
√

t

n
DM (δ)+ t

n

]

.

Step 3. Bounding the ∞-norm of ĝn/an
0 .

We can show that all elements of Ĝn are uniformly bounded from above with high
probability. Let

Sn :=
{

inf
ϕ∈Fn

Qnϕ ≥ ε0/2

}

∩ {3/4 < an
0 < 5/4}.

Then by Lemma 4, we can take a sufficiently large M̄ such that g/an
0 ∈ G M̄

n (∀g ∈ Ĝn)

on the event Sn and Q(Sn)→ 1.
Step 4. Combining Steps 1,2, and 3.

We consider an event

En := E M̄
n,δ ∩ Ẽ M̄

n,δ ∩ Sn .

On the event En , ĝn ∈ G M̄
n . For ψ : R+ → R+, we define the #-transform and the

�-transform as follows (Koltchinskii 2006):

ψ�(δ) := sup
σ≥δ

ψ(σ )

σ
, ψ#(ε) := inf{δ > 0 | ψ�(δ) ≤ ε}.

Here we set

δM
n (t) := (U M

n,t )
#(1/4q), V M

n,t (δ) := (U M
n,t )

�(δ),

δ̃M
n (t) := (Ũ M

n,t )
#(1/4q), Ṽ M

n,t (δ) := (Ũ M
n,t )

�(δ).

Then on the event En ,

sup
g∈G M̄

n (δ j )

|(Qn − Q)(g − g0)| ≤ δ j

δ
U M̄

n,t (δ) ≤ δ j V M̄
n,t (δ), (22)

sup
g∈G M̄

n (δ j )

∣

∣

∣

∣

(Pn − P) log

(

g

g0

)∣

∣

∣

∣

≤ δ j

δ
Ũ M̄

n,t (δ) ≤ δ j Ṽ M̄
n,t (δ). (23)
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Direct importance estimation for covariate shift adaptation 735

Take arbitrary j and δ such that

δ j ≥ δ ≥ δM̄
n (t) ∨ δ̃M̄

n (t) ∨ 2qγn .

Let

G M̄
n (a, b) := G M̄

n (b)\G M̄
n (a) (a < b).

Here, we assume ι(ĝn/an
0 ) ∈ G M̄

n (δ j−1, δ j ). Then we will derive a contradiction. In
these settings, for g′ := ι(ĝn/an

0 ),

δ j−1 ≤ |Q(g′ − g0)+ P log
g′

g0
| ≤ |(Qn − Q)(g′ − g0)| + |(Pn − P) log

g′

g0
| + γn

2

≤ δ j V M̄
n,t (δ)+ δ j Ṽ M̄

n,t (δ)+
γn

2
,

which implies

3

4q
≤ 1

q
− γn

2δ j
≤ V M̄

n,t (δ)+ Ṽ M̄
n,t (δ). (24)

So, either V M̄
n,t (δ) or Ṽ M̄

n,t (δ) is greater than 3
8q . This contradicts the definition of the

#-transform.
We can show that δM̄

n (t) ∨ δ̃M̄
n (t) = O

(

n−
2

2+γ t
)

. To see this, for some s > 0, set

δ̂1 =
(

δ(1−γ /2)/2√
n

)#

(s), δ̂2 =
(

n−2/(2+γ ))#
(s), δ̂3 =

(

δ1/2

√
n

)#

(s),

δ̂4 =
(
√

t

n
δ

)#

(s), δ̂5 =
(

t

n

)#

(s),

where all the #-transforms are taken with respect to δ. Then they satisfy

s = δ̂
(1−γ /2)/2
1 /

√
n

δ̂1
, s = n−2/(2+γ )

δ̂2
, s = δ̂

1/2
3 /

√
n

δ̂3
, s =

√

δ̂4t/n

δ̂4
, s = t/n

δ̂5
.

Thus, by using some constants c1, . . . , c4, we obtain

δ̂1 = c1n−2/(2+γ ), δ̂2 = c2n−2/(2+γ ), δ̂3 = c3n−1, δ̂4 = c4t/n, δ̂5 = c5t/n.
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736 M. Sugiyama et al.

Following the line of Koltchinskii (2006), for ε = ε1 + · · · + εm , we have

(ψ1 + · · · + ψm)
#(ε) ≤ ψ#

1 (ε1) ∨ · · · ∨ ψ#
m(εm).

Thus we obtain δM̄
n (t) ∨ δ̃M̄

n (t) = O(n−
2

2+γ t).
The above argument results in

1

16
hQ(ĝn/a

n
0 , g0) ≤ hQ(g

′, g0) = Op(n
− 1

2+γ +√γn).

��
In the following, we show lemmas used in the proof of Theorem 1. We use the same

notations as those in the proof of Theorem 1.

Lemma 2 Consider a class F of functions such that −1 ≤ f ≤ 1 for all f ∈ F and
supQ̃ log N (ε,F , L2(Q̃)) ≤ T

εγ
, where the supremum is taken over all finitely discrete

probability measures. Then there is a constant CT,γ depending on γ and T such that
for δ2 = sup f ∈F Q f 2,

E[‖Qn − Q‖F ] ≤ CT,γ

[(

n−
2

2+γ
)

∨ (δ1−γ /2/
√

n) ∨ (δ/√n)
]

. (25)

Proof This lemma can be shown along a similar line to Mendelson (2002), but we shall
pay attention to the point that F may not contain the constant function 0. Let (εi )1≤i≤n

be i.i.d. Rademacher random variables, i.e., P(εi = 1) = P(εi = −1) = 1/2, Rn(F)
be the Rademacher complexity of F defined as

Rn(F) = 1

n
EQEε sup

f ∈F

∣

∣

∣

∣

∣

n
∑

i=1

εi f (xtr
i )

∣

∣

∣

∣

∣

.

Then by Talagrand (1994),

EQ sup
f ∈F

‖Qn f 2‖ ≤ sup
f ∈F

Q f 2 + 8Rn(F). (26)

Set δ̂2 = sup f ∈F Qn f 2. Then noticing that log N (ε, F ∪ {0}, L2(Qn)) ≤ T
εγ
+ 1, it

can be shown that there is a universal constant C such that

1

n
Eε sup

f ∈F

∣

∣

∣

∣

∣

n
∑

i=1

εi f (xtr
i )

∣

∣

∣

∣

∣

≤ C√
n

∫ δ̂

0

√

1+ log N (ε, F, L2(Qn))dε

≤ C√
n

( √
T

1− γ /2 δ̂
1−γ /2 + δ̂

)

. (27)

123



Direct importance estimation for covariate shift adaptation 737

See van der Vaart and Wellner (1996) for detail. Taking the expectation with respect
Q and employing Jensen’s inequality and (26), we obtain

Rn(F) ≤ CT,γ√
n

[

(

δ2 + Rn(F)
)(1−γ /2)/2 +

(

δ2 + Rn(F)
)1/2

]

,

where CT,γ is a constant depending on T and γ . Thus we have

Rn(F) ≤ CT,γ

[(

n−
2

2+γ
)

∨ (δ1−γ /2/
√

n) ∨ (δ/√n)
]

. (28)

By the symmetrization argument (van der Vaart and Wellner 1996), we have

E[ sup
f ∈F

|(Qn − Q) f |] ≤ 2Rn(F). (29)

Combining (28) and (29), we obtain the assertion. ��
Lemma 3 For all M > 1, there exists KM depending on γ , η1, q, and K such that

Q

⎛

⎝ sup
g∈HM

δ

|(Qn − Q)g| ≥ KM

[

φM
n (D

M (δ))+
√

t

n
DM (δ)+ t

n

]

⎞

⎠ ≤ e−t .

Proof Since φM
n (D

M (δ))/δ and DM (δ)/δ are monotone decreasing, we have

E

⎡

⎣ sup
f ∈HM

δ

|(Qn − Q) f |
⎤

⎦ ≤
∑

δ j≥δ

δ

δ j
E

[

sup
g∈GM

n (δ j )

|(Qn − Q)(g − g0)|
]

≤
∑

δ j≥δ

δ

δ j
CφM

n (D
M (δ j )) ≤

∑

δ j≥δ

δ

δ
1−γ ′
j

C
φM

n (D
M (δ j ))

δ
γ ′
j

≤
∑

δ j≥δ

δ

δ
1−γ ′
j

C
φM

n (D
M (δ))

δγ
′ = CφM

n (D
M (δ))

∑

δ j≥δ

δ1−γ ′

δ
1−γ ′
j

≤ CφM
n (D

M (δ))
∑

j≥0

q− j (1−γ ′) = cγ,qφ
M
n (D

M (δ)), (30)

where cγ,q is a constant that depends on γ , K , and q, and

sup
f ∈HM

δ

√

Q f 2 ≤ sup
δ j≥δ

δ

δ j
sup

g∈GM
n (δ j )

√

Q(g − g0)2

≤ δ sup
δ j≥δ

DM (δ j )

δ j
≤ δ DM (δ)

δ
= DM (δ). (31)
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738 M. Sugiyama et al.

Using the Bousquet bound, we obtain

Q

⎛

⎝ sup
g∈HM

δ

|(Qn − Q)g|/M ≥ C

[

cγ,q
φM

n (D
M (δ))

M
+
√

t

n

DM (δ)

M
+ t

n

]

⎞

⎠ ≤ e−t ,

where C is some universal constant. Thus, there exists KM for all M > 1 such that

Q

⎛

⎝ sup
g∈HM

δ

|(Qn − Q)g| ≥ KM

[

φM
n (D

M (δ))+
√

t

n
DM (δ)+ t

n

]

⎞

⎠ ≤ e−t .

��
Lemma 4 For an event Sn :=

{

infϕ∈Fn Qnϕ ≥ ε0/2
}∩ {3/4 < an

0 < 5/4}, we have

Q (Sn)→ 1.

Moreover, there exists a sufficiently large M̄ > 0 such that g/an
0 ∈ G M̄

n (∀g ∈ Ĝn) on
the event Sn.

Proof It is obvious that

(Qn − Q)g0 = Op

(

1√
n

)

.

Thus, because of Qg0 = 1,

an
0 = 1+Op

(

1√
n

)

.

Moreover, Assumption 1.3 implies

‖Qn − Q‖Fn = Op

(

1√
n

)

.

Thus,

inf
ϕ∈Fn

Qnϕ ≥ ε0 −Op(1/
√

n),

implying

Q(S̄n)→ 1 for S̄n :=
{

inf
ϕ∈Fn

Qnϕ ≥ ε0/2

}

.
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On the event Sn , all the elements of Ĝn is uniformly bounded from above:

1 = Qn

(

∑

l

αlϕl

)

=
∑

l

αl Qn(ϕl) ≥
∑

l

αlε0/2

⇒
∑

l

αl ≤ 2/ε0.

Set M̃ = 2ξ0/ε0, then on the event Sn , Ĝn ⊂ G M̃
n is always satisfied. Since an

0 is
bounded from above and below on the event Sn , we can take a sufficiently large
M̄ > M̃ such that g/an

0 ∈ G M̄
n (∀g ∈ Ĝn). ��

A. 2 Proof of Theorem 2

The proof is a version of Theorem 10.13 in van de Geer (2000). We set g′ := g∗n+ĝn
2 .

Since Qng′ = Qnĝn = 1,

−Pn log

(

ĝn + g∗n
2g∗n

)

≤ 0

⇒ δn := (Qn − Q)(g′ − g∗n)− (Pn − P) log

(

g′

g∗n

)

≤ 2P

(√

g′
g∗n
− 1

)

−Q(g′ − g∗n)

= 2P

[

(

1− g∗n
g0

)

(√

g′
g∗n
− 1

)]

+ 2P

[

g∗n
g0

(√

g′
g∗n
− 1

)]

− Q(g′ − g∗n)

= 2Q
(√

g0 −
√

g∗n
)

(√

g0

g∗n
+ 1

)

(
√

g′ −√

g∗n
)

− hQ(g
′, g∗n)2

≤ (1+ c0)hQ(g0, g∗n)hQ(g
′, g∗n)− hQ(g

′, g∗n)2. (32)

If (1+c0)hQ(g0, g∗n)hQ(g′, g∗n) ≥ |δn|, the assertion immediately follows. Otherwise
we can apply the same arguments as Theorem 1 replacing g0 with g∗n . ��

Appendix B: Proof of Lemma 1, Theorems 3 and 4

B.1 Proof of Lemma 1

First we prove the consistency of α̌n . Note that for g′ = g∗+ĝn/an∗
2

P log

(

g′

Q(g′)g∗

)

≤ 0, −Pn log

(

g′

g∗

)

≤ 0.
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740 M. Sugiyama et al.

Thus, we have

− log Qg′ − (Pn − P) log

(

g′

g∗

)

≤ P log

(

g′

Q(g′)g∗

)

≤ 0. (33)

In a finite dimensional situation, the inequality (8) is satisfied with arbitrary γ > 0;
see Lemma 2.6.15 in van der Vaart and Wellner (1996). Thus, we can show that the
left-hand side of (33) converges to 0 in probability in a similar way to the proof of

Theorem 1. This and ∇∇P log
(

αTϕ+g∗
2g∗

) ∣

∣

∣

α=α∗
= −I0/4 ≺ O give α̂n

p→ α∗.
Next we prove

√
n-consistency. By the KKT condition, we have

∇Pnψ(α̂n)− λ̂+ ŝ(Qnϕ) = 0, λ̂Tα̂n = 0, λ̂ ≤ 0, (34)

∇Pψ(α∗)− λ∗ + s∗(Qϕ) = 0, λT∗α∗ = 0, λ∗ ≤ 0, (35)

with the Lagrange multiplier λ̂, λ∗ ∈ R
b and ŝ, s∗ ∈ R (note that KLIEP “maximizes”

Pnψ(α), thus λ̂ ≤ 0). Noticing that ∇ψ(α) = ϕ

αTϕ
, we obtain

α̂T
n∇Pnψ(α̂n)+ ŝ(Qnα̂

T
n ϕ) = 1+ ŝ = 0. (36)

Thus we have ŝ = −1. Similarly we obtain s∗ = −1. This gives

λ̂ = ∇Pnψ(α̂n)− Qnϕ, λ∗ = ∇Pψ(α∗)− Qϕ. (37)

Therefore, α̂n
p→ α∗ and g∗ ≥ η3 > 0 gives

λ̂
p−→ λ∗.

Thus the probability of {i | λ̂i < 0} ⊇ {i | λ∗,i < 0} goes to 1 (λ̂i and λ∗,i mean
the i th element of λ̂ and λ∗ respectively). Recalling the complementary condition
λ̂Tα̂n = 0, the probability of {i | α̂n,i = 0} ⊇ {i | λ∗,i < 0} goes to 1. Again by the
complementary condition λT∗α∗ = 0, the probability of

(α̌n − α∗)Tλ∗ = 0

goes to 1. In particular (α̌n − α∗)Tλ∗ = op(1/n).
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Direct importance estimation for covariate shift adaptation 741

Set Z ′n :=
√

n(∇Pnψ(α∗) − Qnϕ − (∇Pψ(α∗)− Qϕ)). By the optimality and
consistency of α̌n , we obtain

0 ≤ Pnψ(α̌n)− Pnψ(α∗)

= (α̌n − α∗)T∇Pnψ(α∗)− 1

2
(α̌n − α∗)T I0(α̌n − α∗)+ op

(

‖α̌n − α∗‖2
)

= (α̌n − α∗)T(λ∗ + Z ′n√
n
)− 1

2
(α̌n − α∗)T I0(α̌n − α∗)+ op

(

‖α̌n − α∗‖2
)

= (α̌n − α∗)T Z ′n√
n
− 1

2
(α̌n − α∗)T I0(α̌n − α∗)+ op

(

‖α̌n − α∗‖2 + 1/n
)

(38)

because ∇∇T Pnψ(α∗) = −I0 + op(1) and (α̌n − α∗)Tλ∗ = op(1/n). Thus noticing
Zn/

√
n = Op(1/

√
n), we obtain the assertion. ��

B. 2 Proof of Theorem 3

The proof relies on Self and Liang (1987) and Fukumizu et al. (2004), but we shall
pay attention to the fact that the feasible parameter set stochastically behaves and the
true importance g0 may not be contained in the model. Set

Zn := √nI−1
0 (∇Pnψ(α∗)− Qnϕ − (∇Pψ(α∗)− Qϕ)) .

By Lemma 1 and the inequality (38), we obtain

0 ≤ (α̌n − α∗)T∇Pnψ(α∗)− 1

2
(α̌n − α∗)T I0(α̌n − α∗)+ op (1/n)

= −1

2
‖α̌n − α∗ − Zn/

√
n‖2

0 +
1

2
‖Zn/

√
n‖2

0 + op (1/n) .

We define

ρ(α) := ‖α − α∗ − Zn/
√

n‖2
0,

α̃n := arg min
α∈Sn ,λT∗α=0

ρ(α), α̈n := arg min
α∈S,λT∗α=0

ρ(α).

In the following, we show (Step 1)
√

n(α̌n − α̃n) = op(1), (Step 2)
√

n(α̃n − α̈n) =
op(1), and finally (Step 3) derive the asymptotic law of

√
n(α̈n − α∗) and simulta-

neously it gives the asymptotic law of
√

n(α̌n − α∗).
Step 1. Derivation of

√
n(α̌n − α̃n) = op(1).

ρ(α∗) ≥ ρ(α̃n) implies

‖α̃n − α∗‖0 ≤ ‖α̃n − α∗ − Zn/
√

n‖0 + ‖Zn/
√

n‖0 ≤ 2‖Zn/
√

n‖0 = Op(1/
√

n).
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742 M. Sugiyama et al.

As shown in the proof of Lemma 1, the probability of λT∗ α̌n = 0 goes to 1. This and
the optimality of α̃n gives

− 1

2
ρ(α̃n) ≥ −1

2
ρ(α̌n)− op(1/n). (39)

Due to the optimality of α̌n , and applying the Taylor expansion of log-likelihood as in
(38) to α̃n instead of α̌n we have

− 1

2
ρ(α̃n) ≤ −1

2
ρ(α̌n)+ op (1/n) . (40)

The condition λT∗ α̃n = 0 is needed to ensure this inequality. If this condition is not
satisfied, we cannot assure more than λT∗ (α̃n − α∗) = Op(1/

√
n). Combining (39)

and (40), we obtain

−op(1/n) ≤ 1

2

(

ρ(α̌n)− ρ(α̃n)
) ≤ op(1/n).

By the optimality of α̃n and the convexity of Sn , we obtain

‖√n(α̌n − α̃n)‖2
0 ≤ ‖

√
n(α̌n − α∗)− Zn‖2

0 − ‖
√

n(α̃n − α∗)− Zn‖2
0

= op(1). (41)

Step 2. Derivation of
√

n(α̃n − α̈n) = op(1).
In a similar way to the case of α̃n , we can show

α̈n − α∗ = Op(1/
√

n).

Let α̃′n and α̈′n denote the projection of α̃n to S and α̈n to Sn :

α̃′n := arg min
α∈S,λT∗α=0

‖α̃n − α‖0, α̈′n := arg min
α∈Sn ,λT∗α=0

‖α̈n − α‖0.

Then

‖√n(α̈n − α∗)− Zn‖0 ≥ ‖√n(α̈′n − α∗)− Zn‖0 − ‖√n(α̈′n − α̈n)‖0

≥ ‖√n(α̃n − α∗)− Zn‖0 − ‖√n(α̈′n − α̈n)‖0,

and similarly

‖√n(α̃n − α∗)− Zn‖0 ≥ ‖√n(α̈n − α∗)− Zn‖0 − ‖√n(α̃′n − α̃n)‖0.
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Direct importance estimation for covariate shift adaptation 743

Thus

−‖√n(α̃′n − α̃n)‖0 ≤ ‖√n(α̃n − α∗)− Zn‖0 − ‖√n(α̈n − α∗)− Zn‖0

≤ ‖√n(α̈′n − α̈n)‖0.

So, if we can show

‖√n(α̃′n − α̃n)‖0 = op(1), ‖√n(α̈′n − α̈n)‖0 = op(1), (42)

then

‖√n(α̈n − α̃n)‖0 = ‖
√

n(α̈n − α∗)−
√

n(α̃′n − α∗)+
√

n(α̃′n − α̃n)‖0

≤ ‖√n(α̈n − α∗)−
√

n(α̃′n − α∗)‖0 + ‖
√

n(α̃′n − α̃n)‖0

≤
√

‖√n(α̃′n − α∗)− Zn‖2
0 − ‖

√
n(α̈n − α∗)− Zn‖2

0 + op(1)

≤
√

op(1)+ ‖
√

n(α̃n − α∗)− Zn‖2
0 − ‖

√
n(α̈n − α∗)− Zn‖2

0 + op(1)

≤ op(1). (43)

Thus it is sufficient to prove (42).
Note that as n →∞, the probabilities of α̈n ∈ α∗ + C and α̃n ∈ α∗ + Cn tend to 1

because ‖α̃n−α∗‖, ‖α̈n−α∗‖ = op(1). Similar toµi , we define µ̂i using ν̂i := Qnϕi

instead of νi . It can be easily seen that

µ̂i
p−→ µi ,

and with high probability

Cn =
{

b−1
∑

i=1

βi µ̂i | βi ≥ 0 (i ≤ j), βi ∈ R

}

,

where j is the number satisfying α∗,i = 0 (i = 1, . . . , j) and α∗,i > 0 (i = j +
1, . . . , b).

As mentioned above, α̃n − α∗ ∈ Cn and α̈n − α∗ ∈ C with high probability. Thus,
α̃n and α̈n can be expressed as α̃n − α∗ =∑

β̃i µ̂i and α̈n − α∗ =∑

β̈iµi . Moreover
α̃n − α∗ = Op(1/

√
n) and α̈n − α∗ = Op(1/

√
n) imply β̃i , β̈i = Op(1/

√
n). Since

α̃n, α̈n, α∗ ∈ {α | λT∗α = 0}, β̃i = 0 and β̈i = 0 for all i such that λ∗,i �= 0. This gives

∑

β̃iµi ∈ C ∩ {δ | λT∗δ = 0},
∑

β̈i µ̂i ∈ Cn ∩ {δ | λT∗δ = 0}.

Thus, with high probability, the following is satisfied:
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√
n‖α̃n − α̃′n‖0 ≤ √n

∥

∥

∥

∑

β̃i µ̂i −
∑

β̃iµi

∥

∥

∥

0
≤ √n

∑

|β̃i |‖µ̂i − µi‖0 = op(1),

√
n‖α̈n − α̈′n‖0 ≤ √n

∥

∥

∥

∑

β̈iµi −
∑

β̈i µ̂i

∥

∥

∥

0
≤ √n

∑

|β̈i |‖µ̂i − µi‖0 = op(1),

which imply (42). Consequently (43) is obtained.

Step 3. Derivation of the asymptotic law of
√

n(α̌n − α∗).
By (41) and (43), we have obtained

√
n‖α̌n − α̈n‖0 = op(1). (44)

By the central limit theorem,

√
n(∇Pnψ(α∗)−∇Pψ(α∗)) � Z1,

√
n(Qnϕ − Qϕ) � Z2.

The independence of Z1 and Z2 follows from the independence of Pn and Qn . Thus
by the continuous mapping theorem, we have

Zn � I−1
0 (Z1 + Z2).

A projection to a closed convex set is a continuous map. Thus, by the continuous
mapping theorem, it follows that

√
n(α̈n − α∗) � arg min

δ∈C,λT∗ δ=0
‖δ − Z‖0.

By (44) and Slusky’s lemma,

√
n(α̌n − α∗) � arg min

δ∈C,λT∗ δ=0
‖δ − Z‖0.

This concludes the proof. ��

B. 3 Proof of Theorem 4

Note that

√
n(α̂n − α∗)−√n(α̌n − α∗) = √n(1− 1/an∗ )α̂n .

From the definition,
√

n(1/an∗ − 1) = √
n(Qn(g∗) − 1) � αT∗ Z2. Now

αT∗ (I0 − P(ϕ/g∗)P(ϕT/g∗))α∗ = 0 which implies αT∗ Z1 = 0 (a.s.), thus αT∗ Z2 =
αT∗ I0 Z (a.s.). Recalling α̂n

p→ α∗, we obtain the assertion by Slusky’s lemma and the
continuous mapping theorem. ��
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