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Abstract

Over-activation of AMPARs (α−amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptors) is

implicated in excitotoxic neuronal death associated with acute brain insults, such as ischemic stroke. However, the

specific molecular mechanism by which AMPARs, especially the calcium-impermeable AMPARs, induce neuronal

death remains poorly understood. Here we report the identification of a previously unrecognized molecular

pathway involving a direct protein-protein interaction that underlies GluR2-containing AMPAR-mediated

excitotoxicity. Agonist stimulation of AMPARs promotes GluR2/GAPDH (glyceraldehyde-3-phosphate

dehydrogenase) complex formation and subsequent internalization. Disruption of GluR2/GAPDH interaction by

administration of an interfering peptide prevents AMPAR-mediated excitotoxicity and protects against damage

induced by oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia.

Introduction

Glutamate is the principal excitatory neurotransmitter in

the brain and is involved in numerous physiological

functions including neuronal circuit development, learn-

ing and memory [1]. Glutamate-induced neurotoxicity is

implicated in neuropathological disorders such as stroke

and epilepsy [2]. The effects of glutamate are mediated

via two major subfamilies of ligand-gated ion channels:

NMDAR (N-methyl-D-aspartate receptor) and AMPAR

[3]. AMPAR mediates fast synaptic transmission at

excitatory synapses, while NMDAR is critical in producing

a number of different forms of synaptic plasticity [1]. In

neurons, mature AMPA receptors are found as tetramers

consisting of various combinations of GluR1 to GluR4

subunits [4], each of which has the same topology: three

transmembrane domains and one membrain re-entrant

loop. All subunits are permeable to both Na+ and Ca2+ ions

with the exception of GluR2, which is uniquely

impermeable to Ca2+. The majority of AMPA receptors

in vivo contain GluR2 subunits whose ion selectivity is

dominant over other subunits [5].

The accumulation of glutamate, which occurs immedi-

ately after ischemia, results in excessive stimulation of

glutamate receptors and leads to neurotoxicity [6,7].

NMDAR-mediated neurotoxicity is dependent upon

extracellular Ca2+ and is likely mediated by Ca2+ influx

directly through receptor-gated ion channels [6,7].

AMPAR is also tightly associated with a selective pattern

of neuronal loss in certain brain areas following both

global and focal ischemia [8-20]. Similar to what is

reported for NMDAR, excitotoxicity mediated by

AMPAR lacking the GluR2 subunit is thought to be

dependent on ion influx (Ca2+, Zn2+) through AMPAR

channels following agonist stimulation [19-21]. However,

as most native AMPARs in the hippocampus contain the

GluR2 subunit and therefore are likely impermeable to

Ca2+ [22-26], it is still unclear how activation of the

GluR2-containing AMPAR leads to neuronal cell death.

Protein-protein interactions with the AMPAR have

been reported to affect function of AMPAR, among

which the best characterized ones, such as GRIP (glutamate

receptor interacting protein), ABP (AMPAR-binding

protein), SAP97 (synapse-associated protein-97), PICK1

(protein interacting with C kinase-1), stargazin, NSF

(N-ethylmaleimide-sensitive factor) and AP2 (adaptor

protein-2) [27-34], bind to the intracellular carboxyl

terminus of AMPAR. They regulate AMPAR function

in a variety of ways, including modulation of AMPAR
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subcellular localization, clustering and/or trafficking.

Recent studies have demonstrated that NARP (neuronal

activity-regulated pentraxin) and N-cadherin interact with

the amino terminus (NT) of AMPAR subunits and play an

important role in AMPAR clustering [35] as well as

dendritic spine formation [36]. In the present study, we

have identified a new AMPAR-interacting partner, GAPDH.

We show that secreted GAPDH binds specifically to the

extracellular NT domain of the GluR2 subunit, a process

which is promoted by AMPAR activation. Disruption of

GluR2/GAPDH interaction prevents AMPAR-mediated

excitotoxicity and protects against damage in OGD model.

Results

GluR2 subunit directly interacts with GAPDH via its

Y142-K172 region of N-terminus

To identify potential proteins that may interact with the

NT domain of AMPAR subunits, we used GST-fusion

proteins GST-GluR1NT (A19-E538) and GST-GluR2NT

(V22-E545) to affinity “pull-down” proteins from solubilized

rat hippocampal tissues along with GST alone as a control.

The precipitated proteins were then identified by

Coomassie brilliant blue staining following SDS-PAGE.

A prominent protein band of ~37 kD was specifically

precipitated by GST-GluR2NT, but not by GST alone

or GST-GluR1NT (Figure 1A). Mass spectrometry

analysis (LC-MS/MS, Protana [now Transition Thera-

peutics]) of this protein band identified three fragments

that were homologous to and covered 17% of the

sequences within rat GAPDH (VIISAPSADAPMFVM

GVNHEK; VIHDNFGIVEGLMTTVHAITATQK; VPTP

NVSVVDLTCR). These results suggested that the

GluR2 subunit might form a protein complex with

GAPDH through its NT domain. We then confirmed

the GluR2/GAPDH interaction with affinity purification

experiments using GST-GluR2NT, GST-GluR2CT (I833-

I883) and GST alone. Subsequent Western blot analysis

using a GAPDH antibody confirmed the association

between GAPDH and GluR2NT, but not GluR2CT
(Figure 1B).

Before conducting further experiments, we examined

whether GluR2/GAPDH complex exists in vivo. As

shown in Figure 1C, the GluR2 antibody was able to co-

immunoprecipitate (Co-IP) GAPDH from solubilized

proteins extracted from rat hippocampal tissues confirm-

ing the in vivo association between GluR2 and GAPDH. In

order to smooth the way for the following functional

studies, three GluR2NT GST-fusion proteins (GluR2NT1:

V22-S271, GluR2NT2: K272-I421, GluR2NT3: L422-E545) were

constructed (Figure 1D) and utilized in affinity purification

experiments to delineate the region (s) of GluR2NT

involved in the interaction with GAPDH. As shown in

Figure 1E, GST-GluR2NT1, but not GST-GluR2NT2,

GST-GluR2NT3 or GST alone, precipitated GAPDH

indicating that the GluR2 subunit interacts with GAPDH

through its NT region V22-S271. A series of truncations of

the GluR2NT1 region were then created to map the site

that interacts with GAPDH (Figure 1D). As shown in

Figure 1F and 1G, GST-GluR2NT1-3 (H122-K172) and

GST-GluR2NT1-3–2 (Y142-K172) were able to precipitate

GAPDH from rat hippocampal tissues.

While these results suggested the existence of the

GluR2/GAPDH complex, it did not clarify whether this

GluR2/GAPDH complex was formed through either a

direct interaction or was mediated indirectly by other

accessory binding proteins. Therefore we performed

in vitro binding assays to examine whether GAPDH and

the GluR2 subunit directly interact with each other. As

shown in Figure 1H, in vitro translated [35 S]-GAPDH

probe bound with GST-GluR2NT1 but not with GST-

GluR2NT2, GST-GluR2NT3 or GST alone, indicating the

specificity of the direct protein-protein interaction

between GAPDH and GluR2NT1. Consistent with the

results from affinity purification experiments, the in vitro

translated [35 S]-GAPDH probe only hybridized with

GST-GluR2NT1-3 and GST-GluR2NT1-3–2, (Figure 1I, J).

Together, these data provided in vitro evidence that

GAPDH forms a direct protein-protein interaction with

the GluR2 subunit through the Y142-K172 region of the

GluR2NT.

Agonist-facilitated GluR2/GAPDH complex formation

occurs extracellularly

As the NT region of GluR2 locates extracellularly, we

then investigated whether the GluR2/GAPDH

interaction occurs extracellularly by performing cell

surface biotinylation experiments in primary culture of

rat hippocampus, in which cell surface proteins of neurons

were labeled with sulfo-NHS-LC-biotin. As shown in

Figure 2A, the GluR2 antibody precipitated GAPDH from

the biotinylated (B, cell surface) fraction, but failed to pull

down GAPDH from the non-biotinylated (NB, intracellular)

fraction, suggesting that the GluR2/GAPDH complex

formation occurs extracellularly. Consistent with our

findings, a previous study demonstrated that GAPDH was

constitutively secreted into the extracellular space in

several mammalian cell lines including HEK-293 T cells

and neuro-2a cells [37]. We therefore speculated that

GAPDH might be secreted into the extracellular space

and form a protein complex with GluR2NT. To test our

hypothesis, we first confirmed GAPDH secretion in our

cell lines by immunoprecipitating GAPDH from the

conditioned medium (incubation with neurons/cells for

24 hours) of hippocampal primary cultures with a

primary antibody against GAPDH. As shown in

Figure 2B, GAPDH was immunoprecipitated from

conditioned medium, but not from fresh medium. To

further exclude the possibility that the observed
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GAPDH in the conditioned medium resulted from cell

lysis, conditioned media from non-transfected HEK-

293 T cells and from cells expressing GluR1/2 subunits

were collected, concentrated and examined by Western

blot analyses using anti-GAPDH and anti-α-tubulin

antibodies. As shown in Figure 2C, regardless of

GluR1/2 subunit expression, GAPDH was detected

from both conditioned media and cell lysates, whereas

α-tubulin (a cytoplasmic protein marker) was only

detected from cell lysates, indicating that the GAPDH

found in the conditioned medium is secreted from cells

and is not a contaminant due to cell lysis.

Furthermore, we examined the effect of the AMPAR

activation on the formation of GluR2/GAPDH complex.

By conducting Co-IP experiments, we found that

AMPAR activation with either 100 μM glutamate in

HEK-293 T cells expressing GluR1/2 subunits or 100 μM

kainic acid (KA) in hippocampal neurons facilitated the
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Figure 1 Identification and characterization of GluR2/GAPDH interaction. A, Coomassie blue stained SDS-PAGE gel of the protein(s)

selectively affinity pulled down by GST-GluR2NT, GluR1NT and GST alone from solubilized rat hippocampal lysates. Protein of interest: ~37 kDa.

B, Western blot analysis of rat hippocampal proteins affinity purified by GST-GluR2NT, GST-GluR2CT and GST from solubilized rat hippocampal

lysates and immunoblotted with primary antibody against GAPDH. C, Co-immunoprecipitation of GAPDH by the GluR2 primary antibody from

solubilized rat hippocampus. D, Schematic representation of GST-fusion proteins encoding truncated GluR2NT segments. E-G, Western blot analysis

of rat hippocampal proteins affinity purified by (E) GST-GluR2NT1, GST-GluR2NT2 GST-GluR2NT3 and GST; (F) GST-GluR2NT1-1, GST-GluR2NT1-2, GST-GluR2NT1-

3, GST-GluR2NT1-4, GST-GluR2NT1-5 and GST; (G) GST-GluR2NT1-3–1, GST-GluR2NT1-3–2 and GST from solubilized rat hippocampal lysates and

immunoblotted with primary antibody against GAPDH. H-J: Using an in vitro binding assay, [35 S]-GAPDH probe bound with GST-GluR2NT1 (H), GST-

GluR2NT1-3 (I) and GST-GluR2NT1-3–2 (J), but not with other GST fusion proteins or GST alone.
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GluR2/GAPDH complex formation by 75 ± 18% and

58 ± 11% (mean ± SEM, n = 3), respectively (Figure 2D, E;

top panels). In each Co-IP experiment, 500 μg of protein

were incubated in the presence of primary antibodies

anti-GluR2 or rabbit IgG, and 50 μg of extracted protein

was used as positive control. The level of directly immu-

noprecipitated GluR2 subunit was not significantly

altered by the agonist stimulation (Figure 2D, E; bottom

panels). If the GluR2NT1-3–2 region is essential for GluR2

to interact with GAPDH, application of the peptide en-

coding GluR2NT1-3–2 would disrupt the GluR2/GAPDH

interaction by competing with GluR2 for GAPDH. As

expected, pre-incubation of the GluR2NT1-3–2 peptide

(10 μM, 1 hour), but not the scrambled GluR2NT1-3–2

peptide (GluR2NT1-3-2Scram), significantly inhibited the

agonist-induced increase of the GluR2/GAPDH complex

formation in transfected HEK-293 T cells (Figure 2D,

65 ± 8% decrease; mean ± SE, n = 3) and in hippocampal

neurons (Figure 2E, 46 ± 6% decrease; mean ± SE, n = 3).

The fact that extracellular application of the interfering

GluR2NT1-3–2 peptide was able to disrupt the GluR2/

GAPDH interaction further supports the notion that the

GluR2/GAPDH complex formation occurs extracellularly.

Disruption of GluR2/GAPDH interaction inhibits

AMPAR-mediated excitotoxicity

Both AMPAR and GAPDH have been independently shown

to be involved in cell toxicity [38-42]. The observation that

AMPAR activation promoted GluR2/GAPDH complex for-

mation suggested that the GluR2/GAPDH interaction

might be involved in AMPAR-mediated excitotoxicity. Be-

fore conducting further experiments, we first confirmed the

A IP: GluR2

Anti-GAPDH

Anti-GluR2

35

130

C CM

Anti-GAPDH

Anti-α tubulin
55

35

B

IP: GAPDH

WB: anti-GAPDH

35

D

Anti-GAPDH

IP:GluR2

HEK293T Cells

Anti-GluR2

35

130

IP:GluR2

Anti-GAPDH

Hippocampal Neurons

Anti-GluR2

35

130

E

Figure 2 GluR2/GAPDH interaction occurs extracellularly. A, Rat hippocampal neurons were incubated with sulfo-NHS-LC biotin to label cell

surface proteins. GAPDH that co-immunoprecipitated with GluR2 antibody was examined in both non-biotinylated (NB) and biotinylated (B)

proteins. B, Using a rabbit anti-GAPDH antibody, GAPDH was immunoprecipitated from the conditioned medium (CM; medium incubated with

neurons/cells for 24 hours) of primary cultures of rat hippocampus but not from fresh medium. A mouse GAPDH antibody was used for Western

blotting and rabbit IgG was used as negative control. C, Western blot analysis of GAPDH and α-tubulin in concentrated conditioned medium of

non-transfected HEK-293 T cells (non-T) and HEK-293 T cells transfected with GluR1/2 subunits (AMPAR), in the presence or absence of glutamate

(AMPAR+Glut). Cell lysates were used as controls. D-E: Coimmunoprecipitation of GAPDH by primary antibody against GluR2 subunit (with or

without glutamate treatment) from HEK-293 T cells expressing GluR1/2 subunits (D) and hippocampal neurons (E) pre-treated with GluR2NT1-3–2 or

GluR2NT1-3–2-scram peptides (top panels). Each Coimmunoprecipitation was in parallel with Western blot analysis of the directly immunoprecipitated

proteins (bottom panels). All western blot analysis and co-immunoprecipitation assays in this figure are representative of at least 3 independent

experiments.
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ability of glutamate (300 μM, 24 hour; plus 25 μM

cyclothiazide to prevent AMPAR desensitization) to induce

cell death in HEK-293 T cells expressing GluR1/2 (Fig-

ure 3A), which is consistent with previous studies

[43,44]. To investigate the role of the GluR2/GAPDH

interaction in AMPAR-mediated cell death, HEK-293 T

cells expressing GluR1/2 were pre-treated with the

GluR2NT1-3–2 peptide (10 μM, 1 hour), which is able to

disrupt the GluR2/GAPDH association (confirmed in

Figure 2D). As shown in Figure 3B, pre-incubation

with the GluR2NT1-3–2 peptide significantly attenuated

glutamate-induced (300 μM, 500 μM) cell death. The

GluR2NT1-3–2 peptide itself showed no effect in either

the absence of glutamate treatment (Figure 3B) or in

non-transfected cells regardless of glutamate treat-

ment (Figure 3C). The specificity of the GluR2NT1-3–2

peptide was also confirmed in HEK-293 T cells

expressing GluR1/3, GluR1/4 or GluR3/4 subunits,

where pre-incubation with the GluR2NT1-3–2 peptide

failed to inhibit AMPAR-mediated cell death

(Figure 3D).

To study the GluR2/GAPDH interaction in a relevant

cellular milieu, rat hippocampal neurons were utilized in

parallel experiments. We previously confirmed in Figure 2E
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Figure 3 Regulation of the AMPAR-mediated cell death in transfected cells. A, Bar graph summarizing the quantitative measurements of PI

fluorescence from HEK-293 T cells expressing GluR1/2 subunits with/without glutamate treatment (300 μM glutamate, 25 μM CTZ, 24 hr).

***Significantly different from control group (P< 0.001, n = 9 per group), t-test. B, Bar graph summarizing the quantitative measurements of PI

fluorescence from HEK-293 T cells expressing GluR1/2 subunits with/without glutamate treatment at various doses in the presence/absence of

GluR2NT1-3–2 peptide (10 μM, 1 hr). **, *** Significantly different from control group (P< 0.01, 0.001), ANOVA followed by post-hoc SNK test; ##,

significant from the corresponding glutamate group (P< 0.01, n = 9 per group), t-test. C, Bar graph summarizing the quantitative measurements of PI

fluorescence from non-transfected HEK-293 T cells or HEK-293 T cells expressing GluR1/2 subunits. Cells were pre-treated with the GluR2NT1-3–2 peptide

with/without glutamate treatment (n= 9 per group). D, Bar graph summarizing the quantitative measurements of PI fluorescence from HEK-293 T cells

expressing GluR1/3, GluR1/4 or GluR3/4 subunits with glutamate treatment in the presence/absence of the GluR2NT1-3–2 peptide (n= 9 per group). All

PI fluorescence measurement assays were performed 3 times independently.
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that pre-incubating hippocampal neurons with the

GluR2NT1-3–2 peptide interrupted the GluR2/GAPDH

interaction promoted by the AMPAR activation. Thus, we

examined whether the disruption of this interaction in

hippocampal neurons by applying the GluR2NT1-3–2

peptide would rescue neurons from AMPAR-mediated

excitotoxicity. AMPAR-mediated cell death was induced

by treating neurons with KA (100 μM, 1 hour) in the

presence of NMDAR and Ca2+ channel antagonists

(10 μM MK-801 and 2 μM nimodipine). As shown in

Figure 4A, pretreatment with the GluR2NT1-3–2 peptide

significantly inhibited AMPAR-mediated cell death.

AMPAR-mediated toxicity is often considered a

contributing, if not an underlying, causative factor in

ischemia, which deprives brain cells of glucose and

oxygen, causing irreversible brain damage within

minutes. Cells in ischemic brain tissue undergo a

number of changes: they rapidly lose their energy

supplies, their membranes become depolarized, calcium

loads are increased, reactive oxygen types are produced

and excitotoxic effects are found. These biochemical

changes are followed by irreversible changes to cellular

structures and cell death. The oxygen glucose

deprivation (OGD) cell lesion model represents a valid

simulation of the conditions in brain ischemia [45,46].

Therefore, we assessed the effectiveness of the

GluR2NT1-3–2 peptide to rescue cells from neurotoxic

stress in the OGD model to verify the implication of the

GluR2/GAPDH interaction in ischemia. As shown in

Figure 4B, the GluR2NT1-3–2 peptide pretreatment

(10 μM, 1 hour) was able to significantly attenuate

OGD-induced cell death (30.4% ± 9.5%) in the presence

of 10 μM MK-801 and 2 μM nimodipine.

In order to further confirm the role of GAPDH in the

AMPAR-mediated cell death, GAPDH siRNA was

transfected into HEK-293 T cells to block the expression

of GAPDH, but not the expression of GluR2 (Figure 4C).

As shown in Figure 4D-E, AMPAR-mediated cell death

was significantly attenuated in the presence of GAPDH

siRNA. Together, these data suggest that the GluR2/

GAPDH interaction may play a critical role in the

GluR2-contaning AMPAR-mediated cell death.

Activation of AMPAR induces AMPAR/GAPDH complex

internalization through the GluR2/GAPDH interaction

Previous studies demonstrated that agonist stimulation

could induce AMPAR endocytosis [47-49]. Thus, we

examined whether the extracellular GAPDH would

internalize along with AMPAR through the GluR2/GAPDH

interaction upon the activation of AMPAR. To quantify

GluR2 and GAPDH cell surface levels in HEK-293 T cells

expressing GluR1/2, a cell-based ELISA assay was applied

as previously described [49,50]. We first confirmed the

results from previous studies that the glutamate stimulation

(100 μM, 30 minutes) induced a significant decrease in

plasma membrane GluR2 (Figure 5A). We then tested

whether the cell surface-associated GAPDH is also

decreased upon agonist stimulation of AMPAR. As

shown in Figure 5B, activation of AMPAR signifi-

cantly decreased the cell surface-associated GAPDH

in HEK-293 T cells expressing GluR1/2, a phenomena

that can be abolished by the pre-treatment of

GluR2NT1-3–2 peptide. These data, together with the

inability of glutamate stimulation to internalize the

cell surface-associated GAPDH in the non-transfected

HEK-293 T cells (Figure 5C) or HEK-293 T cells

transfected with GluR1/3 subunits (Figure 5D),

suggest that GAPDH internalization may be a passive

process enabled by the GluR2/GAPDH interaction.

To further investigate whether the observed GAPDH

internalization is dependent on the GluR2 internalization,

we tested whether blockade of GluR2 endocytosis will

inhibit GAPDH internalization. Previous studies demon-

strated that GluR2 endocytosis is dynamin-dependent and

that the expression of the dominant-negative dynamin

mutant (K44E) was able to block the GluR2 internalization

[47,49]. Thus, after confirming the ability of the K44E

mutant to block the GluR2 internalization (Figure 5E), we

examined whether the K44E mutant affected cell surface-

associated GAPDH internalization in HEK-293 T cells

expressing GluR1/2 subunits. As shown in Figure 5F, the

K44E mutant significantly inhibited glutamate-induced cell

surface-associated GAPDH internalization, indicating that

GAPDH internalized through a dynamin-dependent

pathway and further confirmed that GAPDH was co-

internalize with the GluR2 subunit. Moreover, the K44E

mutant also attenuated glutamate-induced cell death in

HEK-293 T cells expressing GluR1/2 subunits (Figure 5G),

indicating that GluR2/GAPDH complex internalization

may play an important role in the GluR2-containing

AMPAR-mediated cell death.

Discussion

AMPAR-mediated excitotoxicity has been implicated in

the pathogenesis of neuronal loss associated with a

number of brain disorders, including transient forebrain

ischemia [8-20]. However, the underlying mechanisms

remain unclear. An uncontrollable rise in intracellular Ca2+

and Zn2+, with subsequent activation of diverse downstream

cell death signals has been one of the most prominent

hypotheses to explain excitotoxic neuronal death

[19,20,51-55]. Although GluR2-containing AMPARs are

calcium impermeable, recent studies have suggested

that selective reductions in the expression of GluR2,

resulting in an increase in Ca2+−permeable AMPA recep-

tors, have been associated with an increased vulnerability of

neurons to ischemic injury [16,56-61]. Although the

mechanisms involved are not fully understood, it has been
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suggested that GluR2 internalization may enhance the Ca2+-

influx that results in neurotoxicity, either through newly

synthesized Ca2+-permeable AMPARs [57] or by activation

of a caspase-dependent apoptotic pathway [62]. Consistent

with previous studies, our data has shown that agonist

stimulation of AMPAR results in the internalization of

GluR2 and promotes extracellular GAPDH internalization

via a GluR2/GAPDH coupling-dependent process. This is

the first evidence showing that the N-terminal of the

GluR2 subunit plays an important role in AMPA receptor-

mediated excitotoxicity through regulating AMPAR

trafficking. Many studies have shown that agonist-

induced GluR2 internalization is a dynamin-dependent

process [47,49]. The observations of our study that mutant

dynamin abolishes both GluR2 and GAPDH internalization

and the inability of GAPDH to internalize in cells lacking

GluR2 suggest that GAPDH internalization is a passive

process facilitated by the GluR2/GAPDH interaction and

mediated by GluR2 internalization.

Given the fact that GAPDH interacts with the extracellu-

lar NT of GluR2, it is likely that the GluR2/GAPDH protein

complex may be in an endocytosed vesicle following the

agonist-induced internalization. On this basis it would be

logical to further ask how the GluR2/GAPDH complex gets
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GluR2NT1-3–2 peptide. ***Significantly different from KA group (P< 0.001, n = 9 per group), t-test. B, Bar graph summarizing the quantitative

measurements of PI fluorescence from rat hippocampal primary culture with OGD protocol in the presence/absence of the GluR2NT1-3–2 peptide.

*Significantly different from OGD group (P< 0.05, n = 9 per group), t-test. C, Western blot analysis of GAPDH (upper panel) and GluR2 (lower

panel) expression in HEK 293 T cells expressing GluR1/2 subunits in the presence/absence of the GAPDH siRNA. D, Bar graph summarizing the

quantitative measurements of PI fluorescence from HEK-293 T cells expressing GluR1/2 subunits with glutamate treatment in the presence/

absence of the GAPDH siRNA (P< 0.05, n = 9 per group), t-test. E, Propidim iodide positive cells (red) from HEK-293 T expressing GluR1/2 subunits

with glutamate treatment in the presence/absence of the GAPDH siRNA, scale bar 50 μm. All PI fluorescence measurement assays were

performed 3 times independently.
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out of the vesicle and promotes excitotoxic neuronal death.

There are many possibilities for this question. First, the

complex may be transported to the nucleus via a retrograde

vesicle transport mechanism leading to the fusion of the

vesicle with ER or nuclear membranes or via mechanisms

recently proposed for the nuclear translocation of another

plasma membrane receptor, the EGF receptor [63,64].

Second, the GluR2/GAPDH complex formation in the
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Figure 5 Activation of AMPAR induces GluR2/GAPDH co-internalization. A, Quantification of GluR2 expression at the plasma membrane

with/without glutamate treatment (100 μM, 30 minutes) in HEK-293 T cells expressing GluR1/2 subunits. *Significantly different from control group

(P< 0.05, n = 9 per group), t-test. B, Quantification of cell surface-associated GAPDH with/without glutamate treatment in the presence/absence of

the GluR2NT1-3–2 peptide in HEK-293 T cells expressing GluR1/2 subunits. *Significantly different from control group; #, significantly different from

glutamate group (P< 0.05, n = 9 per group), ANOVA followed by post-hoc SNK test. C, Quantification of cell surface-associated GAPDH in

non-transfected HEK-293 T cells with/without glutamate treatment (n = 9 per group). D, Quantification of cell surface-associated GAPDH

with/without glutamate treatment in HEK-293 T cells expressing GluR1/3 subunits (n = 9 per group). Quantification of plasma membrane GluR2 (E)

or cell surface-associated GAPDH (F) expression at the plasma membrane with/without glutamate treatment in HEK-293 T cells expressing

GluR1/2 subunits with wild type dynamin (WT) or mutant K44E dynamin (K44E). *Significantly different from the corresponding control group

(P< 0.05, n = 9 per group), t-test. G, Bar graph summarizing the quantitative measurements of PI fluorescence from HEK-293 T cells expressing

GluR1/2 subunits with wild type dynamin (WT) or mutant K44E dynamin (K44E) with/without glutamate treatment. ***Significantly different from

control WT group (P< 0.001, n = 9 per group); ##significantly different from control K44E group (P< 0.01, n = 9 per group), t-test. All assays in

this figure were performed 3 times independently.

Wang et al. Molecular Brain 2012, 5:13 Page 8 of 12

http://www.molecularbrain.com/content/5/1/13



vesicle may lead to the activation of lysosome in the

vesicle that breaks the vesicle and release the GluR2/

GAPDH into the cytoplasm.

The possible mechanisms that underlie this GluR2/

GAPDH related cell death is particularly interesting. It is

somewhat surprising to find that the AMPAR-mediated

cell death involves GAPDH, a key enzyme involved in

glycolysis with a ubiquitous intracellular distribution.

However, additional roles for GAPDH have been

discovered recently, including membrane fusion/transport,

binding to low molecular weight G proteins, regulation of

the cytoskeleton, accumulation of glutamate into

presynaptic vesicles, and apoptosis [65-71]. Recent studies

have shown that GAPDH binds to Siah1 and triggers

apoptosis [39]. Moreover GAPDH has also been reported

to interact with p53 [72], a tumor suppressor and

transcription factor that has been implicated in glutamate-

mediated excitotoxicity [73-75]. Numerous evidence show

that activation of p53 can trigger apoptosis (for reviews,

see [76]) under conditions of cellular stress mediated by

phosphorylation or acetylation of p53 [77]. Whether Siah1,

p53 or other molecules are involved in GluR2/GAPDH-

related cell death pathway requires much more additional

work for a better understanding of the detailed molecular

mechanisms.

Stroke is the second leading cause of death worldwide

yet there are very few effective pharmacological

treatments for patients suffering ischemic stroke.

Thrombolytics such as alteplase and tenecteplase have

been a significant advance in the treatment of ischemic

stroke. However, thrombolytics must be given soon after

a stroke to be effective (within 3 hours of ischemic

episode). This short time frame has limited their use in

many situations. There continues to be a significant

unmet need for acute pharmacological treatments

beyond thrombolytics. Advances in recent years include

hypothermia [78-80], oxygen therapy [81], stem cell

transplantation [82] and cerebral plasticity stimulation

(trophic factor) strategies [83]. These novel techniques

are intriguing, but will require further well-designed

prospective trials to assess clinical feasibility, safety, and

efficacy [84]. Another approach that has received consider-

able attention is agents that inhibit ischemia-induced

excitotoxicity though directly blocking glutamate receptors.

However, all have failed at various stages of development

for a variety of reasons. One of the main drawbacks of the

glutamate receptor antagonists is that they block normal

excitatory neurotransmission necessary for maintaining

basic brain functions. For this reason, much research has

been directed at identifying drugs and peptides that may be

able to selectively target protein-protein interactions that

have more narrow function than a certain neurotransmitter

receptor. In the present study, we have shown that adminis-

tration of the interfering GluR2NT1-3–2 peptide to interrupt

the GluR2/GAPDH interaction significantly mitigates

neuronal cell death in a cell model of ischemia, revealing a

previously unappreciated signaling pathway underlying

AMPAR-mediated excitotoxicity and it may provide a new

avenue for the development of a complementary

therapeutics in the treatment of neuropathological

disorders, such as stroke and epilepsy.

Materials and methods

Cell culture and transient transfection

HEK293 T cells were cultured in α-MEM (Invitrogen,

Carlsbad, CA) supplemented with 10% fetal bovine serum

(Invitrogen) and maintained in incubators at 37°C, 5%

CO2. HEK293T cells were transiently transfected with

plasmid constructs and/or siRNA using lipofectamine

2000 reagents (Invitrogen). Cells were harvested 48 hours

post transfection.

Primary hippocampal neuron culture and OGD treatment

Primary cultures from hippocampus were prepared from

fetal Wistar rats (embryonic day 17–19) on Cell + (Sarstedt)

culture dishes as previously described [85-87]. The cultures

were used for experiments on 12–15 days after plating.

Hippocampal cultures were pretreated GluR2NT1-3–2

peptides prior to kainic acid treatment. OGD treatment was

performed in the presence of MK-801 and nimodipine as

previously described [57].

GST fusion proteins

To construct GST-fusion proteins encoding truncated

GluR2 and GAPDH, cDNA fragments were amplified by

using PCR method with specific primers. Except where

specified, all 5′ and 3′ oligonucleotides incorporated

BamH1 site (GGATCC) and Xho1 sites (CTCGAG),

respectively, to facilitate subcloning into vector pGEX-4T3

(for GST-fusion protein construction). GST-fusion proteins

were prepared from bacterial lysates with Glutathione

Sepharose 4B beads as described by the manufacturer

(Amersham). To confirm appropriate splice fusion and the

absence of spurious PCR generated nucleotide errors, all

constructs were resequenced.

Protein affinity purification, in vitro binding,

co-immunoprecipitation and western blot

Protein affinity purification, in vitro binding, co-immuno-

precipitation and Western blot analyses were performed as

previously described [85-87]. Antibodies used for immuno-

precipitation, Western blots and cell surface ELISA assays

include GAPDH (polyclonal from Abcam, monoclonal

from Chemicon), GluR2 (Western blots: Chemicon;

immunoprecipitation: Upstate), and α-tubulin (monoclonal,

Sigma-Aldrich).
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Cell-ELISA assays

HEK-293 T cells transfected with plasmid constructs were

treated with 100 μM glutamate or extracellular solution

(ECS) before fixing in 4% (W/V) paraformaldehyde for 10

minutes in the absence (non-permeabilized conditions) or

presence (permeabilized conditions) of 1% (V/V) Triton

X-100. Cells were incubated in 1% (W/V) glycine for 10

minutes at 4°C to recover from the fixing. Cells were

then incubated with specific primary antibodies for the

purpose of labeling the receptors or proteins on the cell

surface under non-permeabilized conditions or the

entire receptor pool under permeabilized conditions.

After incubation with corresponding HRP-conjugated

secondary antibodies (Sigma-Aldrich), the HRP substrate

o-phenylenediamine (Sigma-Aldrich) was added to pro-

duce a color reaction that was stopped with the equal vol-

ume of 3 N HCl. Fluorescence intensity in each well was

measured with a plate reader (Victor3; PerkinElmer). The

cell surface expression of HA-GluR2 after pre-treatment

with glutamate was presented as the ratio of colorimetric

readings under non-permeabilized conditions to those

under permeabilized conditions, and then normalized to

their respective control groups (pretreated with ECS).

Afterwards, cells were scrapped from the dishes, and the

protein concentration of each dish was measured. The

results of cell surface expression of receptors or proteins

were calibrated by the protein concentration of each well.

Analysis was done using at least 9 separate wells in each

group. Cell ELISA using primary hippocampal neurons

was performed identically with assays using HEK-293 T

cells, with the exception that the anti-GluR2 antibody

(MAB397; Chemicon) was used as primary antibody in-

stead of anti-HA.

Quantification of AMPAR-mediated excitotoxicity

HEK-293 T cells transfected with GluR1/2 subunits were

exposed to 300 μM glutamate/25 μM cyclothiazide at 37°C

for 24 hour. Cells were allowed to recover for 24 hours at

37°C. To quantify AMPAR-mediated cell death, culture

medium was replaced by extracellular solution containing

50 μg/ml of propidium iodide (PI) (Invitrogen, Carlsbad,

CA). After 30 minutes incubation at 37°C, fluorescence

intensity in each well was measured with a plate reader

(Victor3; PerkinElmer, Waltham, MA). The fraction of

dead cells was normalized to the total cell number.

Primary hippocampal neurons were exposed to 100 μM

KA/25 μM cyclothiazide in the presence of NMDAR and

Ca2+ channel antagonists (10 μM MK-801 and 2 μM

nimodipine, respectively) at 37°C for 1 hour.

Cell biotinylation

For cell surface biotinylation, cells were rinsed four times

with ice-cold PBS2+ (PBS containing 0.1 mM CaCl2 and

1.0 mM MgCl2) after treatment, and incubated twice

with 1.0 mg/ml sulfo-NHS-LC-biotin (Pierce, Rockford,

IL) for 20 minutes at 4°C. Non-reactive biotin was

quenched by 20 minutes incubation at 4°C in ice-cold

PBS2+ and 0.1 M glycine. Cells were solubilized in RIPA

buffer (10 mM Tris, ph7.4, 150 mM NaCl, 1.0 mM

EDTA, 0.1% (W/V) SDS, 1.0% (V/V) Triton X-100 and

1.0% (V/V) Sodium deoxycholate) containing protease

inhibitors (1.0 mM PMSF and 1.0 μg/ml protease

cocktail). Biotinylated and non-biotinylated proteins were

separated from equal amounts of cellular protein by

incubation with 50 μl of 50% slurry of immobilized

streptavidin-conjugated beads (Pierce, Rockford, IL)

overnight with constant mixing at 4°C. Unbound

proteins (supernatant) were saved for later co-immuno-

precipitation experiment. Proteins bound to streptavidin

beads were eluted in biotin elution buffer. Biotinylated

and non-biotinylated samples were applied to protein A/G

PLUS-agarose (Santa Cruz Biotechnology, Santa Cruz, CA)

for co-immunoprecipitation.
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