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The incorporation of prior phase information into a

maximum-likelihood formalism has been shown to strengthen

model re®nement. However, the currently available likelihood

re®nement target using prior phase information has short-

comings; the `phased' re®nement target considers experi-

mental phase information indirectly and statically in the form

of Hendrickson±Lattman coef®cients. Furthermore, the

current re®nement target implicitly assumes that the prior

phase information is independent of the calculated model

structure factor. This paper describes the derivation of a

multivariate likelihood function that overcomes these short-

comings and directly incorporates experimental phase infor-

mation from a single-wavelength anomalous diffraction

(SAD) experiment. This function, which simultaneously

re®nes heavy-atom and model parameters, has been imple-

mented in the re®nement program REFMAC5. The SAD

function used in conjunction with the automated model-

building procedures of ARP/wARP leads to a successful

solution when current likelihood functions fail in a test case

shown.
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1. Introduction

A great deal of information is gained in experimentally

phasing a molecule, yet the default procedure for automated

model-building procedures combined with iterative structure

re®nement (Perrakis et al., 1999; Terwilliger, 2003) only

considers the diffraction data obtained from the native crystal

and neglects any available experimental phase information.

Previously, the incorporation of prior phase information has

been shown to strengthen model re®nement (Pannu et al.,

1998). However, the functional form of the likelihood re®ne-

ment target encodes the prior phase information statically in

the form of Hendrickson±Lattman coef®cients (Hendrickson

& Lattman, 1970). The likelihood function is then dependent

on the reliability and accuracy of the phasing program used to

generate the coef®cients and does not allow the simultaneous

re®nement of the associated heavy-atom and model para-

meters. Finally, the derivation of the current re®nement target

incorporating prior phase information assumes that the prior

phase distribution is independent of the model. This

assumption is incorrect, as the phase information is used to

build the model. All of the above shortcomings of the like-

lihood function utilizing prior phase information from

Hendrickson±Lattman coef®cients probably contributed to

the reluctance to include prior information in automated

model-building procedures.

To overcome these assumptions, a multivariate analysis

directly modelling the correlations and errors in a phasing

experiment and model re®nement should be applied; the



resulting multivariate function would directly consider the

diffraction data collected in the experiment. Multivariate

statistics have played an important role in crystallography (e.g.

see Bricogne, 2000) and joint probability distributions have

recently led to promising results in substructure detection

(Burla et al., 2002) and phasing (Giacovazzo & Siliqi, 2001a,b,

2004; Pannu et al., 2003; Pannu & Read, 2004).

Below, we derive a multivariate single-wavelength anom-

alous diffraction (SAD) likelihood function that directly

incorporates the measured Friedel pairs, jF�j and jFÿj, and

the associated calculated model structure factors into struc-

ture re®nement. The function allows for the simultaneous

re®nement of the heavy-atom and model parameters and thus

directly and dynamically considers the experimental phase

information from a SAD experiment.

The SAD likelihood function has been implemented in the

program REFMAC5 (Murshudov et al., 1997) from the CCP4

package (Collaborative Computational Project, Number 4,

1994). The newly implemented SAD function was compared

with other re®nement targets and performs favourably. In a

test case, the SAD function in conjunction with the automated

model-building procedures implemented in ARP/wARP

(Perrakis et al., 1999) leads to a correctly built model when

current likelihood functions fail.

2. Implementation and test cases

An analysis of the complex multivariate distribution applied

to many crystallographic experiments, including heavy-atom

phasing by anomalous scattering and model re®nement in the

presence of multiple data sets and models, has been performed

(Pannu et al., 2003). The distribution discussed in this paper

can be applied to account explicitly for the correlations and

errors in a SAD experiment when applied to both SAD

phasing and model re®nement. The multivariate conditional

probability distribution for the re®nement of the two observed

structure-factor amplitudes, jF�j and jFÿj, given the

Friedel structure factors calculated from the model,

F�
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In the above equations, �4 is the (Hermitian) covariance

matrix of the complex Gaussian distribution P(F�, Fÿ, F�
c ,

Fÿ
c ), with the elements of its inverse denoted zjk = ajk + ibjk.�2

is the covariance matrix of the bivariate Gaussian distribution

P(F�
c , F

ÿ
c ), with real and imaginary components of its inverse

denoted cij and dij. The covariance matrices �4 and �2 were

calculated using the expressions derived by Pannu et al. (2003)

and account for experimental errors and the correlation

between structure factors.

In Appendix A, the probability distribution of two obser-

vations given N models is derived. The SAD likelihood

function shown above is a special case of this general distri-

bution when there are only two models (i.e. N � 2). A like-

lihood function conditional on N models may be applied to

multiple models output from an NMR experiment or from

simulated-annealing optimization techniques (Rice &

BruÈnger, 1994) or when re®ning N related models obtained

from conditional dynamics (Scheres & Gros, 2001).

The `SAD' likelihood function discussed below is the sum

over all re¯ections of the minus natural logarithm of the

derived probability distribution (1) to obtain a function

suitable for minimization. To ensure that the matrix remains

positive de®nite, the inverse of the covariance matrix was

calculated from the eigenvectors using only positive eigen-

values with LAPACK routines (Anderson et al., 1999).

The SAD function derived above was implemented in the

program REFMAC5 (version 5.1.24; Murshudov et al., 1997)

and compared with the `Rice' likelihood function lacking prior

phase information (Bricogne & Irwin, 1996; Murshudov et al.,

1997; Pannu & Read, 1996), denoted below as Rice, and the

likelihood function encoding prior phase information with

Hendrickson±Lattman coef®cients (Pannu et al., 1998),

denoted below as MLHL.

For the two test cases described below, the automated

model-building program ARP/wARP (version 6.0; Perrakis et

al., 1999) employing the modi®ed REFMAC5 program from

the CCP4 suite (version 4.2.2; Collaborative Computational

Project, Number 1994) for iterative model re®nement was

used. The sequence information for the protein was not

supplied to ARP/wARP. Furthermore, the default parameters

were used in the running of the program, unless otherwise

stated below. In particular, the same low-resolution cutoff,

obtained by viewing a Wilson plot as suggested by ARP/

wARP, was used in both test cases for all target functions. We

have also re-run the test cases using no low-resolution cutoff.

While using the whole resolution range, there were no

signi®cant changes over the results presented below for the
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SAD function, while the MLHL function produced signi®-

cantly poorer results in both test cases and the Rice function

produced poorer results in the thioesterase test case.

For both test cases, the anomalous substructure was deter-

mined, re®ned and phased automatically using the CRANK

suite (Ness et al., 2004). CRANK used the programs

CRUNCH2 (de Graaff et al., 2001) for substructure detection,

BP3 for substructure re®nement and phasing (Pannu & Read,

2004) and DM for density modi®cation (Cowtan, 1994). The

Hendrickson±Lattmann coef®cients required for the MLHL

function were obtained from BP3. Furthermore, the re®ned

anomalous substructure from BP3 was input into ARP/wARP

and REFMAC5 for all target functions in order to allow

further re®nement. For all likelihood functions and test cases,

250 cycles of automated model building with iterative struc-

ture re®nement were performed and the results of each like-

lihood function are compared with the ®nal re®ned structure

using the program SFTOOLS (Bart Hazes, unpublished

work).

2.1. Subtilisin test-data set

The ®rst test case used was the protein subtilisin, which

contains an anomalous signal from three calcium ions. The

data were collected using synchrotron radiation at a wave-

length of 1.54 AÊ . More information on this data set can be

obtained from Dauter et al. (2002). The resolution range 1.77±

8.2 AÊ was used for all likelihood functions and the starting

map had a relatively high phase error of about 58�. The quality

of the starting map and the performance of the three like-

lihood functions in the automated model-building test are

shown in Table 1.

The results show that ARP/wARP in combination with the

SAD function in REFMAC5 was able to build the vast

majority of the model (256 of 275 residues), while the other

re®nement targets failed. We were unable to improve the

performance of the other target functions by changing any

option in ARP/wARP or REFMAC5. The large difference in

phase error and map correlation between the likelihood

functions highlights the success of the SAD function. Fig. 1

shows the models built by ARP/wARP using the SAD

re®nement target (shown in red) superimposed on the ®nal

re®ned model (shown in blue).

Fig. 2 shows the change in the phase error as a function of

the automated model-building cycle for all three likelihood

functions. The Rice function was unable to lower the phase

error. The MLHL target shows a similar phase-error

improvement as the SAD function in the ®rst cycles, but does

not build or improve the model in subsequent cycles. In

contrast, the SAD function continues to improve the phases

allowing ARP/wARP/REFMAC5 to build the model to near-

completion.

2.2. Thioesterase test-data set

The second test case used is a selenomethionine thio-

esterase peak-wavelength data set collected at beamline X9B

at Brookhaven National Laboratory with anomalous signal

from the eight Se atoms (Li et al., 2000; Dauter et al., 2002).

The resolution range 2.52±8.3 AÊ was used for all likelihood

functions in the procedure and the starting map input into the

automated model-building procedure had a relatively low

phase error of about 42�. The results of this automated model-
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Figure 1
Subtilisin models constructed by ARP/wARP using the SAD function
(shown in red) superimposed on the ®nal re®ned structure (shown in
blue).

Figure 2
The dependence of phase error versus automated model-building cycle
for all three likelihood functions in the subtilisin test case. The black
curve shows the change in the phase error for the Rice function, the light
grey curve is for MLHL and the dark grey curve is for the SAD function.

Table 1
Statistics for the automated model building of subtilisin.

Starting map Rice MLHL SAD

Map correlation 0.5403 0.5581 0.7159 0.9435
Mean cos(phase error) 0.43 0.33 0.54 0.87
Mean phase error 57.78 65.34 48.98 19.81
No. residues built N/A 3 40 256



building test case for the three likelihood functions are shown

in Table 2.

Table 2 shows that both likelihood functions incorporating

prior phase information performed equally well and to the

same phase error, while the likelihood function lacking prior

phase information (i.e. the Rice function) performed signi®-

cantly more poorly.

3. Discussion

The derived and implemented multivariate likelihood function

directly incorporates diffraction data collected from a SAD

experiment and models the correlations and errors that occur

in the experiment and re®nement process. As a result, the

SAD likelihood function can re®ne and improve model and

heavy-atom parameters together, allowing direct and dynamic

incorporation of the experimental phase information. The

simultaneous re®nement of the available parameters

combined with a multivariate analysis in the SAD likelihood

function appeared to result in a synergic effect that enabled

ARP/wARP and REFMAC5 to build the subtilisin molecule

successfully when current likelihood targets failed. From the

thioesterase test case, it appears that if the starting experi-

mental phase information is of suf®cient quality, the existing

likelihood function incorporating prior phase information can

be used to construct automatically a model of similar quality

to the SAD function.

The above results are promising, but further test cases will

be performed to determine whether the trend continues. In

particular, test cases with diffraction data at lower resolution

will be performed to determine whether the additional infor-

mation provided by the direct and dynamic incorporation of

experimental phase information will push the resolution limits

needed for automated building techniques.

In the future, likelihood-based gradient difference maps

(e.g. de La Fortelle & Bricogne, 1997) will be considered in

order to identify any previously undetected anomalous sites.

In addition, a multivariate likelihood function will be imple-

mented that incorporates the experimental diffraction data

from any variety of phasing experiments [i.e. S/MIR(AS) and/

or MAD].

The distribution derived above can also be used for the

re®nement of structure and structure±ligand complexes that

directly model the correlation between the observations and

the models. Combining the diffraction information from a

native structure and a structure in a complex may help

emphasize the differences between them, which is usually of

major interest to structural biologists, and considering all

available information directly may lead to more ef®cient

structure determinations.

APPENDIX A
A1. Derivation of the required distribution

The conditional probability distribution of two observed

structure-factor amplitudes, given M model structure factors,

will be derived. The SAD likelihood function is the special

case when M = 2.

The starting point for the derivation will be the multivariate

complex Gaussian probability distribution of structure factors

(Pannu et al., 2003). Below, N structure factors will be

considered, F1, F2, F3, . . . , FN, where F1 and F2 represent the

`observed' structure factors and N =M + 2. The amplitude of a

structure factor Fi will be denoted |Fi| and its phase �i.

P�F1;F2; . . . ;FN� �
1

�N det��N�
exp ÿ

P

N

i�1

P

N

j�1

F�
i zijFj

 !

: �3�

In the above expression, �N is the Hermitian covariance

matrix of this N-dimensional probability distribution and zij
denotes the ijth element of the inverse matrix of �N. The

equation can be rewritten by separately summing over the

diagonal and off-diagonal terms,

P�F1; F2; . . . ;FN� �
1
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�4�
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" #( )

:

After transforming to polar coordinates and simplifying, we

obtain

P�jF1j;�1; jF2j; �2; . . . ; jFNj; �N� �5�

�

QN

i�1 jFij

�N det��N�
exp

�

ÿ
P
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�
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2aii

�
P

N

j�i�1

f2jFijjFjj
�

aij cos��j ÿ �i� ÿ bij sin��j ÿ �i��g

��

:

In the above equation, aij and bij represent the real and

imaginary components of the inverse covariance matrix. The

unknown phase angles �1 and �2 are now integrated out.
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Table 2
Statistics for the automated model building of thioesterase.

Starting map Rice MLHL SAD

Map correlation 0.7672 0.4878 0.8713 0.8703
Mean cos(phase error) 0.63 0.29 0.75 0.75
Mean phase error 41.81 67.99 31.73 31.68
No. residues built N/A 22 539 544



P�jF1j; jF2j; jF3j; �3; . . . ; jFNj; �N�
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The inner integral can be solved analytically,
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I0(x) is the modi®ed Bessel function of zeroth order. The

marginal distribution can now be written as a function invol-

ving only one integral,
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Using the de®nition of conditional probability, the required

probability distribution can be obtained as

P�jF1j; jF2j;jF3j; �3; . . . ; jFNj; �N�
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P(|F1|, |F2|, |F3|, �3, . . . , |FN|, �N) is given in (8) and P(|F3|, �3,

. . . , |FN|, �N) can be obtained from (5), denoting the corre-

sponding covariance matrix by�Nÿ2 and the ijth element of its

inverse by cij + idij. Thus, the required distribution can be

expressed as
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