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Abstract

We extend the direct integration method of the holomorphic anom-
aly equations to general Ω backgrounds ε1 �= −ε2 for pure SU(2) N = 2
Super-Yang–Mills theory and topological string theory on non-compact
Calabi–Yau threefolds. We find that an extension of the holomorphic
anomaly equation, modularity and boundary conditions provided by the
perturbative terms as well as by the gap condition at the conifold are suf-
ficient to solve the generalized theory in the above cases. In particular,
we use the method to solve the topological string for the general Ω back-
grounds on non-compact toric Calabi–Yau spaces. The conifold boundary
condition follows from that the N = 2 Schwinger-loop calculation with
Bogomol’nyi-Prasad-Sommerfield (BPS) states coupled to a self-dual and
an anti-self-dual field strength. We calculate such BPS states also for the
large base decompactification limit of Calabi–Yau spaces with regular K3
fibrations and half K3s embedded in Calabi–Yau backgrounds.
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1 Introduction

Nekrasov’s instanton calculations for the N = 2 supersymmetric gauge the-
ory [1] completes the program of [2] and confirms the Seiberg–Witten pre-
potential as the leading contribution in the asymptotically free region from
the microscopic field theory perspective. These instanton calculations have
been made mathematically more rigorous in [3, 4]. Higher-order contribu-
tions in Nekrasov’s partition function correspond to gravitational couplings
of the gauge theory, and are organized by a topological genus expansion. The
genus one formula is also mathematically proven in [5]. In previous works,
we computed the higher genus terms in SU(2) Seiberg–Witten theory (with
fundamental matter) [6, 7] in terms of generators of modular forms w.r.t.
the monodromy group, which is a subgroup of SL(2, Z), using holomorphic
anomaly equations [8] and novel boundary conditions at the special points
of the moduli space. Our formulae constitute well-defined mathematical
conjectures that sum up all instanton contribution of Nekrasov’s partition
function at fixed genus in a closed from, which defines it explicitly at every
point on the Coulomb branch.

There are two deformation parameters ε1, ε2 in Nekrasov’s partition func-
tion. Our higher genus formulae in [6,7] correspond to the case ε1 = −ε2 or
β := − ε1

ε2
= 1, where the technique of holomorphic anomaly equations from

the topological string theory is applicable. Recently, it has become an inter-
esting question to study the general case of arbitrary β-backgrounds due to
several developments.

Firstly, the AGT (Alday–Gaiotto–Tachikawa) conjecture [9] relates the
Nekrasov function at general deformation parameter (at a fixed instanton
number) to correlation functions in the Liouville theory. A matrix model
with a modified measure, the called β-ensemble [43], was related to the
general β-deformations of gauge theories.

Secondly, in the BPS interpretation of the topological string partition
function, there is a natural meaning of the ε1, ε2 expansion. It gives refined
information about the cohomology of the moduli space of the BPS states,
while the ε1 = −ε2 slice computes complex structure invariant indices. A
refined topological vertex was proposed in [10] that generalizes the topolog-
ical string partition function for non-compact toric Calabi–Yau manifolds,
which have no complex structure deformations. It was shown to reduce to
the Nekrasov partition function for general deformation parameters ε1, ε2 in
the field theory limit.

In this paper, we describe first the B-model approach of direct integration
for the simplest deformed N = 2 gauge theory in Section 2. Similar results
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have been also obtained recently, in fact in more generality in [11]. It is clear
already from the perturbative test of [44] that the β-ensemble for the matrix
models associated to Seiberg–Witten theories, suggested in [43], leads to the
possibility to remodel the B-model along the line of [48] from the spectral
curve using the formalism of [49].

A direct implementation of the deformed β-ensemble to the matrix mod-
els associated to the topological string on local Calabi–Yau spaces seems not
straightforward. We found that even the β-ensemble for the Chern–Simons
matrix model, describing the resolved conifold in the canonical parameteriza-
tion, fails1 to reproduce the known results [10] for this geometry if ε1 �= −ε2.
We therefore move on to calculate general deformations in topological string
theory in Section 3.

In Section 3.1, we explain first the interpretation of the refined topological
string expansion in terms of the cohomology of the moduli space of BPS
states. The BPS picture yields the generalized gap condition at the conifold
locus in Section 3.2 and the large radius conifold expansion in Section 3.3.

We then make predictions for the generalized BPS invariants in the decom-
pactification limit ofK3 fibered Calabi–Yau spaces for large base space using
heterotic type II duality in Section 3.5.2 and analyze in Section 4.1 a sim-
ilar setting for the half K3, which by a T -duality predicts a sector of the
partition function for compactifications of N = 4 Super-Yang-Mills (SYM)
on manifolds with b+ = 1.

Using the generalized holomorphic anomaly equation and boundary con-
dition we extend the methods of [6,7,40]. I.e. we perform the direct integra-
tion for general β-backgrounds on local toric Calabi–Yau spaces using the
generalized gap condition discussed in 3.2. We then consider non-compact
manifolds, such as O(KB) → B, where the base B is a toric manifold. As
examples, we present the cases B = P

2 and B = P
1 × P

1 in Sections 4.2 and
4.3, respectively. We hope that our analytic expressions for the amplitudes
will help to find a matrix model description.

2 Seiberg–Witten gauge theory

The Nekrasov partition function consists of the perturbative contributions
and the instanton contributions

Z(a, ε1, ε2) = Zpert(a, ε1, ε2)Zinst(a, ε1, ε2). (2.1)

1We thank Marcos Mariño for sharing insights into similar attempts.
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In this paper, we only consider the pure SU(2) case, so there is only one
Seiberg–Witten period a and we choose the cut-off parameter in [3] to be
Λ = 1/16 which can be recovered by dimensional analysis in the formula. So
the function essentially depends on three parameters a, ε1, ε2. The logarithm
of the Nekrasov function can be expanded as

logZ(a, ε1, ε2) =
∞∑

i,j=0

(ε1 + ε2)i(ε1ε2)j−1F ( i
2
,j)(a). (2.2)

Then the genus zero F (0,0) is the prepotential well known from the work
of Seiberg and Witten [12], and the formula F g with g > 1 for the case of
ε1 + ε2 = 0 in [6, 7] correspond to F g = F (0,g) in our current notation. It
turns out that for the models that we will study, when i is an odd integer,
F ( i

2
,j)(a) vanishes except a trivial term from the perturbative contributions.

So we will only need to consider F (i,j)(a) with i, j non-negative integers.
This is not always true for all models. In particular, the F ( 1

2
,0) is non-

vanishing for SU(2) Seiberg–Witten theory with Nf = 1 massless flavor. For
this interesting case, as well as the massless Nf = 2, 3 theories; see the recent
paper [11].

2.1 Generalized holomorphic anomaly equations

It turns out that the topological amplitudes F (g1,g2) satisfy for g1 + g2 ≥ 2
a generalized holomorphic anomaly equation

∂̄īF
(g1,g2) =

1
2
C̄jk
ī

(
DjDkF

(g1,g2−1) +
∑

r1,r2

′
DjF

(r1,r2)DkF
(g1−r1,g2−r2)

)
,

(2.3)

where the prime denotes that the sum over r1, r2 does not include (r1, r2) = 0
and (r1, r2) = (g1, g2), and the first term on the right-hand side is understood
to be zero, if g2 = 0. This equation reduces to the ordinary Bershadsky-
Cecotti-Ooguri-Vafa (BCOV) holomorphic anomaly equation when g1 = 0,
and is a simplification of the extended holomorphic anomaly equation in [11]
without the so-called Griffiths infinitesimal invariant, which turns out to be
vanishing for the models we study.

To integrate the holomorphic anomaly equation and write out the compact
expressions for the higher genus amplitudes, we first express the Seiberg–
Witten period a and Coulomb modulus u in terms of modular functions of
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the coupling τ ∼ 1
2πi

∂2F (0,0)

∂a2 as

a =
E2(τ) + θ4

3(τ) + θ4
4(τ)

3θ2
2(τ)

, u =
θ4
3(τ) + θ4

4(τ)
θ4
2(τ)

. (2.4)

In the cusp limit τ → i∞, we find q = e2πiτ → 0 and a ∼ q−
1
4 , u ∼ q−

1
2 .

We can express a, u, q in terms of series expansion of each other, from the
above relations and the well known series expansion formulae of the Theta
functions and Eisenstein series. It is proven in [5] that the genus one formulae
for Nekrasov function are

F (0,1) = − log(η(τ)), F (1,0) = −1
6

log
(
θ2
2

θ3θ4

)
. (2.5)

The anholomorphic generator in the topological amplitudes is the shifted
Eisenstein series Ê2 = E2(τ) + 6i

π(τ̄−τ) . Using some well-known results about
the three-point coupling and the relations between parameters a, u, τ in
(2.4), we find that (2.3) becomes

48
∂F (g1,g2)

∂E2
=

d2

da2
F (g1,g2−1) +

(
g1∑

r1=0

g2∑

r2=0

)′(
dF (r1,r2)

da

)(
dF (g1−r1,g2−r2)

da

)
.

(2.6)

If the above generalized holomorphic anomaly equation is true, then it
will determine F (g1,g2) recursively up to a rational function of modulus u
with a pole at the discriminant of Seiberg–Witten curve u2 − 1 of degree
2(g1 + g2) − 2.

The equation (2.6) applies to the case of g1 + g2 ≥ 2. At genus one, we
note that F (0,1) satisfies the ordinary BCOV holomorphic anomaly equation
after we pass to the usual modular but an-holomorphic completion of η →√

Im(τ)|η(τ)|2.

As for F (1,0), we write

F (1,0) = −1
6

log
(
θ2
2

θ3θ4

)
=

1
24

log(u2 − 1). (2.7)

We see that F (1,0) has only a logarithmic cut at the discriminant u2 − 1. It
is already modular, needs no an-holomorphic modular completion and has
therefore no holomorphic anomaly.
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2.2 Higher genus formulae and the dual expansion

Problems associated to Riemann surfaces C1 of genus one such as SU(2)
N = 2 SYM theories, topological string related to local del Pezzo surfaces
or cubic matrix models have only one an-holomorphic generator Ê2 in the
ring of modular objects generating all F (g1,g2). It is convenient to define an
an-holomorphic generator of weight zero, e.g., X = Ê2/θ

4
2 in the case above.

In cases with one an-holomorphic generator X the direct integration of
the generalized holomorphic anomaly equation of the type (2.6) leads to the
following general form of the F (g1,g2):

F (g1,g2) =
1

Δ2(g1+g2−1)(u)

3g2−3−g1∑

k=0

Xkc
(g1,g2)
k (u), (2.8)

where Δ(u) is the conifold discriminant of C1 and u are holomorphic
monodromy invariant parameters. All c(g1,g2)

i (u) are polynomial in these
parameters. The extension of the generalized anomaly equations and the
general form (2.8) to cases with more an-holomorphic generators Xij for
theories related to Riemann surfaces Cg>1 works along the lines discussed
in [33,38,42].

In (2.8), all c(g1,g2)
i>0 (u) are determined by the generalized holomorphic

anomaly equation, while the holomorphic ambiguity c
(g1,g2)
0 (u) must be

determined from the boundary conditions. We find that the expansion at
the conifold divisor in the moduli space and in particular the gap condi-
tion in this expansion together with regularity at other limits in the moduli
space and the knowledge of the classical terms are sufficient to completely fix
c
(g1,g2)
0 (u). Note that regularity of F (g1,g2) the u→ ∞ limit implies that the
c
(g1,g2)
i (u) are finite degree polynomials. We will explain the gap condition

in more details in the context of topological string theory on Calabi–Yau
manifolds in Section 3.2.

To determine now the holomorphic ambiguity for the pure SU(2) theory,
we expand the topological amplitudes around the monopole point u = 1.
This can be achieved by an S-duality transformation. Under an S-duality
transformation τ → − 1

τ , the shifted E2 transforms with weight 2, and the
Theta functions transform as θ4

2 → −θ4
4, θ

4
3 → −θ4

3, θ
4
4 → −θ4

2. The param-
eter u and a become2

aD =
2

3θ2
4(τ)

(E2(τ) − θ4
3(τ) − θ4

2(τ)), uD =
θ4
3(τ) + θ4

2(τ)
θ4
4(τ)

. (2.9)

2Here, we normalize aD by a factor of 2i for the consistence of conventions.
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We find that in the cusp limit τ → i∞, the parameters go to aD ∼ q
1
2 → 0,

uD → 1. This is similar to the conifold point in the moduli space Calabi–
Yau manifolds. We find the gap condition [6] around this point completely
fixes the holomorphic ambiguity.

We obtain compact formulae for higher genus F (g1,g2) similar to those
in [6] for F (0,g). The genus two formulae are

F (0,2) =
200X3 − 360uX2 + (60u2 + 180)X − 19u3 − 45u

12960(u2 − 1)2
,

F (1,1) =
20uX2 − (40u2 + 60)X + 3u3 + 45u

2160(u2 − 1)2
,

F (2,0) =
10u2X + u3 − 75u

4320(u2 − 1)2
.

(2.10)

We note thatX,u are modular invariant under the monodromy group Γ(2) ⊂
SL(2, Z) if we shift the second Eisenstein series by an anholomorphic piece
E2 → Ê2 = E2 + 6i

π(τ̄−τ) .

We expand the genus one and genus two formulae (2.5) and (2.10) around
the conifold point.

F
(0,1)
D = − 1

12
log(aD) + c0,1 − aD

25
+ O(a2

D),

F
(1,0)
D =

1
24

log(aD) + c1,0 − 3aD
26

+ O(a2
D),

F
(0,2)
D = − 1

240a2
D

− aD
213

+ O(a2
D),

F
(1,1)
D =

7
1440a2

D

+
3

211
+

25aD
214

+ O(a2
D),

F
(2,0)
D = − 7

5760a2
D

+
9

213
+

135aD
216

+ O(a2
D).

(2.11)

Here c0,1 and c1,0 are two irrelevant constants. We see that the genus two
functions satisfy the gap condition with the absence of 1

aD
term. We present

gap structure and results for g1 + g2 = 3 in Appendix A.1. Our exact formu-
lae (2.10) sum up the genus two parts of all instanton contributions of the
Nekrasov’s function. We can check the agreements with Nekrasov’s func-
tion up to some instanton number, by expanding the expressions around the
large complex structure parameter point u ∼ ∞.
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3 The refined topological string theory

In this section, we discuss general aspects of refined topological string theory,
such as the description of the expansions in terms of refined BPS states and
their invariance under complex structure deformations. As examples we
treat the conifold and K3 fibrations.

First we interpret the general − ε1
ε2

= β �= 1 deformation for the BPS states
related to topological string theory from the generalized Schwinger-loop
amplitude.

3.1 The Schwinger-loop amplitude

It will be convenient to define

εR/L = ε± =
1
2
(ε1 ± ε2). (3.1)

In [10, 13, 14], it was suggested to integrate out BPS states in the
Schwinger-loop amplitude leading to an F -term in N = 2 supergravity

R2
−T

2m−2
− F 2n−2

+ . (3.2)

Here R− and T− are the anti-self-dual curvature and anti-self-dual gravipho-
ton field strength and F+ is a self-dual field strength. More precisely [10]
considers for F+ the self-dual part of the graviphoton. In this case the ampli-
tude cannot lead to an F -term. In [14] for F+ the self-dual part of the field
strength associated to the heterotic dilaton and claim that this gives rise to
an F -term.

The term can be calculated in a 5d M -theory compactification on S1 ×M
or on an Type II compactification on the Calabi–Yau M . Following the
former picture and denoting the general field strength G = ε1dx

1 ∧ dx2 +
ε2dx

3 ∧ dx4 then integrating out a massive particle of mass m in the repre-
sentation R of the little group of the 5D Lorentz SO(4) ∼ SU(2)L × SU(2)R
gives the following contribution to the Schwinger-loop amplitude:

F (ε1, ε2) = −
∫ ∞

ε

ds

s

TrR(−1)σL+σR e−sm e−2is(σLεL+σRεR)

4
(
sin2

(
sεL
2

)− sin2
(
sεR
2

)) , (3.3)

where we denoted by εR/L = ε± = ieG± the self-dual or anti-self-dual part
of field strengths coupling to the BPS state respectively.
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At large complex structure we expect to be able to count BPS numbers for
the D-brane charges �Q = (Q6, Q4, Q2, Q0) = (1, 0, β, n) with β ∈ H2(M,Z)
and n ∈ Z. More precisely in M -theory compactifications on Calabi–Yau
threefolds M the BPS invariants related to topological string theory have
been interpreted as an index in the cohomology of the moduli spaceH∗(Mβ)
of an M2 brane wrapping a curve in the class β ∈ H2(M,Z) [15]. After com-
pactification on the M -theory S1 the moduli space Mβ can be described
equivalently as the one of a D2/D0 bound state in the type IIA compacti-
fication on M , where the D2 wraps now the curve and n is the degeneracy
of the D0 branes.

The SU(2)L/R factors of the little group SO(4) ∼ SU(2)L × SU(2)R of
the 5D Lorentz group of the M -theory compactification on M act as two
Lefshetz actions on the cohomology of the moduli space of the brane system
H∗(Mβ) and these factors of the spacetime group are the same that were
used in the localization procedure in [1]. I.e. εL and εR are identified with
the eigenvalues of the j3L/R in the corresponding SU(2)L/R, which label the

integer BPS numbers3 nβjL,jR .

One important point here is that nβjL,jR is not invariant under complex
structure deformations but only the index

nβjL =
∑

jR

(−1)2jR(2jR + 1)nβjL,jR . (3.4)

This relies on the fact only the F-term R2−T
2g−2
− , which defines the invariant

topological string amplitude, depends exclusively on the Kähler moduli. In
the corresponding one loop amplitude the anti-self-dual graviphoton field
strength T− as well as the anti-self-dual curvature 2-form R− couple only to
the left spin, while the right spin content enters the calculation of R2−T

2g−2
−

merely with its multiplicity weighted with −1 for fermions and 1 for bosons
leading to 3.4).

In order to compare with the genus expansion of the topological string
the the left representations have to be organized into

InL =
[(

1
2

)
+ 2(0)

]⊗n
, (3.5)

i.e., one defines
∑

nβjL,jR(−1)2jR(2jR + 1)[jL] =
∑

g

nβg I
g
L. (3.6)

3Below we drop the index 3 on j3
L/R.
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There is an amusing fact about the expansion In =
∑

j c
2n
j [j/2]: the coef-

ficients cni ∈ N are the distributions of random walk in the half plane with
reflective boundary conditions after n steps, i.e., c0i = δi,0, cki = 0 for all k
and i < 0

cki =

{
ck−1
i + ck−1

i+1 , k even,

ck−1
i−1 + ck−1

i , k odd.

Since c2nn = 1 the [j/2] basis can be expressed in terms of the Ir with integer
coefficient.

Using (3.4) in (3.3),

TrIn
L
(−1)σLe−2πiσLs = (2 sin(s/2))2n, (3.7)

the formula for mass of the D2/D0 brane system m2 = t+ 2πin as well as
sum over the D0 brane momenta n on the M -theory S1 yields the formal
expression [15]

Fhol(λ = ε−, t) =
∞∑

g=0

∑

β∈H2(M,Z)

∞∑

m=1

nβg
1
m

(
2 sin

mλ

2

)2g−2

em(β,t). (3.8)

Similarly if one calculates along the same lines theR2−T
2m−2
− F 2n−2

+ amplitude
one obtains

Fhol(εR/L, t) =
∞∑

jL,jR=0
m=1

∑

β∈H2(M,Z)

nβjL,jR
m

×
(−1)2jL+2jR

(∑jL
n=−jL y

mn
L

)(∑jR
n=−jR y

mn
R

)
em(β,t)

4
(
sin2

(
mεL

2

)− sin2
(
mεR

2

))

(3.9)

with yL/R = eiεL/R . It is convenient to rewrite (3.9) in terms of the IgLL and
IgRR basis using

∑
nβjL,jR [JL, JR] =

∑
ñβgL,gRI

gL
L ⊗ IgRR and (3.7) for the left

and the right spins

Fhol(ε1/2, t)

=
∞∑

gL,gR=0
m=1

∑

β∈H2(M,Z)

ñβgL,gR
m

sin
(
m(ε1−ε2)

4

)2gL
sin
(
m(ε1+ε2)

4

)2gR
em(β,t)

4
(
sin
(
mε1
2

)
(sin

(
mε2
2

))

=
∞∑

g1,g1=0
g1+g1=0 mod 2

εg1−1
1 εg2−1

2 F̃g1,g2(t). (3.10)
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Here, the F̃g1,g2 are easily extracted since at every power of ε1/2 they involve
only finitely many ñβg1,g2 . We list the first few

F̃0,0 =
∑

β

ñβ0,0Li3
(
e(t,β)

)
,

F̃0,2 =
∑

β

(
ñβ0,1
24

+
1
4
(ñβ01 + ñβ1,0)

)
Li1
(
e(t,β)

)
,

F̃1,3 =
∑

β

(
1
4
(ñβ02 − ñβ2,0)

)
Li−1

(
e(t,β)

)
,

F̃2,2 =
∑

β

(
ñβ0,1
576

− 1
96

(ñβ02 − ñβ2,0) +
3
8
(ñβ02 − ñβ2,0) +

1
8
ñβ1,1

)

× Li−1

(
e(t,β)

)
,

etc

(3.11)

and note that generally the Polylogarithm Li3−g1−g2(x) :=
∑∞

k=1
xk

(3−g1−g2)k

describes the multi covering of the curve in the class β contributing to
F̃g1,g2(t).

Moreover note, that if (3.3) is the correct starting point for the general
generalized topological string instanton expansion then there will be no odd
powers in ε1, ε2. By comparison with expansion of the type (2.2) we see that
there are no contributions from the instantons to F (n/2,m)(t) for n odd. Since
F (1/2,0)(t) is related to the Griffith infinitesimal invariant in the holomorphic
anomaly of [11], it seems that for the topological string the version of the
generalized holomorphic anomaly equation (2.6) is generally applicable for
the topological string.

By geometrical engineering the SU(2) SYM theory with Nf = 1, for which
a non-trivial modification of (2.6) seems necessary [11], is related to the field
theory limit of topological string on the blow up of F1 [20]. One would expect
to see the non-trivial contribution by a subtle effect in this field theory limit.

3.2 The gap condition at the conifold point

Here, we provide a general derivation of the singular terms in the dual
expansion near the generic conifold, such as (2.11, A.2). We will be able
to explain the gap condition as well as computing the leading coefficients.
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Our argument is a generalization of that of [16], and has been also presented
recently in [11]. Basically, the singular terms in dual expansion come from
integrating out nearly massless particles near the conifold point. Generically
the massless BPS state has the charge �Q = (1, 0, 0, 0) and has identified as
a massless extremal black hole [17]. In Type II string theory, on a Calabi–
Yau space it comes from a D3-brane wrapping the S3, which shrinks at the
conifold and its mass squared is tc =

∫
S3 Ω/t0. Here Ω is the holomorphic

(3, 0) form and t0 is a period which starts with the constant one at the
conifold. In the non-compact limit leading to the Seiberg–Witten gauge
theory the local reduction of that period becomes aD =

∫
S1 λ, where λ is the

meromorphic Seiberg–Witten differential. In the gauge theory, the vanishing
mass squared is that of a magnetic monopole. Following the arguments of
Gopakumar and Vafa [15] and integrating out the nearly massless particle
generates the singular terms in the dual expansion of

F (ε1, ε2, aD) = −
∫ ∞

0

ds

s

exp(−saD)
4 sin(sε1/2) sin(sε2/2)

+ O(a0
D). (3.12)

Since the calculation is local we present it only for the gauge theory case.
For the string case, aD is simply to be replaced with the flat coordinate tc.

It is straightforward to expand the integrand in small ε1, ε2 and perform
the integral. We compute the first few orders4

F (ε1, ε2, aD)

=
[
− 1

12
+

1
24

(ε1 + ε2)2(ε1ε2)−1

]
log(aD)

+
[
− 1

240
(ε1ε2) +

7
1440

(ε1 + ε2)2 − 7
5760

(ε1 + ε2)4(ε1ε2)−1

]
1
a2
D

+
[

1
1008

(ε1ε2)2 − 41
20160

(ε1 + ε2)2(ε1ε2) +
31

26880
(ε1 + ε2)4

− 31
161280

(ε1 + ε2)6(ε1ε2)−1

]
1
a4
D

+ O
(

1
a6
D

)
+ O(a0

D). (3.13)

We see the gap structure in the dual expansion around the conifold point,
and the leading coefficients exactly match those in (2.11, A.2). This univer-
sal behavior will enable us to fixed the holomorphic ambiguity in the refined
topological string theory.

4The logarithmic term log(aD) comes from the regularization near s = 0 of the integral∫∞
0

ds
s

e−saD = − log(aD) + O(a0
D).
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3.3 B-model for the resolved conifold

The resolved conifold can be represented as line bundle over a sphere
O(−1) ⊕O(−1) → P

1. This is one of simplest local Calabi–Yau models
where the Gopakumar–Vafa correspondence between topological strings and
Chern–Simons gauge theory was first discovered [18]. The topological A-
model on resolved conifold is particularly simple and the Chern–Simons
gauge theory become a matrix model in the small Kähler parameter limit.
From the B-model perspective, a Picard–Fuchs differential equation for the
model was provided in [19], where the complex structure parameter of the
mirror curve is simply related to the exponential of the Kähler parame-
ter T in the A-model by Q = e−T . One can see the Christoffel symbol
of the moduli space metric and the propagator defined in [8] are ratio-
nal functions of Q. Therefore in this case, we do not need to integrate
the holomorphic anomaly equation in B-model because the higher genus
amplitudes are simply rational functions Q. We can determine this ratio-
nal function by the gap condition near the small Kähler parameter limit
T ∼ 0.

It turns out these ideas are also valid in the refined case. In this case, the
geometry supports only the rigid P

1 as smooth curve. As it is rigid [jR] = [0]
and as it is genus zero [jL] = [0]. Hence nP

1

0,0 = 1 and all other nP
1

jL,jR
vanish.

The specialization of (3.9) yields

F = −
∞∑

n=1

Qn

n(q
n
2 − q−

n
2 )(t

n
2 − t−

n
2 )
. (3.14)

Here Q = e−T and q = eε1 , t = e−ε2 . We can easily extract the refined topo-
logical string amplitudes as

log(Z) =
∞∑

i,j=0

(ε1 + ε2)i(ε1ε2)j−1F ( i
2
,j)(Q). (3.15)

One can find

F (g1,g2) ∼
∑

n>0

n2g1+2g2−3Qn = Li3−2g1−2g2(Q). (3.16)

Here for convenience we only consider the instanton part of the amplitudes,
and the classical contribution and constant map contributions at g > 2 can
be easily accounted for. It is possible to sum the infinite series and we found
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at genus one

F (0,1) = − 1
12

log(1 −Q), F (1,0) =
1
24

log(1 −Q). (3.17)

From the B-model perspective, we can compute the higher genus F (g1,g2) by
requiring it to be a rational function of the form

F (g1,g2)(Q) =
∑2g1+2g2−3

n=1 cnQ
n

(1 −Q)2g1+2g2−2
, (3.18)

where we have used the boundary condition F (g1,g2)(Q) ∼ 1
T 2g1+2g2−2 when

T ∼ 0 and Q = e−T ∼ 1, and F (g1,g2)(Q) vanishes in both limits Q ∼ 0 and
Q ∼ +∞. Furthermore, the following gap condition can completely fix the
polynomial in the numerator of F (g1,g2)(Q):

F (g1,g2)(Q) ∼ 1
T 2g1+2g2−2

+ O(T 0), (3.19)

where the leading coefficients can be found either from the expansion in
(3.14) or the analysis from integrating massless charged particles in Section
3.2. We find for example

F (0,2) = − Q

240(1 −Q)2
, F (1,1) =

7Q
1440(1 −Q)2

,

F (2,0) = − 7Q
5760(1 −Q)2

, F (0,3) =
Q(1 + 4Q+Q2)
6048(1 −Q)4

,

F (1,2) = −41Q(1 + 4Q+Q2)
120960(1 −Q)4

, F (2,1) =
31Q(1 + 4Q+Q2)
161280(1 −Q)4

,

F (3,0) = −31Q(1 + 4Q+Q2)
967680(1 −Q)4

. (3.20)

In this case, the gap condition is understood as coming from the matrix
model description at the small Kähler parameter limit. One can also see from
(3.16) that the higher genus amplitudes can be directly obtained from genus
one amplitude by operating with the operator Θ2g−2, where Θ = Q d

dQ =
− d
dT . The operator Θ2g−2 transform the logarithmic singularity log(T ) at

genus one to 1
T 2g−2 at genus g, and also determine the rational function form

of the higher genus amplitudes.
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3.4 The index and complex structure deformations

Let us point out how complex structure specialization can lead to differ-
ent models for Mβ for which the individual nβjL,jR change, but not the
index. Particular simple examples occur for rational curves embedded with
degree one [20, 21]: Calabi–Yau hypersurfaces M in weighted projective
spaces with a Z2 singularity over a smooth genus g curve Cg, e.g., the octic
in P(1, 1, 2, 2, 2) where C3 is the degree 4 hypersurface depending on the last
three coordinates, contain after resolving the Z2 singularity by an P

1 a ratio-
nal fibration over Cg. We want to discuss the moduli space and the associated
BPS numbers of the smooth rational curve in the fibration. It represents
the basis [B] of the hypersurface M viewed as an K3 fibration. Because of
the rational fibration the moduli space of the fiber P

1 is M[B] = Cg, with

Dolbeault homology dimensions
1

g g
1

. The P
1 represents the highest

(and lowest) left spin for a curve in the class [B]. It is [0]L in this case.
Since the right Lefshetz action SU(2)R for the highest left spin is just the
usual Lefshetz action on the deformation space Cg [15, 20], one can read off
immediately the right representation as

[
1
2

]

R

+ 2g[0]R. (3.21)

One can then show that Cg exists only for the toric embedding of the
hypersurface, which freezes g − 1 complex structure moduli to fixed values.
If one considers general complex structure deformations, the so called non-
toric deformations, a superpotential of degree 2g − 2 develops [23], which
restricts the P

1 to sit at 2g − 2 points hence the right spin content is now
the one for Mβ = (2g − 2) points, i.e.,

(2g − 2)[0]R. (3.22)

The weighted sum yields the Euler number of the deformation space with
a sign, i.e., nβJmax

L
equals nβgmax = (−1)dim(Mβ)e(Mβ) and yields in the cases

discussed above for which gmax = 0 invariantly n[B]
0 = 2g − 2. Related con-

siderations for rational curves on the quintic [21] show generally that at com-
plex codimension one loci in the complex moduli space the moduli space of
the rational curves embedded with degree one can jump from isolated points
to higher genus curves in a way, which preserves the index. Generally, the
virtual dimension of the moduli of holomorphic curves is zero; however, even
for the most general complex structure deformation the actual dimension of
the moduli space can be positive.
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The calculation of nβJL,JR
is a well defined but difficult problem on compact

Calabi–Yau spaces, which sheds light, e.g., on the deformation space of
holomorphic curves. However, for compact Calabi–Yau spaces there can
be in general no generating function depending just on the Kähler moduli.
To avoid this problem one can try fix the complex moduli in a canonical
way. The most obvious possibility is to consider local Calabi–Yau, which
have no complex structure moduli. Another canonical choice can arise for
decompactification limit of regular K3 fibrations.

3.5 Refined BPS state counting on K3 fibrations

Here we discuss a refined Göttsche formula, which incorporates the left and
the right spin degeneracies and relate them to an one loop amplitude in
topological string theory.

3.5.1 The refined Göttsche formula

Geometrical Lefshetz decompositions yielding only the index have been
defined in models for Mβ and checked in [20] using the Abel–Jacobi map for
a variety of geometric settings. Specially simple situation arise for curves
in surfaces in a CY threefold. The easiest example is K3 × T2 where one
specializes to classes in the K3. Strictly speaking this case is degenerate,
because as far as Gromov–Witten — and Gopakumar–Vafa invariants are
concerned, there is a multiplicative zero coming from the T2. However the
description of the moduli space of BPS states below finds application for
CY, which are regular K3 fibrations. And in this case a relation to Gromov–
Witten invariants exists. The moduli space for the BPS states of (D2, D0)
brane system with charge (β, g) is the canonical resolution S[g] of the Hilbert
scheme of g points, i.e., S⊗g divided by the permutation group Symg. The
dependence of the BPS invariant on the class β is only via β · β = 2g − 2
and the g points correspond to the nodes of the general genus g curve and
can be interpreted as positions of the D0 branes.

For general S[g] Göttsche derived a generating function P (X, z) =
∑

i bi
(X)zi capturing the Betti numbers of all S[g]

∞∑

g=0

P (S[g], z)qg

=
∞∏

m=1

(1 + z2m−1qm)b1(S)(1 + z2m+1qm)b1(S)

(1 − z2m−2qm)b0(S)(1 − z2mqm)b2(S)(1 − z2m+2qm)b0(S)
. (3.23)
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This can be interpreted as partition function b1(S) chiral fermions and
b0(S) + b2(S) chiral bosons, whose oscillators are in addition distinguished
by the ordinary SU(2) Lefshetz charge j3. For z = −1 that specializes to

∞∑

g=0

e(S[g])tg =
∞∏

m=1

(1 − qm)−e(S) =
q

e(S)
24

η(q)e(S)
(3.24)

and for K3, where there is no odd cohomology and χ(K3) = 24, the for-
mula can be explained within heterotic type II/duality in six dimensions,
as counting literally the energy degeneracy of the 24 left (l) moving bosonic
oscillators α−k in the index Tr(−1)F̄rqL0− c

24 qL̄0− c̄
24 of the heterotic string

theory [24].

Let us assume that b1(S) = 0 and b0(S) = 1 which is true for the rel-
evant cases. Then the picture can be refined to implement the left and
right SU(2)L × SU(2)R quantum numbers on surfaces S by assigning to all
bosonic oscillators α−k instead of the representation (b2(S) + 1)[0] + [1] in
the diagonal SU(2)L+R, which lead to (3.23), the SU(2)L × SU(2)R repre-
sentation [25,26]

α−k : b2(S)[0, 0] +
[
1
2
,
1
2

]
. (3.25)

Let us define

GS(q, zL, zR) :=
∞∑

g=0

P (S[g], zL, zR)qg (3.26)

with P (X, zL, zR) =
∑

JL,JR
bJL,JR

(X)zJL
L zJR

R . The generalization of (3.23)
to the representation (3.25) for surfaces with b1(S) = 0 reads [25]

∞∑

g=0

P (S[g], zL, zR)qg

=
∞∏

m=1

1
(1 − (zLzR)m−1qm)(1 − (zLzR)m+1qm)(1 − (zLzR)mqm)b2(S)−2

× 1
(1 − z2

R(zLzR)m−1qm)(1 − z2
L(zLzR)m−1qm)

. (3.27)

From the description of the Lefshetz decomposition of the cohomology of
the moduli space (3.27) one can get the genus expansion of the topological
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string in terms of the nβg for K3 can using (3.5) and (3.7) [25, 26]

GK3(q/y, y, 1) =
∞∏

n=1

1
(1 − qn)20(1 − yqn)2(1 − y−1qn)2

=
∞∑

g=0,β

(−1)gnβg (y
1
2 − y−

1
2 )2gqβ . (3.28)

While (3.28) counts quantities, which are invariant under complex struc-
ture deformations, (3.27) contains more complete information of the H(Mβ)

cohomology for a fixed complex structure. The nβjL,jR encode the information
of the deformed Ω-background ε1 �= −ε2, i.e., ε+ �= 0.

3.5.2 Heterotic/type II duality

Next we compare the result (3.27) with the modified heterotic string one
loop contribution suggested by [13, 14]. Let us point out the difference of
the latter to the heterotic one-loop integral, which leads to the successful
evaluation of BPS invariants in K3-fibered Calabi–Yau spaces [27–30]. Here
the integral is over the fundamental region of the WS-torus parameterized
by τ = τ1 + iτ2

Fg(t) =
∫

F
d2τ

τ2
τ2g−2

∑

J

IgJ , (3.29)

where

IgJ =
P̂g
Y g−1

Θ̄g
J(q)fJ(q). (3.30)

The sum over J labels orbifold sectors for which Θ̄g
J(q) is orbifold projection

of the Siegel–Narain Θ-function with p2g−2
r insertions and fJ capture the

oscillators contributions in the orbifold sectors. This sum will combine to
a modular form of appropriate weight, see (3.39). The amplitude depends
only on the vector moduli via their occurrence in Θg

J(q) and Y = e−K , where
K is the Kählerpotential of the vector moduli metric. It is possible to write
down all terms using5

e−
πλ2

τ2

(
2πη3λ

θ1(λ|τ)
)2

=
∑

g=0

(2πλ)2gP̂g = − exp

(
2

∞∑

k=1

ξ(2k)
k

Ê2k(τ)λ2k

)
.

(3.31)

5One could also use (3.31) to write the total amplitude F (λ, t) =
∑

λ=0∞ λ2g−2Fg(t)

directly as integral, but the notation get more clumsy.
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Here Ê2k are the holomorphic Eisenstein series E2k for k > 1 and Ê2 = E2 −
3
πτ2

the almost holomorphic second Eisenstein series, i.e., all Ê2k transform
as modular forms of weight 2k.

In [13, 14] it was suggested to couple the BPS states in the Schwinger-
loop amplitude to an additional self-dual matter vector field strength F+,
i.e., they consider the one loop amplitude R2−T

2g−2
− F 2n−2

+ . The effect is
merely to split (3.31) as

e−
π(ε2−+ε2+)

τ2

(
2π(ε− + ε+)η3

θ1((ε− + ε+)|τ)
)(

2π(ε− − ε+)η3

θ1((ε− − ε+)|τ)
)

=
∑

m,n

(2π(ε− + ε+))2m(2π(ε− − ε+))2nP̂m,n, (3.32)

where

P̂m,n = Sm(x1, . . . , xm)Sn(x1, . . . , xn) (3.33)

are almost modular forms of weight 2m+ 2n. Concretely, xk = |B2k|
2k(2k)!Ê2k

and Sm(x) is defined by exp(
∑

n=1 xiz
i) =

∑∞
n=0 Sm(x)zm. This allows us

to define

Fm,n(t) =
∫

F

d2τ

τ2
τ2(m+n)−2

∑

J

Im,nJ (3.34)

with

Im,nJ =
P̂m,n

Y m+n−1
Θ̄m+n
J (q)fJ(q). (3.35)

Now we can point out the difference in the calculation of the heterotic one-
loop amplitude (3.29) and (3.34). First for ε+ = 0 (3.34) specializes to (3.29)
and this has been calculated for many examples of heterotic/Type II pairs
starting with the STU model in [28] in more general situations [29–31]. If
the Calabi–Yau space is a regular K3-fibration the result for the one-loop
amplitude in the holomorphic limit is expressed using the expansion [29]

Ghol
K3(λ, t) =

M(q)
q

(
λ

2 sin(λ2 )

)2

GK3(q/y, y, 1)

=
∞∑

g=0,d=−1

cg(d)λ2g−2qd, (3.36)
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where y = eiλ and the Kähler of K3 enters via q = e2πit, by

Fhol
K3(λ, t) =

∞∑

g=0

∑

α∈Hprim
2 (K3,Z)

λ2g−2cg(α2/(2r))
Li3−2g(e(α,t))

(2πi)3−2g
. (3.37)

The function M(q)
q has been determined in many cases. r depends on the

Picard–Lattice of the generic K3 fiber. First one notes that there will be
always a factor 1

η(q)24
= 1

q
∏∞

n=1(1−qn)24
in Ghol

K3(λ, t), which comes from the

left moving bosonic oscillator modes of the heterotic string.6 It is therefore
convenient to define

M(q)
q

=
Θ(q)

q
∏∞
n=1(1 − qn)4

. (3.38)

Θ(q) is a form under, in general, a subgroup SL(2,Z) of weight 11 − r
2 where

r is the rank of the Picard Lattice of the K3. E.g., for the ST (r = 2) and
STU (r = 1) model one has

ΘST (q) = θ3(τ/2)E4F6, ΘSTU(q) = E4E6 (3.39)

and F6 = E6 − 2F2(θ4
3(τ/2) − 2F2)(θ4

3(τ/2) − 16F2), where F2(q) =
∑

n∈Z+,odd
σ1(n)q

n2

4 . Much more general examples have been discussed
in [29,32].

It is worthwhile to stress that the cg(α2/2) ∈ Z are not the BPS invariants
nαg . To get the latter, we have to compare (3.37) with (3.8) for classes
β ∈ H2(K3,Z).

Going over the calculation leading to (3.29) one recognized the difference
for the evaluation of (3.34) does not affect the Θ(q)

q part, which is clear
as it is completely determined by the genus zero contributions, which are
deformation invariant. Incorporating the ε+ deformation we can use as
before the Jacobi triple function identity.

θ1(z, τ) = −2q
1
8 sin(πz)

∏

m=1

(1 − qm)(1 − 2 cos(2πz)qm + q2m) (3.40)

6In fact applied to the six-dimensional heterotic on T 4 versus type IIA on K3 duality
it reproduces the famous (3.24) as counting function of nodal curves on K3 as observed
by Yau and Zaslow.
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to obtain

Ghol
K3(εR/L, t) =

M(q)
q

1
4
(
sin2

(
εL
2

)− sin2
(
εR
2

))

×
∏

n>0

1
(1 − yLyRqn)(1 − y−1

L y−1
R qn)

× 1
(1 − yLy

−1
R qn)(1 − y−1

L yRqn)(1 − qn)20

=
M(q)
q

1
4
(
sin2

(
εL
2

)− sin2
(
εR
2

))GK3(q/(yLyR), yL, yR)

=:
∞∑

n,m=0,d=−1

cn,m(d)εm−1
1 εn−1

1 qd.

(3.41)

Here we rescaled εR/L by 2πi and set yR/L = eiεR/L . The formula gives
the desired interpretation of the BPS contributions to the heterotic one-loop
integral [13,14] in terms of the Lefshetz decomposition the moduli spaces of
curves on the K3 fiber. The free energy is then given by

Fhol
K3(εL/R, t) =

∞∑

m,n=0

∑

α∈Hprim
2 (K3,Z)

εm−1
1 εn−1

2 cm,n(α2/(2r))
Li3−m−n(e(α,t))

(2πi)3−m−n .

(3.42)

To read of the nαjL,jR one compares (3.10) for classes in the K3 fiber with
(3.42) and then re-express the result in terms of the (JL, JR) basis. Let us
label the classes in the K3 fibre of the STU model by (1, n), we get then

n = 1 : 488 (0,0) − 2
(

1
2
,
1
2

)

n = 2 : 280962 (0,0) + 486
(

1
2
,
1
2

)
− 2 (1,1) ,

n = 3 : 15298438 (0,0) + 281448
(

1
2
,
1
2

)
+ 486 (1,1) − 2

(
3
2
,
3
2

)

− 2((1,0) + (0,1)),

n = 4 : 410133612 (0,0) + 16209886
(

1
2
,
1
2

)
+ 281446 (1,1)
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+ 486
(

3
2
,
3
2

)
− 2 (2,2) + 486((1,0) + (0,1))

− 2
((

1
2
,
3
2

)
+
(

1
2
,
3
2

))
. (3.43)

From (3.29) and (3.31), one can work out the full an-holomorphic depen-
dence of (3.37), as was done for the STU model in Appendix C.1 of [33], and
check that it is compatible with the holomorphic anomaly equation of [8]. It
is not hard to trace the anholomorphic dependence under the factorization
of (3.31) into (3.32) and show that it leads to the sum structure in the second
term of the right hand side in the generalized holomorphic anomaly equation
(2.6). Results for other regular K3 fibrations are obtained similarly.

As it is clear from the explanations in the introduction to this chapter,
it cannot be true in general that the description of right-handed BPS states
does not depend on the complex structure, i.e., the hyper multiplets in the
heterotic string. One possible interpretation is that in the strict weak cou-
pling limit, which corresponds to infinite volume of the base P

1 the descrip-
tion and the right Lefshetz decomposition of the moduli space of curves in
the K3 fiber is invariant. This would explain, why the authors [13,14] do not
find hyper multiplet dependence in their perturbative calculation. From the
examples of the K3 fibered hypersurfaces in P

4(1, 1, w1, w2, w3), discussed
in the introduction one can conclude that the hyper multiplet must couple
in the non-perturbative sector of the heterotic string. In Section 4, we will
apply the above results to a situation where the decoupling of the complex
moduli is obvious in the geometrical context.

4 Local Calabi–Yau manifolds

One obvious possibility to decouple the complex moduli is to look at local
models. In particular, for all del Pezzo surfaces B embedded in a Calabi–
Yau three manifold one can take a local limit in which the local non-compact
Calabi–Yau is described by the total space of the canonical line bundle
O(KB) → B. We start with the del Pezzo’s, which are elliptic fibrations
over P

1

4.1 A rational elliptic surface: half K3

In [34] simple expressions for the BPS number generating function in terms
of SL(2,Z) modular forms for the rational elliptic surface Bn embedded in
a Calabi–Yau threefold M were found. In the simplest example, B9 was
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embedded in an elliptic fibration over the Hirzebruch surface F1 and two of
the ten classes in H2(B9,Z) were independent in M , namely the base P and
the fiber F of the elliptically fibered B9.

The expression found in [34] described genus zero Gromov–Witten invari-
ants rP+nF

0 , which are wound one times around the base P = P
1 and n times

around the elliptic fiber

H
(0)
1 (q) =

∞∑

n=0

rP+nF
0 qn =

q
1
2E4(q)
η12(q)

(4.1)

and has given an explanation in terms of tensionless strings [34]; see also [35].
Note that rP+nF

0 = np+nF0 by virtue of (3.8).

Higher genus curves of genus g and degree one in the base have a sim-
ple geometry. They are copies of the elliptic fiber over g points in the
basis P = P

1. The moduli space MP+nF consist of the possible position
of these fibers on the base P

1 and the U(1) connection on each of the g
elliptic fibers. By T -duality on the fiber fixing a U(1) connection equiva-
lently corresponds to picking point on the dual T 2. Therefore one expects
that the SU(1)L × SU(1)R decomposition of the cohomology of the mod-
uli space of the P + nF curves in this is described again by the generating
function [25] GB9(q/(yLyR), yL, yR), with χ(B9) = 12 and b2(B9) = 10. Sim-
ilar as in (3.36) it should be supplemented by the SL(2,Z) modular part
from genus zero. Therefore the result for the refined topological invariants
is obtained from

GB9
hol =

q
1
2E4(q)
η4(q)

1
4
(
sin2

(
εL
2

)− sin2
(
εR
2

))GB9(q/(yLyR), yL, yR) (4.2)

by the same steps that lead to (3.43)

g = 1 : 248 (0,0) +
(

1
2
,
1
2

)
,

g = 2 : 4125 (0,0) + 249
(

1
2
,
1
2

)
+ 1 (1,1) ,

n = 3 : 35001 (0,0) + 4374
(

1
2
,
1
2

)
+ 249 (1,1) +

(
3
2
,
3
2

)

+ ((1,0) + (0,1)),
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n = 4 : 217501 (0,0) + 39375
(

1
2
,
1
2

)
+ 4375 (1,1) + 249

(
3
2
,
3
2

)
+ (2,2)

+ 249((1,0) + (0,1)) +
((

1
2
,
3
2

)
+
(

1
2
,
3
2

))
. (4.3)

The new point is that these results can be also interpreted as refined gauge
theory invariants for N = 4 SU(2) theory on the half K3 [36]. Since b+
(B9) = 1, we expect the refined individual cohomology numbers of the mod-
uli space of gauge theory instantons to be invariant [37]. Moreover, one
expects by direct integration of a holomorphic anomaly in the base degree
as in [25] to be able to extend this result to higher rank gauge groups and
to further classes of the Bn surfaces [36].

4.2 The refined topological string on local P
1 × P

1

The local P
1 × P

1 is a well studied non-compact Calabi–Yau manifold. This
Calabi-Yau geometrically engineers SU(2) Seiberg-Witten theory, and the
topological string partition function reduces to the Nekrasov partition func-
tion at ε1 + ε2 = 0 in the field theory limit [20, 22]. One can also use the
refined topological vertex to construct the refined topological string ampli-
tude that reduces to Nekrasov partition function in general Ω background.
This was studied in [10,39]. It is found that the world-sheet instanton con-
tribution to the refined topological partition function for this model is

Z(Q1, Q2, t, q) =
∑

ν1,ν2

Q
|ν1|+|ν2|
1 q||ν

t
2||2t||ν

t
1||2Z̃ν1(t, q)Z̃νt

2
(t, q)Z̃ν2(q, t)Z̃νt

1
(q, t)

×
∞∏

i,j=1

(1 −Q2t
i−1−ν2,jqj−ν1,i)−1(1 −Q2q

i−1−ν1,j tj−ν2,i)−1.

(4.4)

Some explanations of the notations are the followings. The Q1 = e2πiT1 ,
Q2 = e2πiT2 are exponentials of the Kähler parameters T1, T2 of the model.
The string coupling constant is refined into two parameters ε1, ε2 and are
related to q, t as q = eε1 , t = e−ε2 . The sum in the above equation (4.4) is over
all two-dimensional (2D) Young tableaux ν1, ν2. A 2D Young tableau is a
sequence of non-increasing non-negative integers ν = {ν,1 ≥ ν,2 ≥ · · · ≥ 0},
and νt denotes the transpose of the Young tableau ν. Some definitions



“ATMP-16-3-A2-HUA” — 2013/2/1 — 19:34 — page 830 — #26
�

�

�

�

�

�

�

�

830 MIN-XIN HUANG AND ALBRECHT KLEMM

related to the Young tableaux are the followings:

|ν| =
∞∑

i=1

ν,i,

||ν||2 =
∞∑

i=1

(ν,i)2,

Z̃ν(t, q) =
∏

(i,j)∈ν
(1 − t(ν

t),j−i+1qν,i−j)−1. (4.5)

We perform the sum over Young tableaux in (4.4) to a finite order in
Q1, Q2. In order to perform the infinite product exactly, we use the formula
(1 − x)−1 = exp(

∑
n≥0

xn

n ) to convert the infinite product to infinite sums
of geometric series of t and q. To compare with the B-model calculations
from Picard–Fuchs equation and holomorphic anomaly, we should expand
the logarithm of the partition function as in (2.2), where F ( i

2
,j)(Q1, Q2)

depends now on the flat Kähler coordinates T1,2 of the P
1 × P

1 geometry
via Q1,2 = e2πiT1,2 . As explained at the end of Section 3.1, only F (i,j) with
integers i, j should appear in the expansion. The first non-trivial contribu-
tion from the refinement of the topological string is F (1,0). We perform the
computation on the refined partition function (4.4) to first few orders and
the results for (g1 + g2) = 1 are

F (0,1) = −1
6
(Q1 +Q2) − 1

12
(Q2

1 + 4Q1Q2 +Q2
2)

− 1
18

(Q3
1 + 9Q2

1Q2 + 9Q1Q
2
2 +Q3

2)

− 1
24

(Q4
1 + 16Q3

1Q2 − 148Q2
1Q

2
2 + 16Q1Q

3
2 +Q4

2) + O(Q5), (4.6)

F (1,0) = −1
6
(Q1 +Q2) − 1

12
(Q2

1 + 28Q1Q2 +Q2
2) −

1
18

(Q3
1 + 153Q2

1Q2

+ 153Q1Q
2
2 +Q3

2) −
1
24

(Q4
1 + 496Q3

1Q2 + 2204Q2
1Q

2
2 + 496Q1Q

3
2

+Q4
2) + O(Q5). (4.7)

For (g1 + g2) = 2 we get

F (0,2) = − 1
120

(Q1 +Q2) − 1
60
(
Q2

1 +Q1Q2 +Q2
2

)− 1
40
(
Q3

1 +Q2
1Q2

+ Q1Q
2
2 +Q3

2

)− 1
30
(
Q4

1 +Q3
1Q2 + 5Q2

1Q
2
2 +Q1Q

3
2 +Q4

2

)

+ O(Q5),



“ATMP-16-3-A2-HUA” — 2013/2/1 — 19:34 — page 831 — #27
�

�

�

�

�

�

�

�

DIRECT INTEGRATION FOR GENERAL Ω BACKGROUNDS 831

F (1,1) = − 1
90

(Q1 +Q2) − 1
90
(
2Q2

1 + 17Q1Q2 + 2Q2
2

)

− 1
30
(
Q3

1 + 21Q2
1Q2 + 21Q1Q

2
2 +Q3

2

)
(4.8)

− 1
45
(
2Q4

1 + 77Q3
1Q2 − 995Q2

1Q
2
2 + 77Q1Q

3
2 + 2Q4

2

)
+ O(Q5),

F (2,0) =
1

360
(Q1 +Q2) +

1
180

(
Q2

1 − 59Q1Q2 +Q2
2

)

+
1

120
(
Q3

1 − 399Q2
1Q2 − 399Q1Q

2
2 +Q3

2

)

+
1
90
(
Q4

1 − 1379Q3
1Q2 − 7495Q2

1Q
2
2 − 1379Q1Q

3
2 +Q4

2

)
+ O(Q5).

The (g1 + g2) = 3 results are relegated to Appendix A.2.

The F (0,g) is the ordinary topological string amplitude and has been well
studied before from B-model using mirror symmetry; see e.g., [40]. Here we
include it for the purpose of checking the calculations. The Kähler param-
eters Q1 = e2πiT1 , Q2 = e2πiT2 are related to the complex structure parame-
ters z1, z2 of the mirror manifold through Picard–Fuchs equations. The two
Picard–Fuchs operators are

L1 = Θ2
1 − 2z1(Θ1 + Θ2)(1 + 2Θ1 + Θ2),

L2 = Θ2
2 − 2z2(Θ1 + Θ2)(1 + 2Θ1 + Θ2),

(4.9)

where Θi = zi
∂
∂zi
, i = 1, 2. The discriminant is z1z2Δ = 0 where the conifold

discriminant is given by

Δ = 1 − 8(z1 + z2) + 16(z1 − z2)2. (4.10)

In figure 1, we depict the moduli space in figure 1 following [40]. The conifold
loci C is parameterized by Δ = 0, and intersect tangentially with the other
singular loci z1 = 0, z2 = 0, and 1

z1+z2
= 0. To study the model around

the tangent intersection points, we need to blow up the points by adding
the extra lines F, F1, F2 in the Figure 1, so that the intersections become
normal. In this paper we will study the model around the large volume point
z1 = z2 = 0, and around a generic point on the conifold loci not intersecting
with other singular point.

The Picard–Fuchs equations of local models have a constant solution and
the Kähler moduli T1, T2 in the mirror are the two logarithmic solutions of
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Figure 1: Resolved moduli space of F0.

the Picard–Fuchs equations around the large volume point z1 = z2 = 0,

2πiT1 = log(z1) + 2(z1 + z2) + 3(z1 + 4z1z2 + z2
2) + O(z3),

2πiT2 = log(z2) + 2(z1 + z2) + 3(z1 + 4z1z2 + z2
2) + O(z3).

(4.11)

Exponentiate and invert the above series expansion one finds

z1(Q1, Q2) = Q1 − 2Q1(Q1 +Q2) + 3Q1(Q2
1 +Q2

2) + O(Q4),

z2(Q1, Q2) = Q2 − 2Q2(Q1 +Q2) + 3Q2(Q2
1 +Q2

2) + O(Q4). (4.12)

We expect the first non-trivial amplitude F (1,0) to be holomorphic and pro-
portional the logarithm of the discriminant of the Calabi-Yau geometry.
Indeed the simplest ansatz that matches (3.13), is symmetric in (z1, z2) and
regular for large z1, z2 is

1
24

log
(

Δ
z1z2

)
= − 1

24
log(Q1Q2) − 1

6
(Q1 +Q2) − 1

12
(Q2

1 + 28Q1Q2 +Q2
2)

− 1
18

(Q3
1 + 153Q2

1Q2 + 153Q1Q
2
2 +Q3

2) + O(Q4) . (4.13)

The perturbative terms agree with the results in (4.7) from the refined topo-
logical vertex calculations.
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We then compute the higher genus amplitudes in the refined topological
string using the extended holomorphic anomaly equations and the boundary
conditions at singular points of the moduli space in the mirror. We follow
the techniques developed in [40] for dealing with multi-parameter Calabi–
Yau models. For the local model we consider, the Kähler potential is a
constant in the holomorphic limit, so the covariant derivative with respect
to the vacuum line bundle L vanishes, and we only need to use the Christoffel
connection Γijk with respect to the metric in the covariant derivative. In the
holomorphic limit, the metric and Christoffel connection can be calculated
from the mirror maps (4.11) (4.12)

Gij̄ ∼
∂Tj
∂zi

, Γijk =
∂zi
∂Tl

∂2Tl
∂zj∂zk

. (4.14)

To integrate the holomorphic anomaly equation, we should write the
topological string as polynomials of some generators following the approach
in [16,41]. It turns out that for multi-parameter models, it is more convenient
to use the propagators Sjk, Sk, S as anholomorphic generators of the poly-
nomials [42]. The propagators were originally introduced by BCOV [8] to
integrate the holomorphic anomaly equations, and for local models we only
need the two-index propagators, which are defined in terms of the three point
coupling as ∂̄īSjk = C̄jk

ī
. The main difference with one-parameter model is

that the topological string amplitudes will be polynomials of the anholomor-
phic generators Sjk with the coefficients as rational functions of the moduli
zi, where in one-parameter models one can also include a holomorphic gener-
ator, which is a rational function of the modulus, and the topological string
amplitudes would be truly polynomials with constant coefficients. Assuming
the anti-holomorphic derivative of the propagators ∂̄īSjk = C̄jk

ī
are linearly

independent, the generalized holomorphic anomaly equation (2.3) can be
written as

∂F (g1,g2)

∂Sjk
=

1
2

(
DjDkF

(g1,g2−1) +
∑

r1,r2

′
DjF

(r1,r2)DkF
(g1−r1,g2−r2)

)
. (4.15)

This equation can be integrated with respect to Sjk and we solve for F (g1,g2)

recursively as a polynomial of Sjk with rational function coefficients, up to
a rational function ambiguity. We note Sjk is a symmetric tensor, so for the
two-parameter model such as the local P

1 × P
1 model we consider here, we

have three independent generators S11, S12, S22. To carry out the polyno-
mial formalism, we need the formula for the derivative of the propagators
and the Christoffel symbol. This can be derived from the special geometry



“ATMP-16-3-A2-HUA” — 2013/2/1 — 19:34 — page 834 — #30
�

�

�

�

�

�

�

�

834 MIN-XIN HUANG AND ALBRECHT KLEMM

relation; see e.g., [40, 42].

DiS
jk = −CimnSjmSkn + f jki , (4.16)

Γkij = −CijlSkl + f̃kij , (4.17)

where the three point coupling Cijk are

C111 =
(1 − 4z2)2 − 16z1(1 + z1)

4z3
1Δ

, C112
16z2

1 − (1 − 4z2)2

4z2
1z2Δ

,

C122
16z2

2 − (1 − 4z1)2

4z1z2
2Δ

, C222 =
(1 − 4z1)2 − 16z2(1 + z2)

4z3
2Δ

, (4.18)

and the other combinations follow by symmetry. The rational functions f, f̃
are

f̃1
11 = − 1

z1
, f̃1

12 = f̃1
21 = − 1

4z2
, f̃1

22 = 0,

f̃2
11 = 0, f̃2

12 = f̃2
21 = − 1

4z1
, f̃2

22 = − 1
z2
, (4.19)

f11
1 = −1

8
z1(1 + 4z1 − 4z2), f12

1 = f21
1 = −1

8
z2(1 + 4z1 − 4z2),

f22
1 = − z2

2

8z1
(1 + 4z1 − 4z2),

f11
2 = − z2

1

8z2
(1 + 4z2 − 4z1), f12

2 = f21
2 = −1

8
z1(1 + 4z2 − 4z1),

f22
2 = −1

8
z2(1 + 4z2 − 4z1). (4.20)

Here we note that the f̃ are chosen so that the overdetermined equations
for the propagators (4.17) are solvable. Under this choice of f̃ in (4.19), the
propagators are related and have only one independent component

Sij =

⎛

⎜⎝
S(z1, z2)

z2
z1
S(z1, z2)

z2
z1
S(z1, z2)

z2
2

z2
1

S(z1, z2)

⎞

⎟⎠ . (4.21)

Like the Christoffel symbol, the propagators are in general not rational func-
tions of zi. We calculate the series expansion of the propagators around the
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Figure 2: Conifold coordinates.

large volume point z1 = z2 = 0 in terms of the mirror maps Q1, Q2

S =
Q2

1

2
− 4Q2

1 (Q1 +Q2) +Q2
1

(
17Q2

1 + 20Q1Q2 + 17Q2
2

)

− 4Q2
1

(
13Q3

1 + 17Q2
1Q2 + 17Q1Q

2
2 + 13Q3

2

)
+ O(Q5). (4.22)

The fix the rational function of zi appearing as the constant term in the
integration of the holomorphic anomaly equations, we need to expand the
topological strings around the conifold point of the moduli space. This is
depicted in figure 2. Here, we choose to expand around a symmetric point
zc1 = zc2 = 0, where the coordinates are

zc1 = 1 − z1
z2
, zc2 = 1 − z2

1
8 − z1

. (4.23)

We can solve the Picard–Fuchs system of differential equations around
this point, find the mirror maps

tc1 = − log(1 − zc1), (4.24)

tc2 = z2 +
1
16
(
2z2

1 + 8z1z2 + 13z2
2

)
+

1
768

(
96z3

1 + 228z2
1z2 + 240z1z2

2

+ 521z3
2

)
+

1
8192

(904z4
1 + 1600z3

1z2 + 1172z2
1z

2
2 + 1680z1z3

2

+ 4749z4
2) + O(z5),
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and the inverse series

zc1 = 1 − e−tc1 , (4.25)

zc2 = t2 − 1
16
(
2t21 + 8t1t2 + 13t22

)
+

1
768

(
48t31 + 312t21t2 + 696t1t22 + 493t32

)

− 1
24576

(832t41 + 7040t31t2 + 21216t21t
2
2 + 27856t1t32 + 12427t42)

+ O(t5).

The coordinate tc2 is normal to the conifold loci, so the expansion of the
topological string amplitude around this point should be singular as tc2 → 0
and exhibit the gap condition. To expand the topological strings around the
conifold point zc1 = zc2 = 0 in terms of the mirror maps tc1, tc2, we transform
the coordinates and the propagators to the conifold coordinate

Szizj =
∂zi
∂zc,k

∂zj
∂zc,l

Szc,kzc,l . (4.26)

In order to compute the series expansion of the propagator at the coni-
fold point using (4.17), we also need to transform the three point Yukawa
couplings, the holomorphic ambiguity f̃ to the conifold coordinates. The
Yukawa couplings transform as a tensor, and the holomorphic ambiguity f̃
transform according the rules

f̃
zc,i
zc,jzc,k =

∂zc,i
∂zl

∂2zl
∂zc,j∂zc,k

+
∂zc,i
∂zl

∂zm
∂zc,j

∂zn
∂zc,k

f̃zl
zmzn

. (4.27)

We also need to calculate the Christoffel connection around the conifold
point using the mirror maps (4.24, 4.25), and the relation (4.14). It turns
out that the propagators have only one non-vanishing component around the
conifold point. The three components vanish Szc1zc1 = Szc1zc2 = Szc2zc1 = 0,
and the last component is computed as

Szc2zc2 =
t2
2
− 1

8
(4t1 + 13t2) t2 +

t2
(
840t21 + 4032t1t2 + 4987t22

)

1536
+ O(t4).

The gap conditions at the conifold point plus one more condition from the
constant map contribution at large volume point are sufficient to fix the
topological string amplitudes. Here for convenience, we fix the large volume
behavior of the topological string amplitudes to be vanishing, i.e., F (g1,g2) ∼
O(Q). The constant map contribution can be simply recovered by adding
the appropriate constant to the topological strings without effects on the
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gap condition around the conifold point. We found the genus two results as
the followings:

F (0,2) =
5S3

24z6
1Δ2

+
S2

48z4
1Δ2

(48z2
1 − 96z1z2 + 40z1 + 48z2

2 + 40z2 − 13)

+
S

144z2
1Δ2

(384z3
1 − 384z2

1z2 + 80z2
1 − 384z1z2

2 + 736z1z2 − 112z1

+ 384z3
2 + 80z2

2 − 112z2 + 17) +
1

1440Δ2
(2688z4

1 + 1536z3
1z2

− 416z3
1 − 8448z2

2z
2
1 + 6560z2z2

1 − 696z2
1 + 1536z1z3

2 + 6560z1z2
2

− 2768z1z2 + 258z1 + 2688z4
2 − 416z3

2 − 696z2
2 + 258z2 − 25).

(4.28)

F (1,1) =
S2 (1 − 4z1 − 4z2)

24z4
1Δ2

+
S

144z2
1Δ2

(−192z3
1 + 192z2

1z2 + 16z2
1

+ 192z1z2
2 − 544z1z2 + 28z1 − 192z3

2 + 16z2
2 + 28z2 − 5)

+
1

720Δ2
(−1408z4

1 − 1536z3
1z2 + 736z3

1 + 5888z2
1z

2
2 − 4320z2

1z2

− 24z2
1 − 1536z1z3

2 − 4320z1z2
2 + 1328z1z2 − 38z1 − 1408z4

2 + 736z3
2

− 24z2
2 − 38z2 + 5), (4.29)

F (2,0) =
S

288z2
1Δ2

(
16z2

1 + 32z1z2 − 8z1 + 16z2
2 − 8z2 + 1

)

+
1

2880Δ2
(−512z4

1 + 9216z3
1z2 + 704z3

1 − 17408z2
1z

2
2 + 2880z2

1z2

− 336z2
1 + 9216z1z3

2 + 2880z1z2
2 − 1568z1z2 + 68z1 − 512z4

2

+ 704z3
2 − 336z2

2 + 68z2 − 5), (4.30)

where we have used the large volume coordinate and S = Sz1z1 , but the
expressions are exact can be expanded around any point in the moduli space.
We also solve the topological string amplitudes at genus three. We check
that the expansion around large volume point z1 = z2 = 0 agree with the cal-
culations (4.8), (A.3) from the refined topological vertex. Using (2.8), the
form of the conifold discriminant (4.10) and the finiteness of the F (g1,g2) in
the large z1,2 limit one can easily see as in [40] that the deformed model
is completely integrable, i.e., all c(g1,g2)

0 (z1,2) are fixed by the boundary
conditions.
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4.3 The refined topological string on local P
2

The refined topological vertex formalism [10] is not applicable to the local
O(−3) → P

2 model, because it does not give rise to a gauge theory.

It remains an interesting problem to find a refined topological vertex
formalism that applies directly to this model. Nevertheless, the homology
of local P

2 can be embedded into the one of another toric geometry, the local
F1 model, which is the simply the blow up of P

2 and geometrically engineers
the SU(2) Seiberg–Witten theory with Nf = 0 fundamental flavor in four
dimensions. One can calculate the refined topological string amplitudes of
the local F1 model with the refined topological vertex formalism, and extract
the BPS numbers NjL,jR with spins in both left and right SU(2) subgroups
of the Lorentz group. These BPS numbers determine also the refined BPS
numbers NjL,jR of the P

2 geometry [10].

Using these refined BPS numbers provided in [10] we find the instanton
part of the refined topological string amplitudes to the first few orders. The
genus one and two results are

F (0,1) =
Q

4
− 3Q2

8
− 23Q3

3
+

3437Q4

16
+ O(Q5),

F (1,0) =
7Q
8

− 129Q2

16
+

589Q3

6
− 43009Q4

32
+ O(Q5), (4.31)

F (0,2) =
Q

80
+

3Q3

20
− 514Q4

5
+ O(Q5),

F (1,1) =
11Q
160

− 9Q2

16
− 1317Q3

40
+

72019Q4

40
+ O(Q5),

F (2,0) =
29Q
640

− 207Q2

64
+

18447Q3

160
− 526859Q4

160
+ O(Q5). (4.32)

The genus three results

F (0,3) =
Q

2016
+
Q2

336
+
Q3

56
+

1480Q4

63
+O

(
Q5
)
,

F (1,2) =
127Q
40320

− 31Q2

3360
+

547Q3

1120
− 293777Q4

315
+ O(Q5),

F (2,1) =
143Q
53760

− 547Q2

2240
− 182901Q3

4480
+

4107139Q4

840
+ O(Q5),

F (3,0) =
137Q

322560
− 7573Q2

13440
+

608717Q3

8960
− 21873839Q4

5040
+ O(Q5). (4.33)
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Now we turn to the B-model calculations. We extended the approach
in [40] to solve the extended holomorphic anomaly equations. The Picard–
Fuchs differential equation is well known Lf = 0 where the Picard–Fuchs
operator is

L = θ3 + 3z(3Θ + 2)(3Θ + 1)Θ. (4.34)

Here Θ = z ∂
∂z . The discriminant of the Picard–Fuchs operator is Δ = 1 +

27z. The large volume point is z ∼ 0 and the conifold point is z ∼ − 1
27 .

The three linearly independent solutions at large volume point are the con-
stant, a logarithmic solution and a double logarithmic solution. The Kähler
parameter in the A-model is the logarithmic solution and its exponential
Q = e−T is expanded as the following:

Q = z − 6z2 + 63z3 − 866z4 + 13899z5 + O(z6). (4.35)

From the double logarithmic solution we can find the three-point Yukawa
coupling

Czzz = −1
3

1
z3(1 + 27z)

. (4.36)

The genus one topological amplitude F (0,1) is well known

F (0,1) = −1
2

log
(
∂T

∂z

)
− 1

12
log(z7Δ). (4.37)

From our general analysis, we expect the refined topological string amplitude
F (1,0) to be 1/24 the logarithm of the discriminant, plus a piece proportional
to log(z). We use the results (4.31) from A-model to fix this constant, and
we find

F (1,0) =
1
24

log
(

Δ
z

)
. (4.38)

Once the constant is fixed, the large volume expansion of the above equation
agrees with (4.31) using the mirror map (4.35).
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To compute the higher genus refined amplitudes, we need the propagator
Szz and its relation with the Christoffel connection. This is also fixed in [40]

Γzzz = −CzzzSzz − 7 + 216z
6zΔ

,

DzS
zz = −Czzz(Szz)2 − z

12Δ
. (4.39)

The Christoffel symbol and the propagator can be expanded around any
point in the moduli space using the corresponding mirror map around the
relevant point. For example, at the large volume point z ∼ 0, the propagator
S ≡ Szz is

S =
Q2

2
+ 15Q3 + 135Q4 + 785Q5 +

4473Q6

2
+ O(Q7). (4.40)

The extended holomorphic anomaly equation of one-parameter model with-
out the Griffiths infinitesimal invariant for genus greater than one is

∂F (g1,g2)

∂S
=

1
2

[
D2
zF

(g1,g2−1) +

(
g1∑

r1=0

g2∑

r2=0

)′
DzF

(r1,r2)DzF
(g1−r1,g2−r2)

]
,

(4.41)

where (
∑

)′ denotes the sum excludes r1 = r2 = 0 and r1 = g1, r2 = g2. Inte-
grating the holomorphic anomaly equation can determine the refined topo-
logical amplitude F (g1,g2) as a polynomial of S whose coefficients are rational
functions of z, up to a rational of function of the form f(z)

Δ(z)2g1+2g2−2 , where

f(z) is a degree 2g1 + 2g2 − 2 polynomial. Expanding again the F (g1,g2)

around the conifold point, we can fix the ambiguous rational function up
to a constant, which can be further fixed by the constant map contribu-
tion at the large volume point. Since the constant map contribution can
be simply recovered by adding the appropriate constant to the topological
strings without effects on the gap condition around the conifold point, here
for convenience we simply require f(z) to a polynomial of one degree less,
thus completely fix the ambiguity. The results at the first few orders are the
followings:

F (0,2) =
100S3 − 90S2z2 + 30Sz4 + 3(9z − 1)z6

4320z6Δ2
,

F (1,1) =
10S2 + 5S(108z − 1)z2 + 2(1 − 54z)z4

1440z4Δ2
,

F (2,0) =
10S + (1296z + 11)z2

11520z2Δ2
. (4.42)
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The genus three results are

F (0,3) =
1

8709120z12Δ4
[33600S6 − 84000S5z2 − 6720S4(189z − 13)z4

− 280S3
(
17496z2 − 8964z + 173

)
z6 + 3024S2

(
4941z2

− 561z + 5) z8 + 504S
(
26244z3 − 20169z2 + 981z − 5

)
z10

+ 3
(−3254256z3 + 649296z2 − 18288z + 53

)
z12],

F (1,2) =
1

8709120z10Δ4
[8400S5 + 2520S4(180z − 7)z2 + 420S3

(
19440z2

− 4572z + 35) z4 − 42S2
(
1382184z2 − 64584z + 145

)
z6

− 252S
(
629856z3 − 221859z2 + 4977z − 5

)
z8

+
(
116680824z3 − 13878702z2 + 189810z − 89

)
z10],

F (2,1) =
1

11612160z8Δ4
[1120S4 + 280S3(432z − 7)z2 + 252S2

(
36288z2

− 1788z + 5) z4 + 14S
(
22674816z3 − 3936600z2 + 38988z − 25

)
z6

− (365316480z3 − 22651488z2 + 175608z + 253
)
z8],

F (3,0) =
1

69672960z6Δ4
[280S3 + 420S2(108z − 1)z2 + 42S

(
209952z2

− 4212z + 5) z4 +
(
1167753024z3 − 29387448z2 + 355536z

+ 2269) z6]. (4.43)

The expansions of these exact results around the large volume point agree
with the A-model results (4.32), (4.33). Again a counting of the parameters
in the c(g1,g2)0 polynomials shows similar as in [40], that all ambiguities are
fixed for the deformed topological string on P

2.

5 Conclusion and directions for further work

We have extended the direct integration method developed in [6, 7, 40] to
solve pure Seiberg–Witten theory and topological string theory on local
Calabi–Yau spaces. We found a generalized holomorphic anomaly equation,
which as we argued by comparing with the general expansion of F (g1,g2) in
terms of BPS invariants should hold in full generality for the topological
string on non-compact Calabi–Yau manifolds. We have demonstrated that
the gap condition of the F (g1,g2) at the conifold provides together with regu-
larity of the F (g1,g2) at other boundary divisors enough boundary conditions
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to solve these models. Our formalism implies that the F (g1,g2) are express-
ible in terms of generators of a ring of an-holomorphic modular forms and
that F (g1=0,g2) = F (g1) is the most an-holomorphic object. Our expressions,
e.g., (4.42) and (4.43) can be readily expanded near the C/Z3 orbifold point
in the local P

2 moduli space using the flat coordinates provided in [38] to
yield refined orbifold Gromov–Witten invariants.

The holomorphic anomaly equation in this paper also applies to the pure
N = 2 supersymmetric gauge theories. However it it seems not to apply to
the cases with general matter. It was found, e.g., for the SU(2) gauge theory
with one fundamental flavor, that it has to be modified in an interesting way
by a Griffith infinitesimal invariant [11]. From the point of view of direct
integration, which is based on the fact that the F (g1,g2) are finitely generated
by independent generators, it would be interesting to clarify the modularity
property of this function.

So far the versions of the holomorphic anomaly in this paper and in [11]
are not derived from first principles. In the case of topological string case
on local Calabi–Yau manifolds, it can be argued that the F (g1,g2) should
obey T -duality of the spacetime geometry, which in our cases is an elliptic
curve. Because of the special properties of the quasi modular generator at
weight 2 E2, the failure of holomorphicity is then closely related to a failure
of T -duality, which can maybe be explained from the space-time point of
view.

Since the β-ensemble of the matrix model was already shown to describe
the gauge theory perturbatively [44], it seems clear that a proof of the gen-
eralized holomorphic anomaly equations along the lines of [46] should be
possible for the N = 2 supersymmetric gauge theories, once the program of
the paper [48] is established for the deformed case. One expects that in
this program only the recursion relation changes as a consequence of the β
dependent measure, that affects the loop equations, while the spectral curve
stays the same.

As was mentioned a greater challenge is to extend in general the Chern-
Simons matrix model [47] to refined topological string backgrounds as already
the perturbative calculation for the blown up conifold fails to be related to
the Chern-Simons model in the β-ensemble. It could be that a more general
coordinate transformation, which involve the ε1/2 in the mirror map, is nec-
essary to relate the topological string on compact Calabi–Yau manifolds to
the β-ensemble. This would be very useful to extend the analysis to the open
topological string invariants and to proof the extended holomorphic anomaly
equation as in [46]. Moreover it is known that the deformed β-ensemble cal-
culates for β = 1

2 SP (N) orientifold graphs and for β = 2 SO(N) orientifold
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graphs [45], which should have the corresponding interpretation in the topo-
logical string theory.

We generalized the heterotic amplitude and made predictions for the
refined topological invariants related to left and right SU(2)R/L Lefshetz
action in the K3-fiber of a regular K3 fibered Calabi–Yau space and made
a connection to a Göttsche formula for Hilbert schemes on K3 and checked
that the refined holomorphic anomaly equation holds in this case.

The K3 results could bear implications for the micro- and macroscopic
description of small black holes in K3 fibered Calabi–Yau spaces.

The duality on the elliptic fiber of a half K3 relates the refined topological
string invariants to refined topological invariants on the moduli space of
N = 4 Yang–Mills instantons on del Pezzo surfaces. Some predictions along
these lines can be found in Section 4.1

Let us finally mentioned that all our results are symmetric in ε1/2. That
is not necessarily the case for general refined BPS invariants in compact
Calabi–Yau manifolds. It is also clear that in this case the individual refined
BPS numbers are not symplectic invariants, but depend rather on the com-
plex structure. It is nevertheless remarkable that a straightforward gener-
alization of the formalism to the quintic yields an integer structure. If we
extend the Ansätze for F (1,0) and F (0,1) in a natural way to the case of the
quintic in P

4,7

F (0,1) = log
(
G

−1/2

ψ,ψ̄
exp

[
31
3
K

]
|ψ 31

3 (1 − ψ5)−
1
12 |2
)

(5.1)

and

F (1,0) = log
(

exp
[
31
3
K

]
ψ

31
3 (1 − ψ5)

1
24

)
, (5.2)

which is compatible with regularity of F (1,0) at the orbifold point, the uni-
versal conifold behavior and assumes that F (1,0) is the section of the same
Kähler line bundle then F (0,1) one gets the following integers:

n
(1,0)
d = −1492,−171409, 123200314, 381613562015, . . . . (5.3)

The integrality, which is nontrivial from the multi covering formula and
the subtraction of the genus zero contribution, has been checked up to high
degree d = 50. It would be interesting to understand, whether these integers

7Here we use the conventions of [50] with an additional 1/2 in front of F (1) = F (0,1),
which was corrected in [8] as it is essential for the higher genus calculations.
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count refined cohomologies of D-branes for some canonical choice of the
complex structure of the quintic.
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Appendix A

A.1 g1 + g2 = 3 results for pure N = 2 SU(2) SYM theory

The genus 3 formulae are

F (0,3) =
1

2916(u2 − 1)4

[
5X6 − 25uX5 + (50u2 + 30)X4

− u

12
(559u2 + 1557)X3 +

1
80

(1223u4 + 13794u2 + 3735)X2

− u

40
(155u4 + 3060u2 + 3537)X

+
1

3360
(236u6 + 43299u4 + 111078u2 + 16875)

]
,

F (1,2) =
1

5832(u2 − 1)4

[
5uX5 − (26u2 + 15)X4 +

3u
4

(75u2 + 233)X3

− 1
20

(1163u4 + 13419u2 + 3150)X2 +
u

20
(287u4 + 11751u2

+ 13194)X − 3
1120

(516u6 + 52231u4 + 152238u2 + 23175)
]
,

F (2,1) =
1

5832(u2 − 1)4

[
u2X4 − u

(
11
2
u2 + 6

)
X3

+
9
20

(23u4 + 184u2 + 35)X2 − u

40
(53u4 + 15849u2 + 16182)X

+
1

560
(1216u6 + 93615u4 + 307008u2 + 45225)

]
,
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F (3,0) =
1

69984(u2 − 1)4

[
u3X3 − 3u2(2u2 + 3)X2 − 3u

20
(u4 − 1347u2

− 450)X − 1
140

(769u6 + 87012u4 + 310500u2 + 43875)
]
. (A.1)

The dual expansions are

F
(0,3)
D =

1
1008a4

D

− 9aD
220

+ O(a2
D),

F
(1,2)
D = − 41

20160a4
D

+
15
218

+
1239aD
5 · 220

+ O(a2
D),

F
(2,1)
D =

31
26880a4

D

− 117
220

− 5799aD
5 · 223

+ O(a2
D),

F
(3,0)
D = − 31

161280a4
D

− 243
221

− 41607aD
5 · 224

+ O(a2
D).

(A.2)

Similar to the genus two case, we observe the gap structure in the dual
expansion around the conifold point with the absence of 1

aD
, 1
a2

D
, 1
a3

D
terms.

A.2 g1 + g2 = 3 results for local P
1 × P

1

The genus three results are

F (0,3) = −Q1 +Q2

3024
− 4Q2

1 +Q1Q2 + 4Q2
2

1512
− 9Q3

1 +Q2
1Q2 +Q1Q

2
2 + 9Q3

2

1008

− 1
756

(
16Q4

1 +Q3
1Q2 + 8Q2

1Q
2
2 +Q1Q

3
2 + 16Q4

2

)
+ O(Q5),

F (1,2) = − 11
30240

(Q1 +Q2) − 1
15120

(44Q2
1 + 137Q1Q2 + 44Q2

2)

− 1
10080

(99Q3
1 + 347Q2

1Q2 + 347Q1Q
2
2 + 99Q3

2)

− 1
7560

(176Q4
1 + 641Q3

1Q2 + 3364Q2
1Q

2
2 + 641Q1Q

3
2 + 176Q4

2),

F (2,1) =
1

2520
(Q1 +Q2) +

1
2520

(8Q2
1 − 61Q1Q2 + 8Q2

2) (A.3)

+
1

840
(9Q3

1 − 223Q2
1Q2 − 223Q1Q

2
2 + 9Q3

2)

+
1

1260
(32Q4

1 − 1573Q3
1Q2 + 28408Q2

1Q
2
2 − 1573Q1Q

3
2 + 32Q4

2),
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F (3,0) = − 1
15120

(Q1 +Q2) − 1
7560

(4Q2
1 + 127Q1Q2 + 4Q2

2)

− 1
5040

(9Q3
1 + 2857Q2

1Q2 + 2857Q1Q
2
2 + 9Q3

2)

− 1
3780

(16Q4
1 + 19531Q3

1Q2 + 143144Q2
1Q

2
2

+ 19531Q1Q
3
2 + 16Q4

2).
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