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Abstract Accurately simulating the spatiotemporal distribution of mountain snow water equivalent

improves estimates of available meltwater and benefits the water resource management community. In

this paper we present the first integration of lidar-derived distributed snow depth data into a physics-based

snowmodel using direct insertion. Over four winter seasons (2013–2016) the National Aeronautics and Space

Administration/Jet Propulsion Laboratory (NASA/JPL) Airborne Snow Observatory (ASO) performed

near-weekly lidar surveys throughout the snowmelt season to measure snow depth at high resolution over

the Tuolumne River Basin above Hetch Hetchy Reservoir in the Sierra Nevada Mountains of California. The

modeling component of the ASO program implements the iSnobal model to estimate snow density for

convertingmeasured depths to snowwater equivalent and to provide temporally complete snow cover mass

and thermal states between flights. Over the four years considered in this study, snow depths from 36

individual lidar flights were directly inserted into the model to provide updates of snow depth and

distribution. Considering all updates to the model, the correlation between ASO depths and modeled depths

with and without previous updates was on average r2 = 0.899 (root-mean-square error = 12.5 cm) and

r2 = 0.162 (root-mean-square error = 41.5 cm), respectively. The precise definition of the snow depth

distribution integrated with the iSnobal model demonstrates how the ASO program represents a new

paradigm for the measurement and modeling of mountain snowpacks and reveals the potential benefits for

managing water in the region.

Plain Language Summary In regions that depend primarily on snow to support life, water

availability is becoming an increasingly important topic. National Aeronautics and Space Administration

(NASA)’s Airborne Snow Observatory (ASO) is a new platform for estimating the amount of water stored in

mountain snowpacks. Since 2013, the ASO has combined detailed measurements of snow depth from an

aircraft with snowpack density estimates from a physics-based snow model to provide predictions of total

snowwater equivalent stored in the Tuolumne River Basin in the California Sierra Nevada. This work describes

the process of updating the snow model using the measured ASO snow depths through a direct insertion

process. When the distribution of all the snow in the basin is known more accurately, the model results

are improved.

1. Introduction

In the western United States, mountain snowmelt is the primary source of water supply for domestic, agricul-

tural, and ecosystem use; provides hydropower electricity to millions of people; and replenishes ground-

water. In the state of California, the Sierra Nevada seasonal snowpack on average provides an additional

70% of water storage to the existing man-made reservoir system (Dettinger & Anderson, 2015). For most

of the twentieth century, the relative stability of the relationship between point measurements of streamflow

and snow water equivalent (SWE) at index sites allowed the use of empirical relationships for making deci-

sions that affect downstream consumers and stakeholders, albeit with seasonal forecast errors of 20% to

greater than 40% (Dozier, 2011). However, a warming climate shortens the duration of seasonal snow cover

in the Northern Hemisphere, decreasing snowfall and subsequently the naturally stored water supply
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(Derksen & Brown, 2012; Vaughan et al., 2013). With ever increasing demand, low precipitation totals, abnor-

mally higher temperatures, and a reduced snowpack (Griffin & Anchukaitis, 2014; Henn et al., 2018; Margulis

et al., 2016; Wilson et al., 2016), water supply forecasting is proving to be more important than ever before.

The recent 2012–2015 California drought has reiterated the need to identify new methods to quantify water

storage in mountain snowpacks.

Changes in the timing of snow cover accumulation and ablation alter the relationship between streamflow

and SWE at index sites and drive the need for new approaches to better inform water resource management

(Vano et al., 2012). To further complicate matters, snowpack mass (SWE) can change drastically over small dis-

tances in mountain basins because of the combined effects of highly variable wind fields, solar and thermal

radiation, and topographic and vegetation structure (Anderton et al., 2004; Conway & Abrahamson, 1984;

Grünewald et al., 2010). The timing of melt and delivery of water to the soil surface is never uniform, following

high energy locations across the landscape as solar zenith angles and temperatures increase (Essery &

Pomeroy, 2004; Luce et al., 1999). The physically based modeling and remote sensing assimilation approach

presented here aims to address the source of greatest uncertainty for reservoir managers by more explicitly

defining the quantity of water entering the mountain hydrologic system.

The National Aeronautics and Space Administration/Jet Propulsion Laboratory (NASA/JPL) Airborne Snow

Observatory (ASO) launched during the winter of 2013 to provide distributed SWE and albedo estimates over

large mountain basins. The ASO program provides more detailed estimates of basin snowpack storage for

water managers and researchers through a unique coupling of multitemporal remote sensing and physically

based snow modeling (Painter et al., 2016). To accomplish this, ASO performs airborne surveys every few

weeks during accumulation and weekly intervals from peak SWE onward, deriving snow depths by differen-

cing snow-free from snow-covered elevation surfaces obtained by its lidar scanner. The ASO-derived snow

depth products are combined with iSnobal simulated snow density fields to produce 50-m spatial resolution

daily images of SWE distribution and volume. iSnobal (Marks et al., 1999) is a distributed, physically based

energy and mass balance snow model that explicitly solves for a number of snowpack properties including

snow depth, density, and SWE.

Vögeli et al. (2016) demonstrated the value of redefining the spatial snow depth distribution of a physically

based model using snow depths derived from a single lidar survey. Brauchli et al. (2017) took that approach a

step further by demonstrating how streamflow responded to the more accurate snow distribution. Following

those efforts, this paper describes how the ASO-derived snow depths were integrated into the iSnobal snow

model in near real time over the Tuolumne Basin in the central Sierra Nevada for the first four years of the ASO

program (2013–2016). This approach is providing water managers with periodic spot checks of how existing

legacy models have been performing throughout the season and establishing the foundation for a new

modeling paradigm.

2. Study Area

The Tuolumne River and its tributaries provide the fresh water supply for over 2 million people in the San

Francisco Bay Area through a combination of winter snow storage in the upper elevations and careful water

management of the system’s reservoirs. The Tuolumne extends from just above the Central Valley floor to the

Sierra crest and includes much of Yosemite National Park. Elevations within the 1,180 km2 basin above the

Hetch Hetchy Reservoir (Figure 1) range from 1,150–3,999 m above sea level, with slightly less than half of

the basin below timberline. Tree line occurs at approximately 2,900 m, and the majority of the alpine terrain

is composed of exposed granite bedrock. Historically, the lowest elevations (1,150–1,600 m, 4% of basin area)

are rain-dominated where approximately 60% of the precipitation falls as rain. The region between 1,600–

2,000 m (6% of basin area) is the rain-snow transition zone where most storms are a mix of rain and snow.

The region above 2,000 m (90% of basin area) is snow-dominated where more than 70% of precipitation falls

as snow (Lundquist et al., 2016). However, it is possible for rain to fall at the highest elevations of the basin

and for snowfall to occur at the lowest. Two relatively small receding glaciers (Lyell and Maclure) are found

in the southwest portion of the basin, but this work does not treat them separately from nonglaciated terrain.

Owing to the basin’s location within the Yosemite National Park Wilderness Area, establishment and mainte-

nance of weather monitoring stations is limited, and therefore, the measurement network used for the

modeling work presented here is sparse (Figure 1). Additionally, scheduled routine site maintenance is
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generally difficult or impossible since sites positioned in remote locations can only be accessed on foot or by

horseback in the short summer snow-free season.

3. Background and Methodology

3.1. The Airborne Snow Observatory

Light detection and ranging (lidar) has been demonstrated to be an accurate tool for observing the spatial

variability of snow depths in complex terrain (Deems et al., 2006, 2013; Prokop, 2008; Tinkham et al., 2014;

Trujillo et al., 2007). ASO is the first operational campaign to use airborne lidar coupled with imaging spectro-

metry for hydrological forecasting applications (Painter et al., 2016). Its 24-hr turnaround time from the

moment of aircraft landing to delivery of SWE products is crucial to the ASO mission objective due to the

dynamic nature of the mountain snowpack.

Snow depths were measured by differencing a baseline snow-free surface from snow-on surfaces, obtained

using ASO’s Riegl Q1560 dual scanning lidar, combined with geographical

analysis and constrained by classification from the visible-near-infrared

spectrometer analysis and lidar return intensity (Painter et al., 2016).

SWE, the primary concern for water managers and decision makers, can

be estimated spatially from the product of the lidar-derived snow depths

and modeled snow density fields. In its first two years, ASO planned to

begin surveying at approximately peak SWE and continue flying weekly

until complete melt out. As the ASO program began to characterize the

dynamic nature of snow cover distribution, the decision was made to fly

earlier to capture accumulation processes in the following years. This

resulted in 6 surveys during the 2013 snow season (early April to early

June), 9 surveys during the 2014 snow season (mid-March to early June),

9 surveys during the 2015 snow season (mid-February to early June), and

12 surveys during the near-average 2016 snow season (late March to early

July; see Table 1).

Coincidentally, ASO captured the extreme California drought of

2012–2015, which brought the program to the attention of California

water supply forecasters and stakeholders in a way that would not have

Figure 1. Location and relief map of the Tuolumne River Basin above Hetch Hetchy Reservoir within the U.S. State of

California. Locations of various measurement stations used to force iSnobal in water year 2013 are depicted as red circles.

Table 1

Summary of Airborne Snow Observatory Surveys and Meteorological

Measurement Stations, by Variable, Within the iSnobal Modeling Domain of

the Tuolumne River Basin

Year No. of ASO updates

No. of available meteorological stations

Ta RH/ea u/udir mpp Sin/ccfrac

2013 6 20 8 7 12 6

2014 9 23 10 7 15 5

2015 9 23 12 8 15 7

2016 12 21 10 7 14 7

Interpolation Method IDW IDW IDW DK IDW

Note. Available stations can vary and numbers presented correspond to
maximum number of stations used over an entire water year. In addition,
the specifics of the point measurement to regular grid interpolation for
each variable are listed (Ta, air temperature; RH, relative humidity; ea,
vapor pressure; u, wind speed; udir, wind direction; mpp, precipitation
mass; Sin, incoming shortwave radiation; ccfrac, cloud cover fraction;
IDW, inverse distance weighting, DK, detrended kriging).
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been expected had these been typical or near-average snow years. Fortunately, the 2016 snow season was

closer to the long-term average, so the analysis presented herein also includes a nondrought year.

3.2. iSnobal

The snow density modeling component of ASO was carried out over the winter/spring seasons concurrent

with the airborne surveys (2013–2016). The initial task for the modeling component was only to provide

distributed estimates of snow density in order to produce spatially distributed SWE products for downstream

stakeholders, water managers, and forecasters. By the beginning of 2014 it became clear that the ASO

program needed to more effectively integrate the iSnobal modeling components into developed products

because users of the ASO products desired more than basin distributed and total SWE storage volumes.

iSnobal is able to separate rain from snow while simultaneously providing detailed information on the distri-

bution of SWE volume, snow cover thermal state, melt, and the delivery of melt-water or rain to the soil

surface. However, due to the sparse meteorological network at higher elevations and the inherent spatial

variability of mountain snow covers, the modeled snow distribution is consistently more uniform with less

spatial variability than the distribution measured by the ASO surveys.

The ASO surveys provide periodic measurements of snow depth that define the true distribution of snow

across large mountain basins. Additionally, iSnobal fills in the periods between ASO flights to provide a com-

plete time series of snowpack evolution. We hypothesize that the integration of the ASO lidar-derived snow

depth field into the iSnobal state variable data stream defines the true snow distribution and therefore

improves the ability of the snow model to predict the energy and mass fluxes of the snowpack, similar to

the findings of Brauchli et al. (2017) and Vögeli et al. (2016). Though touched on in this methodological study,

future work will test this hypothesis in a more rigorous fashion.

In 2014, the USDA-ARS Northwest Watershed Research Center in Boise, Idaho, USA (henceforth the NWRC),

began assimilating the ASO snow depth fields as a model state variable update to iSnobal in near real time.

Figure 2 depicts the typical process for the initial model setup and the subsequent reinitializations when

the ASO snow depth measurements become available. To the knowledge of the authors, this is the first

near-real-time incorporation of high-resolution snow depths into the data stream of an energy balance

snow model.

As a physically based, gridded snow model, iSnobal estimates snowpack properties given particular spatial

and temporal meteorological forcing data (e.g., Marks et al., 1999). Designed to be computationally efficient

while maintaining maximum portability, iSnobal explicitly solves the energy and mass balances at each grid

cell over a digital elevation model grid, and therefore does not require site-specific calibration within the

model itself. All meteorological forcing surfaces are assembled outside the model, and adjustments are per-

formed at the user’s discretion when producing the spatial forcings required by the model. The original

iSnobal design concept was that the model should not make adjustments for limitations in available forcing

data (Marks & Dozier, 1992). Instead of being built into the snow model, the methods used to develop the

distributed forcing data surfaces are determined by any available weather station measurements, remote

sensing data, or output from numerical weather models.

iSnobalwas originally designed to accommodate periodic inputs from satellite or aircraft remote sensing data

in the NASA Earth Observing System (EOS) era (Dozier, 1990). This design feature allows the model to be run

forward to a time when model initialization or state data are available, stopped and updated, and then

restarted. The ASO surveys provide unprecedented detail for the snow depth state variable, which can be

reset midyear for a more accurate, updated estimate of snow distribution, resulting in improved

model predictions.

Studies assessing iSnobal across a range of snow environments and snow-dominated basins are numerous in

the literature. The temporal and spatial scales of various studies range from 0.015 km2 over a 2.5-m grid

(Kormos et al., 2014), 460 km2 over a 75-m grid (Marks et al., 1999), 2,150 km2 over a 250-m grid (Garen et al.,

2001; Garen & Marks, 2005), 1,180 km2 over a 50-m grid (this study), to 7,000-km2 over a 100-m grid (Havens

et al., 2016). Each of these assessment studies generated the required forcing parameter grids using different

methods and at different spatial resolutions determined by available computational resources and study

objectives. From the above referenced studies, the increase in computational resources over the last 15 years

is evident. By streamlining source code and taking advantage of multiprocessor computing power, the recent
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upgrades to the modeling system represent a 200x increase in computational efficiency. This boost in

efficiency allows the model to be run in near real time and errors in forcing data to be diagnosed in real time.

iSnobal can be implemented at any temporal resolution that can be supported by the available spatial forcings,

though Garen and Marks (2005) point out that the selected temporal resolution must account for the diurnal

cycle. In this work, hourly meteorological stationmeasurements are the basis for the forcing grids and, accord-

ingly, iSnobal is run at an hourly resolution onward from the onset of each water year (1 October). As input,

iSnobal requires spatially gridded interpolants derived from point measurements of basic meteorological vari-

ables that are available frommost standard mountain weather stations in the western United States (Table 1).

In addition, indirect forcing grids of vapor pressure, net shortwave radiation, percent cloud cover, and

incoming longwave radiation are computed through empirical relationships (described in section 3.2.1).

While iSnobal does not simulate belowground hydrologic processes or streamflow, it does explicitly deal with

both rain and snowfall as input precipitation. Surface water input (SWI) is defined as either rain on bare

ground or melt/rain that exceeds the liquid water holding capacity of the snowpack and drains through

the snow to the ground surface. Percolation processes within the snowpack are not explicitly considered.

The results presented here represent simulations for complete water years (1 October to the following 30

September), including both the wet and dry seasons.

3.2.1. Station Data

The six meteorological variables of air temperature (Ta), wind speed (u), and direction (udir), relative humidity

(RH), incoming solar radiation (Sin), and accumulated precipitation (mpp) are measured within or adjacent to

the Tuolumne modeling domain at hourly temporal resolution (Figure 1). In California, weather stations are

maintained by various cooperative agencies, and the data are collected and assembled by both the

California Data Exchange Center (http://cdec.water.ca.gov) and MesoWest (Horel et al. (2002), mesowest.

utah.edu/). Table 1 lists the number of stations that measured these six meteorological variables throughout

each of the four years presented in this study. Since many stations occasionally went off-line at various times

throughout the simulation years, the reported number of stations represents the maximum used throughout

each complete water year. For instance, incoming solar radiation measurements were only available at four

stations over the latter half of water year 2016. The quality of iSnobalmodel results are directly influenced by

the quality of the point meteorological data used to create the spatial forcing grids. Additional in-house qual-

ity assurance and control is nontrivial and paramount for preparing the most accurate possible forcing data

set over the model domain.

Figure 2. Exploded view of the workflow for the iSnobal modeling progression from initiation to delivery of model pro-

ducts to the ASO compute team. This chart includes the process of updating the iSnobal model state using the ASO

lidar-derived snow depths.

10.1029/2018WR023190Water Resources Research

HEDRICK ET AL. 8049

http://cdec.water.ca.gov
http://mesowest.utah.edu/
http://mesowest.utah.edu/


Hourly measurements of all variables from every available station are automatically downloaded each day to

a local database maintained at the NWRC. Manual and semiautomated quality assurance and control is per-

formed on raw downloaded data to interpolate across small data gaps and remove spikes. Precipitation data

are adjusted using the Automated Precipitation Correction Program (Nayak et al., 2008), which fills gaps and

removes spikes using a bias-limiting noise reduction algorithm. The precipitation measurements are then

adjusted for wind undercatch using standardized equations for either shielded or unshielded gauges accord-

ing to Yang et al. (1998), depending on each individual sensor. All methods for dealing with raw station data

are described in Havens et al. (2017). Agencies that manage stations in the western United States often report

coordinates only to the tenth of a degree in latitude and longitude precision. Since accurate station locations

are crucial for producing forcing grids at 50-m resolution over complex terrain, care has been taken to deter-

mine more precise coordinates.

In addition to the six available variables measured by automated weather stations, two additional point vari-

ables must first be calculated using those available measurements. Vapor pressure (ea) is determined from

the Clausius-Clapeyron empirical relationship at stations with measurements of air temperature and RH.

Fractional cloud cover (ccfrac) is estimated from the ratio of measured incoming shortwave radiation to cal-

culated clear-sky irradiance at locations where incident solar radiation is measured, similar to the method

presented by Susong et al. (1999). A description of these data and the methods used in the creation of model

forcing inputs is available in an accompanying data set (Hedrick et al., 2018a).

Table 2 details all of the generated snow properties and processes along with the energy and mass inputs

and outputs for a typical model time step. The fundamental principles that iSnobal uses for calculating the

snow cover energy and mass balance are based upon relatively straightforward and thoroughly validated

Table 2

iSnobal Input and Output Files

File Variable Description Units

(a) Energy inputs (all time steps) Ilw incoming longwave radiation W/m
2

Ta air temperature °C

ea vapor pressure Pa

u wind speed m/s

Tg soil temperature °C

Sn net shortwave radiation W/m
2

(b) Precipitation inputs (only during storms) mpp total precipitation mass mm

Psnow percent mass that fell as snow 0–1.0

ρns new snow density kg/m
3

Tpp average precipitation temperature °C

(c) iSnobal outputs (previous time step) zs predicted snow depth m

ρ predicted average snow density kg/m3

ms predicted specific mass of snow mm

h2o predicted liquid water in snow mm

Ts0 predicted active layer temperature °C

Tsl predicted lower layer temperature °C
Ts predicted average snow temperature °C

zsl predicted lower layer depth m

h2osat predicted liquid water saturation %

(d) Restart/update initialization (state variables) z elevation m

z0 roughness length m

zs ASO-updated snow depths m

ρ average snow density kg/m
3

Ts0 active layer temperature °C

Tsl lower layer temperature °C

Ts average snow temperature °C
h2osat liquid water saturation %

Note. (a) Hourly energy input forcing grids. (b) Hourly mass input forcing grids that are only required when precipitation
is measured by one or more meteorological stations. (c) Output grids of snowmass and temperature from the time step
prior to the Airborne Snow Observatory (ASO) snow depth update (energetics are written into a separate file not shown
here). (d) Initialization grids for the iSnobal restart with the ASO update. Highlighted variables in (c) and (d) indicate para-
meters that must be spatially adjusted when incorporating the new snow depth measurements from the ASO.
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physical relationships. Therefore, when model estimates differ significantly from in situ measurements, then

all adjustments and corrections must be performed on the forcing data provided to themodel. Any necessary

adjustment or correction to spatially distributed forcing data (e.g., estimated cloud cover, incoming thermal

radiation, and the approximated precipitation distribution) must occur prior to model initialization. Poor or

missing measurements may cause iSnobal to crash, so occasionally adjustments must be made to interpolate

over a span of hours during a simulation cycle.

3.2.2. Spatial Forcing Grids

The Spatial Modeling Resource Framework (SMRF) is a tool for distributing various point measurements

over a regular grid for near real-time applications (Havens et al., 2017). SMRF was developed in-house at

the NWRC, and the latest stable release can be found at https://github.com/USDA-ARS-NWRC/smrf. The

source code used for this study (SMRF v0.3.0) can be found within an open-source software repository

(Hedrick et al., 2018b).

Various methods exist for distributing point measurements of meteorological variables over large areas and

complex terrain (Garen et al., 1994; Goovaerts, 2000; Livneh et al., 2014; Luo et al., 2008). As a modular frame-

work, SMRF permits the user to decide which method is appropriate for distributing each particular para-

meter. For instance, measured accumulated precipitation can be distributed in SMRF using either the

detrended kriging (DK) or inverse distance weighting methodologies.

Table 1 summarizes the various distributing methods that were used throughout all four water years. The

most suitable interpolation method depends on the meteorological variable being distributed. For instance,

precipitation during storms is often spatially inconsistent over large mountain basins and generally exhibits a

positive local elevation gradient (Lundquist et al., 2010). On the other hand, temperature typically displays a

negative elevation lapse rate and is spatially continuous. These two variables require gridded interpolation

methods that are appropriate for representing the differing physical processes at work.

Forcing grids were constructed at a 50-m spatial and hourly temporal resolution. In mountain basins it has

been shown that the typical length scale of hydrologic variability is between 50 and 100 m (Deems et al.,

2006; Pomeroy et al., 2006; Shook & Gray, 1996; Trujillo et al., 2007; Winstral & Marks, 2014), particularly for

wind-exposed terrain where snow redistribution dominates the snowpack spatial variability. Therefore, at

50-m resolution, the model is expected to explicitly capture many of the physical processes that control

the spatial distribution of the snowpack.

A crucial energy input to iSnobal is net shortwave radiation (Sn), which is the difference between incoming

(Sin) and outgoing (Sout) solar radiation. Sn is seldom measured, but Sin is more often available. To estimate

Sout, snow albedo (α) is simulated based on the elapsed time since the last snowfall for each model pixel

and an assumed dust or debris content (Marks & Dozier, 1992; Marshall & Warren, 1987). Parameterizing

surface albedo has been found to be difficult in mountainous regions (Guan et al., 2013; Molotch et al.,

2004). Since accurate in situ measurements of snow albedo are only available at a few sites in the western

United States, spatially distributed estimates of surface reflectance add a significant source of uncertainty

into the model forcings. ASO is able to produce an albedo product from the onboard spectrometer, and

ongoing research is investigating the nontrivial problem of assimilating the ASO albedo product into the

model data stream. Since α is used to derive Sn for each time step, it is not a state variable of iSnobal.

Clear-sky, terrain corrected solar radiation is computed from Dozier (1980) and Essery and Marks (2007) using

the ASO 50-m snow-free digital elevation model grid. Canopy shading is computed from the National Land

Cover Database using methods described by Link et al. (2004) and Essery et al. (2008). Incoming longwave

radiation (ILW) is rarely measured so it is modeled from a combination of empirical relationships of clear-

sky emissivity adjusted for terrain from Marks and Dozier (1979), and vegetation canopy cover and estimated

cloud cover from available Sin measurements similar to Link and Marks (1999) and Reba et al. (2011). Wind

speeds are distributed using the maximum upwind slope terrain parameter, Sx (Winstral et al., 2002), and

methods described by Winstral et al. (2009). The calculations of energy transfer between the snow surface

and the atmosphere used a surface roughness length of 1 mm for cells below the canopy and 5 mm in forest

openings and above tree line.

For this modeling exercise soil temperatures (Tg) were set to a uniform�2.5 °C at a depth of 10 cm below the

snow-soil interface, which is cold enough to allow the initiation of the snowpack but not so cold as to retain
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snow on the ground late in the ablation season. Bair et al. (2018) showed that the ground temperatures at the

nearby Mammoth Mountain CUES study plot fluctuated around �0.5 °C throughout the winter. Future stu-

dies will examine the impact of spatially and temporally representative soil temperature approximations.

Precipitation is by far the most critical input parameter for any snow or hydrologic model. Prior to model

execution and through empirical relationships with the average precipitation temperature (Tpp—approxi-

mated by the distributed dew point temperature), precipitation mass (mpp) is parsed into percent snow ver-

sus rain (Psnow), while the density of new fallen snow (ρns) is calculated on an individual storm basis. Storm

snow densification is computed similar to Table 1 in Marks et al. (1999) but is augmented in this work to con-

sider compaction effects during storms from the changing overburden pressure. Before, during, and after the

ASO snow depth acquisitions, the precipitation distribution and phase are approximated based on the lim-

ited number of precipitation measurement sites in and around the modeling domain. For these stations

we estimate the elevation trend and distribute the undercatch-adjusted precipitation volume and phase

across the modeling domain. A storm event is defined spatially and can extend either over all or a localized

subset of the modeling domain. Within an event region, precipitation phase varies according to dew point

temperature, so each storm event can be spatially subdivided into rain, mixed phase, and snow pixels for

each storm hour. A more rigorous description of the computations involved for all spatial forcing fields—both

energetics and mass—is detailed in Havens et al. (2017).

The primary objective of iSnobal in the context of ASO is to produce spatial snow density estimates. The

mechanisms within a snowpack that influence bulk density are energy fluxes due to temperature gradients,

liquid water content, compaction due to overburden, and time since accumulation (Kojima, 1967). Previous

versions of iSnobal simply generalized the effects of temperature and overburden compaction into an empiri-

cal formulation dependent only upon time. Recent modifications to themodel now permit distinct considera-

tion of bulk compaction and temperature metamorphism. These modifications were included in the model

results presented in this work.

3.3. Modeling and Direct Insertion

Each year during the accumulation period (typically October–February), the process of preparing data for

running iSnobal begins with a thorough analysis of available meteorological station data in order to update

the meteorological database with any stations that may have come online or malfunctioned. After construct-

ing the spatial forcing grids described in section 3.2.2, iSnobal is then executed from the previous 1 October,

the beginning of the water year, up to the date of the first ASO flight.

ASO derives gridded estimates of SWE by multiplying the lidar-derived snow depths and the snow density

estimates given by iSnobal (Painter et al., 2016). This study focuses on the methods for assimilating the mea-

sured ASO snow depths into iSnobal and the effects of this integration on subsequent model results. Vögeli

et al. (2016) and Brauchli et al. (2017) demonstrated the value of redefining the spatial snow depth distribu-

tion for input to a physically based model using remote sensing information. Over the four water years pre-

sented here, a modified direct insertion technique was developed to create the functional initialization files

required to restart iSnobal after each survey (Table 2d). We refer to the method as “modified” because addi-

tional model state variables besides snow depth must be adapted to match the spatial extent and depth of

the snow cover measured by the ASO lidar surveys.

Four scenarios are possible when modeled snow depths from the previous day are discarded in favor of the

lidar-derived measurements. The first case is trivial, in which both the ASO and the model agree that a cell is

snow-free so no change is made to the model states. The second scenario occurs when both the model and

the ASO agree that a cell is snow-covered but disagrees on the height of the snow. In this case, the ASO snow

depth is inserted into the model, and the remaining state variables (density, layer temperature, and liquid

water content) are unchanged. A third case is when iSnobal predicts a snow cover, whereas the ASO mea-

sures a snow-free grid cell. When such discrepancy occurs, all other state variables are changed to represent

a grid cell with no snow. On the other hand, it can be the case that the ASO measures snow and iSnobal has

estimated the cell to be snow-free. In this fourth scenario, the snow density, layer temperatures, and liquid

water saturation must be interpolated to match the perceived ASO snow cover.

To create reasonable values for each of the state variables that are required to restart iSnobal—those high-

lighted in Table 2d—an expanding window is applied where a minimum of 10 nearby snow-covered cells

10.1029/2018WR023190Water Resources Research

HEDRICK ET AL. 8052



must be found before averaging and moving on to the next cell. For these cells, the interpolated values are

used for the new initialization of the model (Table 2c, following time step) so that cells with lidar-derived

snow also contain estimates of bulk density, layer temperature, and liquid water content. In this way we

resolve fringe effects from the discrepancies between model results and the remote sensing product in areas

of patchy snow cover. Even so, the vast majority of these discrepancies in spatial extent occur within low

elevation pixels that contain very little snow and therefore have a minimal effect on the total basin

water storage.

4. Results

Over the course of the 2012–2015 drought, snowfall in the Tuolumne Basin was substantially lower than aver-

age. The 2015 snowpack, in particular, was the lowest in recorded history and determined to have the lowest

April 1 SWE in over 500 years through tree ring peak SWE reconstruction (Belmecheri et al., 2016). Water year

2016 provided some relief from the drought with a snowpack that was ~85% of average. Some basic mod-

eled hydrologic conditions derived by iSnobal during the study period (2013–2016) are presented in

Table 3. These metrics were derived from the preprocessed precipitation forcing grids used as iSnobal input

and described in section 3.3. The average rain-snow transition elevation was determined by finding the

hourly median elevation of the pixels that were designated as mixed phase during each storm and comput-

ing a mass-weighted average over the water year.

The distribution of mountain SWE accumulation and ablation is governed by elevation gradients, vegetation,

aspect, and slope. To investigate the impact of the ASO updates on the model, three elevation bands of the

lowest 40%, middle 40–70%, and upper 30% of the basin area were delineated from the iSnobal results for

2013 to 2016 (Figure 3). The first ASO update adds SWE in the upper 30% of the basin in each of the four years,

possibly due to precipitation measurement stations at higher elevations exhibiting greater undercatch than

those at lower elevations (Rasmussen et al., 2012). At the same time, the ASO updates throughout the abla-

tion season cause iSnobal to melt the snowpack earlier for elevations below 2,900 m. Also, it is apparent that

the lower 40% of the basin was rain-dominated in 2013–2015 since the cumulative SWI curve is greater than

the SWE curve throughout each full water year. The average water year (2016) received a more substantial

snowpack at lower elevations. Above 2,700 m, which comprises 60% of the land area within the basin, snow

storage dominated the system in all four years for the primary accumulation period of December

through April.

In order to more specifically detail the spatial effects of the ASO updates, two individual updates were chosen

from 2014 and 2015 that portrayed a large dynamic range in the basin-averaged change in water storage

(ΔSWE; Figure 4). The 23 March 2014 update represented the largest positive ΔSWE (+40.8 mm) from any

of the 36 updates applied over the study period, whereas the 1 May 2015 update had a much smaller effect

on the basin-averaged ΔSWE (�7.1 mm). To delve into the qualitative change in spatial distribution from the

ASO updates, Figure 4 shows the SWE from iSnobal alone, iSnobal with the ASO snow depth update, and

ΔSWE over the entire basin for the same two updates. Insets show the fine scale changes in SWE distribution

due to the snow depth update. Moreover, elevation lapse rates play a large role in the DK algorithm for dis-

tributing precipitation. For that reason, more refined equal area elevation bands were constructed to further

assess how ΔSWE from the ASO updates were distributed across elevations (Figure 5). For the first update of

2014, the majority of the change was in the form of a net gain over the upper 50% of the basin (bands 6–10).

On the other hand, the 1 May update spreads the difference across the middle elevations with negative

changes in bands 3 to 8 and negligible change in the lower 20% and a slight increase in SWE over the upper

20% of the basin. Within some bands in Figure 5 the mean ΔSWE is not within the interquartile range mean-

ing that outliers are skewing the distribution. This occurs generally at lower elevations where the sample size

of pixels containing snow is relatively small and the influence of outliers is more considerable.

A linear regression analysis was performed between the ASO-derived snow depths from each flight and both

the previously updated (for the second survey onwards) and the ordinary nonupdated iSnobal control runs.

For each grid cell, the previously updated iSnobal snow depth estimates were highly correlated with the new

depths from the subsequent ASO updates. However, the control run did not benefit from the previously rede-

fined depth distribution and was poorly correlated to the lidar distribution.
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Figure 6 shows the scatter plot of all grid cells within the basin along with the fitted linear regressions for the

seventh seasonal survey of 2015 on 1May and the same update portrayed in Figures 4 and 5. Up to that point

in 2015 the modeled snow depths never surpassed 1.5 m, but ASO measure depths as high as 4 m in a hand-

ful of pixels. At the same time, from the slope of the regression line for the previously nonupdated iSnobal

results (red line) it is apparent that a large portion of cells saw a decrease in depth from the update.

Performing the same analysis on all updates over the four-year study period clearly shows the influence of

setting the snowpack spatial distribution with the first update of each year (Figure 7). This result is unsurpris-

ing since the DK method for distributing precipitation resolves the elevational gradient, yet does not account

for aspect, slope, and vegetation, which are the most important controls on local scale variability. Also, evi-

dent is that the r2 decreases occasionally throughout each year for even the updated model. We found this

to be caused by two likely factors. First, late season storms that occurred between ASO surveys deposited

snow preferentially, which was not accounted for by the DK precipitation distribution. Second, the time dura-

tion between subsequent surveys caused the model to drift further from the realistic distribution through

uncertainties in the energy balance. For the majority of the ASO survey dates, the r2 remained above 0.9

Table 3

Hydrologic Metrics Derived From the iSnobal Precipitation Forcing Grids and ASO-Updated SWE Estimates

Year

Snow proportion of annual

precipitation (%)

Average rain-snow transition

elevation (m)

Date of peak

SWE

Mean peak SWE

(mm)

2013 83.0 2,016 11 March 323

2014 81.8 1,918 6 April 253

2015 71.3 2,394 10 February 124

2016 83.9 1,828 22 March 557

Note. Precipitation phase was determined using the distributed dew point temperature for every hour of each storm.

Figure 3. Basin-averaged iSnobal snow water equivalent (SWE) and surface water input (SWI) over three elevation bands

for both the unmodified and ASO-updated predictions. The three bands, delineated by area, reveal elevations most

sensitive to direct insertion of the lidar-derived snow depths. From the initial ASO update SWE is added at upper elevations

for all four years, while complete melt out occurs earlier at middle to lower elevations.
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throughout the melt, indicating that iSnobal performs best when provided with a spatially representative

snow depth distribution. The mean coefficient of determination when considering all 32 updates that had

a previous update earlier in the season was r2 = 0.889 with a mean root-mean-square error of 12.5 cm. This

is a much higher correlation than for those snow depth distributions that did not benefit from previous

ASO updates (r2 = 0.162, root-mean-square error = 41.5 cm).

The full basin-averaged iSnobal simulation results are depicted in Figure 8. The timings of the ASO lidar sur-

veys are indicated, and simulation results are shown with and without the lidar-derived snow depth updates.

In contrast with the elevation-resolved SWE, differences in total basin results between iSnobal estimates with

and without the benefit of the ASO lidar updates are generally not large, but as shown previously they are

initially spatially erroneous. In other words, the amount of solid precipitation input to the basin agrees with

the ASO measurements, but the spatial distribution used to force the model is more uniform and does not

account for drift and scour zones. Also shown are the SWI differences before and after adjustment. As men-

tioned before, SWI includes both snowmelt and rain and represents liquid water input to the soil. Changes in

year-end SWI magnitude are relatively small in all years, with an increase of 14% in 2013, 2014, and 2015

decreasing 10 and 1%, respectively, and 2016 gaining only around 1%.

As a result of the ASO depth updates, the timing of the SWI shifted earlier in 2015 by a few weeks between

mid-March andmid-June. Similarly, modeled SWI shifted slightly earlier in 2014, but the shift occurred later in

the season and only for the month of May. In 2013 and 2016, the SWI pulse was largely unchanged in timing

Figure 4. Spatial iSnobal SWE distribution both without the lidar update (i) and with the update (ii) applied for two

surveys from water years 2014 and 2015, and the change in SWE resulting from the direct insertion of snow depths

into the model. Inset areas (5.0 by 7.5 km) reveal the enhanced detail of the change in modeled SWE distribution from

the ASO updates. The spatial distribution is most refined for the first update of the year (update #1, top row) and results in a

much larger change in SWE than the updates later in the ablation season (update #2, bottom row), which benefit from

prior snow depth updates. Updates correspond to those also shown in Figure 5.
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with the addition of the ASO updates. However, in 2013 the cumulative

SWI increased by approximately 80 mm due to the addition of mass from

the last three updates. The SWE and SWI curves for 2016 in Figure 8 display

reflective symmetry throughout the ablation season since very little spring

or summer rain occurred. In 2014 and 2015 substantial spring and summer

rain took place after the basin SWE was depleted by the end of June.

5. Discussion

The first operational season of the ASO (water year 2013) happened to be

the second year in what would eventually become a severe four-year

drought. Not only was precipitation scarce over the Sierra Nevada, but

temperature during storms was also above average resulting in reduced

snowfall cold content. The ASO mission was serendipitously timed to facil-

itate water cycle science and aid water managers in their efforts to main-

tain reservoir levels during the California drought. The purpose of the

analysis presented here was to show the influence from periodically rede-

fining the spatial distribution of snow depth for a physically based snow-

melt model. Over all four years, the general net impact of the updates

was to initially increase SWE in the upper elevations from the first few

updates and subsequently reduce SWE and melt the snowpack earlier in

the middle to lower elevations as the ablation season progressed

(Figure 3). There are likely several reasons for this behavior, but we believe

two factors to be the primary causes.

First, during the winter accumulation period the distribution of precipita-

tion mass from point measurements to a regular grid partially resolved

the snowfall elevation gradient but was independent of local terrain and

vegetation features. The resulting distribution lacks snow drifts and scour

zones, important features of mountain snowpacks that influence storm

snow density. The resulting energy budget would add uncertainty to esti-

mates of early season melt before the first ASO survey. Additionally, corre-

spondence with Hetch Hetchy Reservoir managers revealed that the actual

precipitation undercatch for many of the gauges in and adjacent to the

Tuolumne Basin was larger than accounted for in our applied undercatch

correction. Rigorous future testing of these sites should evaluate this local

knowledge and justify adjusting the precipitation forcing estimates in

addition to the gauge undercatch corrections currently being used.

Obvious elevational biases were introduced by the precipitation distribut-

ing technique used in the preprocessing steps to run iSnobal (Figures 3–5).

The DK technique effectively reduces bias in the distribution only when

point measurements are unbiased themselves. This is because the DK

algorithm forces grid cells containing measurement stations to retain

those values after the interpolation has been fit. However, the undercatch

bias of low elevation measurement sites causes the slope of the precipita-

tion elevational gradient to be reduced.

Second, the acceleration of the spring melt evident from the late season

ASO updates could be a result of a lack of proper parameterization of

net all-wave radiation. Thermal radiation is altered due to increased sensi-

ble heat in areas of patchy snow covers because of advection from

exposed rock and soil (Olyphant & Isard, 1988; Pomeroy & Brun, 2001),

which the ASO data are able to capture and iSnobal does not specifically

account for. Without ASO depth updates, the modeled snow cover is

Figure 5. iSnobal change in SWE from two ASO updates delineated by

equal-area elevation bands. Each band (area ≈ 118 km
2
) makes up 10% of

the total basin area. The y-axis of the box plot is the total change in basin

SWE resulting from the update, while the elevation bands depicted at top

are on the x-axis. Red circles show the mean ΔSWE contribution per band,

while box plots display ΔSWE distributions within bands. Note the significant

scale difference on the box plot vertical axes.
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more uniform and the model is unable to account for this increase in

energy. Furthermore, net shortwave radiation input to iSnobal is a function

of gridded spectral albedo, which is calculated from an empirical relation-

ship (Marshall & Warren, 1987) and adjusted for litter accumulation on the

snow surface (Hardy et al., 2004). The albedo decay function used here

could lead to a miscalculation of net solar radiation, but we are not able

to speculate whether modeled albedo is too high or too low, given that

albedo is not measured in the basin. In water years 2013 and 2016 the

model melted snow faster than ASO (individual updates added SWE late

in the season) and in 2014 melted slower (updates removed SWE). Water

year 2015 had no discernable trend in the updates themselves, but the

updatedmodeled SWEmelted much faster than the case without updates.

Future work using the ASO-derived vegetation information and spectral

albedo measurements could lead to a new parameterization and more

accurate melt timing.

The ASO flights quantify the structure of the spatial distribution of the

snowpack, thereby reducing the uncertainty introduced by the more uni-

form precipitation distribution (Table 2b) determined through DK. Figure 4

depicts the SWE distributions both before and after two updates in water

years 2014 and 2015, along with the ΔSWE produced by each update. The

first update of 2014 added a substantial amount of SWE to the basin, while

the seventh update of 2015 had a much smaller effect on the storage. This

demonstrates that by the time of the seventh update, the spatial variability

of the snowpack was already captured by the previous six ASO acquisitions

and the uncertainty due to the preprocessing step of distributing precipi-

tation from point measurements was reduced considerably. Earlier ASO

acquisitions in the accumulation season would also be able to characterize

the actual distribution of individual snowfall events replacing the more uniform DK point to grid distribution,

though this would be challenging due to the rapid densification of new snow and sensitivity to estimated

new snow density. However, it is clear that regular updates reduce divergence in simulated SWE distributions

when large storms occur across the basin.

Examining the modeled spatial distribution of snow depths over time with respect to each ASO-derived

distribution verifies that the snow depth updates improve model performance. The modeled depths

shown in Figure 6 are highly correlated to the ASO depths only when previous updates have redefined

the spatial distribution. This redefinition of the snowpack distribution alters the model energetics and

the resulting modeled SWI to the soil interface. The high correlations for the previously updated

iSnobal estimates to the ASO depths continues throughout the year (Figure 7), indicating that the spatial

extent of the updated model depths tend to be consistent with the ASO measured snow depths

through the final survey of each year. However, the r2 drops markedly to ~0.8 for flights that occurred

either after large storms or after greater than three weeks had passed since the prior update. For

instance, snowfall events occurred in May for both 2014 and 2015, and a dip in the correlation coeffi-

cient can be seen with the updated depths for those years in Figure 7. While iSnobal without updates

accurately simulates total basin SWE magnitude, this indicates that ASO snow depths are critical for

correcting the spatial pattern of snow accumulation. In contrast, iSnobal models melt quite well in the

absence of late season storms.

Direct insertion data assimilation (DA) is not usually considered to be a robust technique since model fide-

lity is sacrificed and error in the assimilated measurement is ignored. A firm understanding of the relative

model and lidar uncertainty must be known in order to employ other DA methods such as variational

ensemble filter techniques (Auvinen et al., 2010; Houser et al., 2012; Miller et al., 1994). Running iSnobal

in a near-real-time prediction setting along with computational constraints makes it currently impossible

to perform robust error analysis using typical ensemble or Monte Carlo methods. Furthermore, studies

are numerous in the literature that use point measurements to evaluate gridded model predictions.

Though meteorological measurements from cooperator stations and the SNOTEL network were

Figure 6. Scatter plot of ASO snow depths and both iSnobal snow depths

with and without prior ASO updates for the seventh update of the 2015

water year. With previous updates, the spatial distribution is accurately

defined and model estimates are highly statistically correlated to the ASO-

derived snow depths.
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designed to collect data that most closely represents the local physiography, they have been shown to be

biased toward more sheltered sites and can be unrepresentative of the average conditions over an entire

grid cell (Molotch & Bales, 2005).

The ASO lidar measurements, typical of any remote sensing platform, include a certain amount of uncer-

tainty. Previous studies estimated uncertainties of lidar-derived snow depths between 15 and 30 cm using

in situ measurement transects (Deems & Painter, 2006; Tinkham et al., 2014), but these studies were

hampered by older lidar technology and Global Positioning System coregistration errors. Systematic errors

can be introduced by Global Positioning System timing, the inertial measurement unit, or in postproces-

sing procedures. However, the snow depth product at the 3-m grid resolution possesses less accuracy

across the study area than the 50-m product used for iSnobal direct insertion. For instance, the uncer-

tainty in snow depth for the 3-m ASO snow depth product is ±8 cm (16 cm root-mean-square deviation;

Painter et al., 2016). For that same survey flight, the average uncertainty over a 50-m pixel (made up of

~278 3-m cells) is approximately ±0.5 cm under the assumption of limited bias within the 50- by 50-m

area of each grid cell.

Nevertheless, the major assumption being made in order to use the direct insertion DA method is that the

lidar-derived snow depths are the truth and all uncertainty stems from the modeled SWE estimates when

density is unchanged. Deeper snowpacks exhibit higher densities from compaction due to overburden

(Sturm et al., 2010), so iSnobal’s density algorithm was reformulated to address this process. The model

densifies pixels that receive any additional snow from the ASO update over the course of the next few

model time steps. However, an example of the limitations of direct insertion DA is evident for water

Figure 7. Coefficients of determination for each of the ASO-derived snow depth products with respect to iSnobal

predicted snow depths on the day of the lidar acquisitions for both the previously updated (blue) and ordinary

estimates without ASO (red). Once the spatial distribution is defined by the first update, the correlation to subsequent

updates drastically increases.
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year 2014 in Figure 8. If a more robust DA technique that considered error in ASO snow depths was

employed, the sharp increase in SWE magnitude for the first ASO update would perhaps be less abrupt.

Errors in both the lidar processing chain as well as in the model forcing data can be difficult to diagnose in

near real time and are often only apparent in hindsight after subsequent updates, which is not possible

within the operational ASOmission structure. In the future, for purposes of modeled SWE accuracy, a filtering

mechanism will be developed to locate regions in the lidar snow depth product that depart from previous

ASO surveys in ways that are not consistent with measured or modeled precipitation.

The basin-averaged SWE and cumulative SWI as a function of time for all four water years (Figure 8) reveal

model shortcomings that will be addressed in future near-real-time applications. For 2013 and 2014, the

cumulative SWI was altered after the inclusion of the updates. The causes for this are large abrupt changes

in SWE storage during the ablation period. When ASO added SWE in updates #4 and #5 of 2013, the total

amount of available meltwater was suddenly increased. In 2014, updates #3, #4, #6, and #7 decreased the

SWE storage and available meltwater by a combined nearly 80 mm, which is evident in the decreased

Figure 8. Basin-averaged iSnobal model results for both the unmodified predictions and the ASO-derived snow depth

updates to the model state. The blue line is SWE and red line is the cumulative surface water input (SWI) from either the

base of the snowpack or rain on bare ground. The solid black line is the estimated cumulative inflow to Hetch Hetchy

Reservoir (courtesy of the San Francisco Public Utilities Commission). The dashed vertical lines represent the timing of each

lidar survey used to update the model.
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cumulative SWI. A solution to these discrepancies could be more accurate parameterizations of the processes

that influence melt, such as albedo decay rates or thermal radiation from snow-free surfaces in areas of pat-

chy snow cover. However, getting the correct precipitation mass into the basin, as either rain or snow, would

have the largest impact on cumulative SWI.

The difference between the cumulative SWI (red lines) and inflow to the Hetch Hetchy Reservoir (black line) is

the residual to the hydrologic water balance of this basin, which is defined as the sum of total annual evapo-

transpiration (ET) and ground water losses. Henn et al. (2018) estimated ET over the ablation period in 2013,

2014, and 2015 to be 168, 161, and 191 mm, respectively, with 2016 not considered. The disagreement of

those findings with the residuals in Figure 8 are likely due to precipitation inputs to iSnobal, causing the

abrupt changes in modeled SWE described above. ASO is able to adjust the modeled SWE but not precipita-

tion that falls as rain, which can be up to a third of the precipitation input annually.

The metrics presented in Table 3 show that many aspects of the basin hydrology were adversely affected by

the severe snow drought year of 2015. During this year, far more precipitation fell as rain, the average rain-

snow transition elevation was higher, and the date of peak SWE was much earlier. Such analyses of the spatial

sensitivities of a snowpack are made possible with the use of a high resolution distributed snow model such

as iSnobal. Additionally, the ASO proved to bemost critical in 2015 given that themodel without ASO updates

was in diminished agreement. The integration of modeling and remote sensing is far more effective and

powerful than either on its own.

The Tuolumne Basin hypsometry is unusual due to the steepness of the lower Tuolumne valley. Small

changes in rain snow transition elevation can have large effects on snowpack water storage. The annual

cumulative SWI for 2015 (Figure 8) was close to 2013 levels and actually higher than 2014 due to monsoonal

rainfall in May and June, yet the peak SWE volume was one third and one half of those years, respectively.

Consequently, a large contributor to the catastrophic snow drought of 2015 was the 566-m average upward

shift in the rain-snow transition elevation from that of a relatively normal year of 2016 (Table 3). The second

column of Table 3 shows a decrease in annual phase proportion of snowfall of approximately 12–13% in 2015

from the remaining water years and was likely a contributing factor to the historically meager snowpack. A

detailed analysis of the rain-snow transition elevation in the Tuolumne Basin will be addressed in a

following study.

6. Conclusions

The mountain snow cover is heterogeneously distributed across a complex landscape (Jost et al., 2007;

Lehning et al., 2011) and is notoriously difficult to characterize. With ASO, the approximated and more uni-

form modeled snow distribution can be replaced with observations from the airborne lidar. While the total

basin storage is not drastically changed by the lidar snow depths, the snow covered area, timing of melt,

and the hydrologic system are affected by the redefined snow distribution. The integration of modeling

and remote sensing in the ASO program provides a unique opportunity to quantify the volume of water

stored in the seasonal snow cover of a large mountain basin. It can also provide a reliable definition of

how that SWE is distributed across the basin and show the timing and pattern of SWI at the snow-

soil interface.

Explicitly redefining the spatial snowpack distribution had a similar net effect on the available water from the

basin for all four years between 2013 and 2016. Each winter the first update to the near-real-time iSnobal pre-

dictions using the ASO lidar-derived snow depths increased the basin averaged SWE estimates at high eleva-

tions (above 3,000 m) where wind redistribution is a major factor, while the subsequent updates throughout

the melt season resulted in earlier melt out dates for elevations below 3,000 m. The time series of ASO over-

flights provide the first detailed definition of snow distribution and how that distribution changes throughout

the snow season. Integration of these into the iSnobal data stream shows us that the first ASO update repre-

sents the largest adjustment because it defines the basic distribution. Subsequent updates generally involve

much smaller adjustments but are equally important because they define the effect of additional deposition

on the snow distribution and adjustments as snow cover depletion progresses during the snow season.

From spatiotemporal analysis of the updated iSnobal SWE product over the four study years, we were able to

explicitly derive the average rain-snow transition on a storm-by-storm basis. In 2015, the Tuolumne Basin
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experienced a reduction of almost 13% in the snow to rain precipitation ratio and amean upward shift in rain-

snow transition elevation of 566 m from the average snowpack year of 2016 (Table 3).

Future work will include perturbed forcing grids for executing ensemble iSnobal runs in order to better

understand model uncertainty. Also, in basins with highly suspect or a complete lack of station measure-

ments, gridded forcing data from sources such as the Modern-Era Retrospective Analysis for Research and

Application (MERRA), the North American Land Data Assimilation System (NLDAS), or the High-Resolution

Rapid Refresh (HRRR) forecast must be downscaled to the iSnobal/ASO resolution, which will require

extensive validation. Likewise, total error propagation techniques are being developed by the ASO team to

provide a more rigorous uncertainty estimate for the lidar-derived snow depths, the simulated SWE and

SWI, and the integrated remote sensing and snow modeling result. With a better understanding of the

uncertainty for both the model and the remote sensing measurements, we may move forward with an

improved integration of the ASO snow depths into iSnobal leading to a more effective overall ASO product.

References
Anderton, S. P., White, S. M., & Alvera, B. (2004). Evaluation of spatial variability in snow water equivalent for a high mountain catchment.

Hydrological Processes, 18(3), 435–453. https://doi.org/10.1002/hyp.1319

Auvinen, H., Bardsley, J. M., Haario, H., & Kauranne, T. (2010). The variational Kalman filter and an efficient implementation using limited

memory BFGS. International Journal for Numerical Methods in Fluids, 64(3), 314–335. https://doi.org/10.1002/fld.2153

Bair, E. H., Davis, R. E., & Dozier, J. (2018). Hourly mass and snow energy balance measurements from Mammoth Mountain, CA USA, 2011–

2017. Earth System Science Data, 10(1), 549–563. https://doi.org/10.5194/essd-10-549-2018

Belmecheri, S., Babst, F., Wahl, E. R., Stahle, D. W., & Trouet, V. (2016). Multi-century evaluation of Sierra Nevada snowpack. Nature Climate

Change, 6(1), 2–3. https://doi.org/10.1038/nclimate2809

Brauchli, T., Trujillo, E., Huwald, H., & Lehning, M. (2017). Influence of slope-scale snowmelt on catchment response simulated with the

Alpine3D model. Water Resources Research, 53, 10,723–10,739. https://doi.org/10.1002/2017WR021278

Conway, H., & Abrahamson, J. (1984). Snow stability index. Journal of Glaciology, 30(106), 321–327. https://doi.org/10.1017/

S002214300000616X

Deems, J. S., Fassnacht, S. R., & Elder, K. J. (2006). Fractal distribution of snow depth from lidar data. Journal of Hydrometeorology, 7(2),

285–297. https://doi.org/10.1175/JHM487.1

Deems, J. S., & Painter, T. H. (2006). Lidar measurement of snow depth: accuracy and error sources. In Proceedings, 2006 International Snow

Science Workshop, Telluride, CO (Vol. 330, pp. 330–338). Telluride, CO.

Deems, J. S., Painter, T. H., & Finnegan, D. C. (2013). Lidar measurement of snow depth: A review. Journal of Glaciology, 59(215), 467–479.

https://doi.org/10.3189/2013JoG12J154

Derksen, C., & Brown, R. (2012). Spring snow cover extent reductions in the 2008-2012 period exceeding climate model projections.

Geophysical Research Letters, 39, L19504. https://doi.org/10.1029/2012GL053387

Dettinger, M. D., & Anderson, M. L. (2015). Storage in California’s reservois and snowpack in this time of drought. San Francisco Estuary and

Watershed Science, 13(2), 0–5. https://doi.org/10.15447/sfews.2015v13iss2art1

Dozier, J. (1980). A clear-sky spectral solar radiation model for snow-covered mountainous terrain.Water Resources Research, 16(4), 709–718.

https://doi.org/10.1029/WR016i004p00709

Dozier, J. (1990). Looking ahead to EOS: The Earth Observing System. Computers in Physics, 4(3), 248–259. https://doi.org/10.1063/1.4822913

Dozier, J. (2011). Mountain hydrology, snow color, and the fourth paradigm. Eos, Transactions American Geophysical Union, 92(43), 373–374.

https://doi.org/10.1029/2011EO430001

Essery, R., & Marks, D. (2007). Scaling and parametrization of clear-sky solar radiation over complex topography. Journal of Geophysical

Research, 112, D10122. https://doi.org/10.1029/2006JD007650

Essery, R., & Pomeroy, J. (2004). Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: Theoretical

considerations. Annals of Glaciology, 38(1), 261–265. https://doi.org/10.3189/172756404781815275

Essery, R., Pomeroy, J., Ellis, C., & Link, T. (2008). Modelling longwave radiation to snow beneath forest canopies using hemispherical

photography or linear regression. Hydrological Processes, 22(15), 2788–2800. https://doi.org/10.1002/hyp.6930

Garen, D. C., Geyer, J., Schumann, A. H., & Marks, D. (2001). Spatially-distributed snowmelt, water balance and streamflow modelling for a

large mountainous catchment: Boise River, Idaho, USA. In Soil-vegetation-atmosphere transfer schemes and large-scale hydrological models

(Vol. 270, pp. 199–207). Maastricht, The Netherlands: Sixth IAHS Scientific Assembly.

Garen, D. C., Johnson, G. L., & Hanson, C. L. (1994). Mean areal precipitation for daily hydrologic modeling in mountainous regions. JAWRA

Journal of the American Water Resources Association, 30(3), 481–491. https://doi.org/10.1111/j.1752-1688.1994.tb03307.x

Garen, D. C., & Marks, D. (2005). Spatially distributed energy balance snowmelt modelling in a mountainous river basin: Estimation of

meteorological inputs and verification of model results. Journal of Hydrology, 315(1–4), 126–153. https://doi.org/10.1016/j.

jhydrol.2005.03.026

Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology,

228(1–2), 113–129. https://doi.org/10.1016/S0022-1694(00)00144-X

Griffin, D., & Anchukaitis, K. J. (2014). How unusual is the 2012–2014 California drought? Geophysical Research Letters, 41, 9017–9023. https://

doi.org/10.1002/2014GL062433

Grünewald, T., Schirmer, M., Mott, R., & Lehning, M. (2010). Spatial and temporal variability of snow depth and ablation rates in a small

mountain catchment. The Cryosphere, 4(2), 215–225. https://doi.org/10.5194/tc-4-215-2010

Guan, B., Molotch, N. P., Waliser, D. E., Jepsen, S. M., Painter, T. H., & Dozier, J. (2013). Snow water equivalent in the Sierra Nevada: Blending

snow sensor observations with snowmelt model simulations. Water Resources Research, 49, 5029–5046. https://doi.org/10.1002/

wrcr.20387

Hardy, J., Melloh, R., Koenig, G., Marks, D., Winstral, A., Pomeroy, J., & Link, T. (2004). Solar radiation transmission through conifer canopies.

Agricultural and Forest Meteorology, 126(3–4), 257–270. https://doi.org/10.1016/j.agrformet.2004.06.012

10.1029/2018WR023190Water Resources Research

HEDRICK ET AL. 8061

Acknowledgments

We would like to thank Aaron Fellows,

Jim Roche, Ned Bair, Jeff Dozier, Jessica

Lundquist, and two anonymous

reviewers for their very insightful

comments and suggestions. The data

and analysis presented in this paper

were funded in part by USDA-ARS CRIS

Understanding Snow and Hydrologic

Processes in Mountainous Terrain with a

Changing Climate (5362-13610-008-

00D), USDA-ARS Pathways Program,

NASA Terrestrial Hydrology Program,

NRCS Water and Climate Center, Bureau

of Reclamation Pacific Northwest

Region, California Department of Water

Resources, and the NASA Applied

Sciences Western Water Applications

Office. Any reference to specific

equipment types or manufacturers is for

information purposes and does not

represent a product endorsement or

recommendation. USDA is an equal

opportunity provider and employer.

Part of this work was performed at the

California Institute of Technology under

a contract with the National Aeronautics

and Space Administration. The data set

used to produce the results presented

in this study is available at https://doi.

org/10.5281/zenodo.1343653. The

interpolation from point to grid for the

forcing data is available as a standalone

Docker container in a software

repository at https://doi.org/10.5281/

zenodo.1343647.

https://doi.org/10.1002/hyp.1319
https://doi.org/10.1002/fld.2153
https://doi.org/10.5194/essd-10-549-2018
https://doi.org/10.1038/nclimate2809
https://doi.org/10.1002/2017WR021278
https://doi.org/10.1017/S002214300000616X
https://doi.org/10.1017/S002214300000616X
https://doi.org/10.1175/JHM487.1
https://doi.org/10.3189/2013JoG12J154
https://doi.org/10.1029/2012GL053387
https://doi.org/10.15447/sfews.2015v13iss2art1
https://doi.org/10.1029/WR016i004p00709
https://doi.org/10.1063/1.4822913
https://doi.org/10.1029/2011EO430001
https://doi.org/10.1029/2006JD007650
https://doi.org/10.3189/172756404781815275
https://doi.org/10.1002/hyp.6930
https://doi.org/10.1111/j.1752-1688.1994.tb03307.x
https://doi.org/10.1016/j.jhydrol.2005.03.026
https://doi.org/10.1016/j.jhydrol.2005.03.026
https://doi.org/10.1016/S0022-1694(00)00144-X
https://doi.org/10.1002/2014GL062433
https://doi.org/10.1002/2014GL062433
https://doi.org/10.5194/tc-4-215-2010
https://doi.org/10.1002/wrcr.20387
https://doi.org/10.1002/wrcr.20387
https://doi.org/10.1016/j.agrformet.2004.06.012
https://doi.org/10.5281/zenodo.1343653
https://doi.org/10.5281/zenodo.1343653
https://doi.org/10.5281/zenodo.1343647
https://doi.org/10.5281/zenodo.1343647


Havens, S., Marks, D., Kormos, P., & Hedrick, A. (2017). Spatial Modeling for Resources Framework (SMRF): A modular framework for devel-

oping spatial forcing data for snowmodeling in mountain basins. Computers and Geosciences, 109(September 2016), 295–304. https://doi.

org/10.1016/j.cageo.2017.08.016

Havens, S., Marks, D., & Rothwell, E. (2016). Application of a physically-based distributed snowmelt model in support of reservoir operations

and water management—Phase 2. Retrieved from https://www.usbr.gov/research/projects/detail.cfm?id=2157

Hedrick, A. R., Marks, D., Havens, S., Robertson, M., Johnson, M., Sandusky, M., et al. (2018a). Direct insertion of NASA Airborne Snow

Observatory-derived snow depth time-series into the iSnobal energy balance snow model [Data set]. Zenodo. https://doi.org/10.5281/

zenodo.1343653

Hedrick, A. R., Marks, D., Havens, S., Robertson, M., Johnson, M., Sandusky, M., et al. (2018b). Direct insertion of NASA Airborne Snow

Observatory-derived snow depth time-series into the iSnobal energy balance snowmodel [Software version 0.1]. Zenodo. https://doi.org/

10.5281/zenodo.1343647

Henn, B., Painter, T. H., Bormann, K. J., McGurk, B., Flint, A. L., Flint, L. E., et al. (2018). High-elevation evapotranspiration estimates during

drought: Using streamflow and NASA airborne snow observatory SWE observations to close the upper Tuolumne River Basin water bal-

ance. Water Resources Research, 54, 746–766. https://doi.org/10.1002/2017WR020473

Horel, J., Splitt, M., Dunn, L., Pechmann, J., White, B., Ciliberti, C., et al. (2002). Mesowest: Cooperative Mesonets in the western United States.

Bulletin of the American Meteorological Society, 83(2), 211–225. https://doi.org/10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2

Houser, P. R., De Lannoy, G. J. M., & Walker, J. P. (2012). Hydrologic data assimilation. In Approaches to managing disaster—Assessing

hazards, emergencies and disaster impacts. INTECH, 41–64. https://doi.org/10.5772/31246

Jost, G., Weiler, M., Gluns, D. R., & Alila, Y. (2007). The influence of forest and topography on snow accumulation and melt at the watershed-

scale. Journal of Hydrology, 347(1–2), 101–115. https://doi.org/10.1016/j.jhydrol.2007.09.006

Kojima, K. (1967). Densification of seasonal snow cover. Low Temperature Science, 799, 929–952.

Kormos, P., Marks, D., McNamara, J. P., Marshall, H.-P., Winstral, A. H., & Flores, A. N. (2014). Snow distribution, melt and surface water

inputs to the soil in the mountain rain–snow transition zone. Journal of Hydrology, 519, 190–204. https://doi.org/10.1016/j.

jhydrol.2014.06.051

Lehning, M., Grünewald, T., & Schirmer, M. (2011). Mountain snow distribution governed by an altitudinal gradient and terrain roughness.

Geophysical Research Letters, 38, L19504. https://doi.org/10.1029/2011GL048927

Link, T. E., & Marks, D. (1999). Point simulation of seasonal snow cover dynamics beneath boreal forest canopies. Journal of Geophysical

Research, 104(D22), 27,827–841,857. https://doi.org/10.1029/1998JD200121

Link, T. E., Marks, D., & Hardy, J. P. (2004). A deterministic method to characterize canopy radiative transfer properties. Hydrological Processes,

18(18), 3583–3594. https://doi.org/10.1002/hyp.5793

Livneh, B., Deems, J. S., Schneider, D., Barsugli, J. J., & Molotch, N. P. (2014). Filling in the gaps: Inferring spatially distributed precipitation from

gauge observations over complex terrain. Water Resources Research, 50, 8589–8610. https://doi.org/10.1002/2014WR015442

Luce, C. H., Tarboton, D. G., & Cooley, K. R. (1999). Sub-grid parameterization of snow distribution for an energy and mass balance snow

cover model. Hydrological Processes, 13(12–13), 1921–1933. https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1921::AID-

HYP867>3.0.CO;2-S

Lundquist, J. D., Minder, J. R., Neiman, P. J., & Sukovich, E. (2010). Relationships between barrier jet heights, orographic precipitation gradi-

ents, and streamflow in the Northern Sierra Nevada. Journal of Hydrometeorology, 11(5), 1141–1156. https://doi.org/10.1175/

2010JHM1264.1

Lundquist, J. D., Roche, J. W., Forrester, H., Moore, C., Keenan, E., Perry, G., et al. (2016). Yosemite Hydroclimate Network: Distributed stream

and atmospheric data for the Tuolumne River watershed and surroundings. Water Resources Research, 52, 7478–7489. https://doi.org/

10.1002/2016WR019261

Luo, W., Taylor, M. C., & Parker, S. R. (2008). A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using

irregularly distributed data from England andWales. International Journal of Climatology, 28(7), 947–959. https://doi.org/10.1002/joc.1583

Margulis, S. A., Cortés, G., Girotto, M., Huning, L. S., Li, D., & Durand, M. (2016). Characterizing the extreme 2015 snowpack deficit in the Sierra

Nevada (USA) and the implications for drought recovery. Geophysical Research Letters, 43, 6341–6349. https://doi.org/10.1002/

2016GL068520

Marks, D., Domingo, J., Susong, D., Link, T. E., & Garen, D. C. (1999). A spatially distributed energy balance snowmelt model for application in

mountain basins. Hydrological Processes, 13(12–13), 1935–1959. https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1935::AID-

HYP868>3.0.CO;2-C

Marks, D., & Dozier, J. (1979). A clear-sky longwave radiation model for remote alpine areas. Archiv Für Meteorologie, Geophysik Und

Bioklimatologie Serie B, 27(2–3), 159–187. https://doi.org/10.1007/BF02243741

Marks, D., & Dozier, J. (1992). Climate and energy exchange at the snow surface in the Alpine Region of the Sierra Nevada: 2. Snow cover

energy balance. Water Resources Research, 28(11), 3043–3054. https://doi.org/10.1029/92WR01483

Marshall, S. E., & Warren, S. G. (1987). Parameterization of snow albedo for climate models. In B. E. Goodison, R. G. Barry, & J. Dozier (Eds.),

Large scale effects of seasonal snow cover (pp. 43–50). Wallingford, England: International Association of Hydrological Sciences.

Miller, R. N., Ghil, M., & Gauthiez, F. (1994). Advanced data assimilation in strongly nonlinear dynamical systems. Journal of the Atmospheric

Sciences, 51(8), 1037–1056. https://doi.org/10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2

Molotch, N. P., & Bales, R. C. (2005). Scaling snow observations from the point to the grid element: Implications for observation network

design. Water Resources Research, 41, W11421. https://doi.org/10.1029/2005WR004229

Molotch, N. P., Painter, T. H., Bales, R. C., & Dozier, J. (2004). Incorporating remotely-sensed snow albedo into a spatially-distributed snowmelt

model. Geophysical Research Letters, 31, L03501. https://doi.org/10.1029/2003GL019063

Nayak, A., Chandler, D. G., Marks, D., McNamara, J. P., & Seyfried, M. S. (2008). Correction of electronic record for weighing bucket precipi-

tation gauge measurements. Water Resources Research, 44, W00D11. https://doi.org/10.1029/2008WR006875

Olyphant, G. A., & Isard, S. A. (1988). The role of advection in the energy balance of late-lying snowfields: Niwot Ridge, Front Range, Colorado.

Water Resources Research, 24(11), 1962–1968. https://doi.org/10.1029/WR024i011p01962

Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., et al. (2016). The Airborne Snow Observatory: Fusion of

scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote

Sensing of Environment, 184, 139–152. https://doi.org/10.1016/j.rse.2016.06.018

Pomeroy, J., Bewley, D. S., Essery, R., Hedstrom, N. R., Link, T., Granger, R., et al. (2006). Shrub tundra snowmelt. Hydrological Processes, 20(4),

923–941. https://doi.org/10.1002/hyp.6124

Pomeroy, J., & Brun, E. (2001). Physical properties of snow. In H. G. Jones, J. W. Pomeroy, D. A. Walker, & R. W. Hoham (Eds.), Snow ecology: An

interdisciplinary examination of snow-covered ecosystems (pp. 45–126). Cambridge: Cambridge University Press.

10.1029/2018WR023190Water Resources Research

HEDRICK ET AL. 8062

https://doi.org/10.1016/j.cageo.2017.08.016
https://doi.org/10.1016/j.cageo.2017.08.016
https://www.usbr.gov/research/projects/detail.cfm?id=2157
https://doi.org/10.5281/zenodo.1343653
https://doi.org/10.5281/zenodo.1343653
https://doi.org/10.5281/zenodo.1343647
https://doi.org/10.5281/zenodo.1343647
https://doi.org/10.1002/2017WR020473
https://doi.org/10.1175/1520-0477(2002)083%3c0211:MCMITW%3e2.3.CO;2
https://doi.org/10.1175/1520-0477(2002)083%3c0211:MCMITW%3e2.3.CO;2
https://doi.org/10.5772/31246
https://doi.org/10.1016/j.jhydrol.2007.09.006
https://doi.org/10.1016/j.jhydrol.2014.06.051
https://doi.org/10.1016/j.jhydrol.2014.06.051
https://doi.org/10.1029/2011GL048927
https://doi.org/10.1029/1998JD200121
https://doi.org/10.1002/hyp.5793
https://doi.org/10.1002/2014WR015442
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13%3c1921::AID-HYP867%3e3.0.CO;2-S
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13%3c1921::AID-HYP867%3e3.0.CO;2-S
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13%3c1921::AID-HYP867%3e3.0.CO;2-S
https://doi.org/10.1175/2010JHM1264.1
https://doi.org/10.1175/2010JHM1264.1
https://doi.org/10.1002/2016WR019261
https://doi.org/10.1002/2016WR019261
https://doi.org/10.1002/joc.1583
https://doi.org/10.1002/2016GL068520
https://doi.org/10.1002/2016GL068520
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13%3c1935::AID-HYP868%3e3.0.CO;2-C
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13%3c1935::AID-HYP868%3e3.0.CO;2-C
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13%3c1935::AID-HYP868%3e3.0.CO;2-C
https://doi.org/10.1007/BF02243741
https://doi.org/10.1029/92WR01483
https://doi.org/10.1175/1520-0469(1994)051%3c1037:ADAISN%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(1994)051%3c1037:ADAISN%3e2.0.CO;2
https://doi.org/10.1029/2005WR004229
https://doi.org/10.1029/2003GL019063
https://doi.org/10.1029/2008WR006875
https://doi.org/10.1029/WR024i011p01962
https://doi.org/10.1016/j.rse.2016.06.018
https://doi.org/10.1002/hyp.6124


Prokop, A. (2008). Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements. Cold Regions Science and

Technology, 54(3), 155–163. https://doi.org/10.1016/j.coldregions.2008.07.002

Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., et al. (2012). How well are wemeasuring snow: The NOAA/FAA/

NCAR winter precipitation test bed. Bulletin of the American Meteorological Society, 93(6), 811–829. https://doi.org/10.1175/BAMS-D-11-

00052.1

Reba, M. L., Marks, D., Seyfried, M. S., Winstral, A. H., Kumar, M., & Flerchinger, G. N. (2011). A long-term data set for hydrologic modeling in a

snow-dominated mountain catchment. Water Resources Research, 47, W07702. https://doi.org/10.1029/2010WR010030

Shook, K., & Gray, D. M. (1996). Small-scale spatial structure of shallow snowcovers. Hydrological Processes, 10(10), 1283–1292. https://doi.org/

10.1002/(SICI)1099-1085(199610)10:10<1283::AID-HYP460>3.0.CO;2-M

Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., & Lea, J. (2010). Estimating snow water equivalent using snow depth data and climate

classes. Journal of Hydrometeorology, 11(6), 1380–1394. https://doi.org/10.1175/2010JHM1202.1

Susong, D., Marks, D., & Garen, D. (1999). Methods for developing time-series climate surfaces to drive topographically distributed energy-

and water-balance models. Hydrological Processes, 13(12–13), 2003–2021. https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/

13<2003::AID-HYP884>3.0.CO;2-K

Tinkham, W. T., Smith, A. M. S., Marshall, H. P., Link, T. E., Falkowski, M. J., & Winstral, A. H. (2014). Quantifying spatial distribution of

snow depth errors from LiDAR using Random Forest. Remote Sensing of Environment, 141, 105–115. https://doi.org/10.1016/j.

rse.2013.10.021

Trujillo, E., Ramírez, J. A., & Elder, K. J. (2007). Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial

distribution of snow depth fields. Water Resources Research, 43, W07409. https://doi.org/10.1029/2006WR005317

Vano, J. A., Das, T., & Lettenmaier, D. P. (2012). Hydrologic sensitivities of Colorado River runoff to changes in precipitation and temperature*.

Journal of Hydrometeorology, 13(3), 932–949. https://doi.org/10.1175/JHM-D-11-069.1

Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., et al. (2013). Observations: Cryosphere. In T. F. Stocker, et al. (Eds.),

Climate change 2013: The physical science basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental

Panel on Climate Change (pp. 317–382). Cambridge, UK and New York, NY, USA: Cambridge University Press.

Vögeli, C., Lehning, M., Wever, N., & Bavay, M. (2016). Scaling precipitation input to spatially distributed hydrological models by measured

snow distribution. Frontiers in Earth Science, 4(December), 1–15. https://doi.org/10.3389/feart.2016.00108

Wilson, T. S., Sleeter, B. M., & Cameron, D. R. (2016). Future land-use related water demand in California. Environmental Research Letters,

11(5). https://doi.org/10.1088/1748-9326/11/5/054018

Winstral, A., Elder, K., & Davis, R. E. (2002). Spatial snow modeling of wind-redistributed snow using terrain-based parameters. Journal of

Hydrometeorology, 3(5), 524–538. https://doi.org/10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2

Winstral, A., & Marks, D. (2014). Long-term snow distribution observations in a mountain catchment: Assessing variability, time stability, and

the representativeness of an index site. Water Resources Research, 50, 293–305. https://doi.org/10.1002/2012WR013038

Winstral, A., Marks, D., & Gurney, R. (2009). An efficient method for distributing wind speeds over heterogeneous terrain. Hydrological

Processes, 23(17), 2526–2535. https://doi.org/10.1002/hyp.7141

Yang, D., Goodison, B. E., Metcalfe, J. R., Golubev, V. S., Bates, R., Pangburn, T., & Hanson, C. L. (1998). Accuracy of NWS 8 standard nonre-

cording precipitation gauge: Results and application of WMO Intercomparison. Journal of Atmospheric and Oceanic Technology, 15(1),

54–68. https://doi.org/10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2

10.1029/2018WR023190Water Resources Research

HEDRICK ET AL. 8063

https://doi.org/10.1016/j.coldregions.2008.07.002
https://doi.org/10.1175/BAMS-D-11-00052.1
https://doi.org/10.1175/BAMS-D-11-00052.1
https://doi.org/10.1029/2010WR010030
https://doi.org/10.1002/(SICI)1099-1085(199610)10:10%3c1283::AID-HYP460%3e3.0.CO;2-M
https://doi.org/10.1002/(SICI)1099-1085(199610)10:10%3c1283::AID-HYP460%3e3.0.CO;2-M
https://doi.org/10.1002/(SICI)1099-1085(199610)10:10%3c1283::AID-HYP460%3e3.0.CO;2-M
https://doi.org/10.1175/2010JHM1202.1
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13%3c2003::AID-HYP884%3e3.0.CO;2-K
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13%3c2003::AID-HYP884%3e3.0.CO;2-K
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13%3c2003::AID-HYP884%3e3.0.CO;2-K
https://doi.org/10.1016/j.rse.2013.10.021
https://doi.org/10.1016/j.rse.2013.10.021
https://doi.org/10.1029/2006WR005317
https://doi.org/10.1175/JHM-D-11-069.1
https://doi.org/10.3389/feart.2016.00108
https://doi.org/10.1088/1748-9326/11/5/054018
https://doi.org/10.1175/1525-7541(2002)003%3c0524:SSMOWR%3e2.0.CO;2
https://doi.org/10.1175/1525-7541(2002)003%3c0524:SSMOWR%3e2.0.CO;2
https://doi.org/10.1002/2012WR013038
https://doi.org/10.1002/hyp.7141
https://doi.org/10.1175/1520-0426(1998)015%3c0054:AONSNP%3e2.0.CO;2
https://doi.org/10.1175/1520-0426(1998)015%3c0054:AONSNP%3e2.0.CO;2

	Boise State University
	ScholarWorks
	10-1-2018

	Direct Insertion of NASA Airborne Snow Observatory-Derived Snow Depth Time Series Into the iSnobal Energy Balance Snow Model
	Andrew R. Hedrick
	Hans-Peter Marshall

	Direct Insertion of NASA Airborne Snow Observatory-Derived Snow Depth Time Series Into the iSnobal Energy Balance Snow Model

