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ABSTRACT

Electrical Vehicles are gaining increasing attention, due to
the opportunities and challenges they present for the energy
market. On the one hand, they will allow to drastically reduce
the need for oil; on the other hand they may require a signif-
icant shift in the day to day management of the electricity
generation. This paper is concerned with finding appropriate
models for residential load in light of a widespread penetra-
tion of electric vehicles. The analysis is aimed at finding a
SmartGrid solution that would enable us to optimize the gen-
eration dispatch in real time and allow to plug cars in any
SmartGrid enabled plug. The key idea is to discriminate be-
tween regular load and the load due to the EVs, gathering in
real time aggregate information about the sensed EV arrivals
and their associated charging times in a demand matrix, that
can be readily used to optimize the dispatch, while updating
without real time constraints the billing record for the EV.

Index Terms— Electric Vehicles, Load Forecast, Direct
Load Control, Optimization, Communication

1. PROBLEM STATEMENT AND BACKGROUND

Excitement is growing everyday as the beginning of the green
car revolution is getting closer [1]. Electric vehicles (EV) will
be entering the market later this year. EVs produce few or no
emissions and allow to reduce the dependency on foreign oil
imports. While this is an enticing future to look forward to,
the main technical concern with the practicality of this idea
is if the grid can support the widespread adoption of EVs.
In fact, like in other networks, the distribution of energy is
limited by congestion, which manifests itself in two ways:
through a limited generation capacity and through the neces-
sity of not overloading the transmission lines. Thus, the chal-
lenge is to dispatch sufficient energy to meet the load while
avoiding congestion. To do so, the control algorithm needs
to predict the load with sufficient accuracy and there is an
extensive literature dedicated to this subject [2–4]. All these
algorithms estimate the future load using a dynamical system
model L(t) = D(L(t − 1), L(t − 2), ...), whose parameters
are estimated through the data (D̂(·) is the estimate), and then
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predict the future value using previously measured values of
the load as inputs,

L̂(t) = D̂(L(t− 1), L(t− 2), ...) (1.1)

As the number of EVs increases, this approach may fail to
predict the increasing volatile load effectively. Thus, our tenet
in this paper is to treat the portion of the load due to EVs
separately and make it visible by an information structure.
The load can be written as

L(t) = LN (t) + LEV (t) (1.2)

LEV (t) is assumed to be proportional by a factor −g to the
number of vehicles N(t) actively charging at time t. We will
still use traditional load forecasting techniques for the remain-
ing part of the load, LN (t) and thus, all we need to have is a
smart forecast of N(t).

EVs will require charging access frequently as they are
only able to travel around 100 miles on a full charge. Most
of the customers travel back from work within a certain time
window and it is predictable that they will plug their vehicles
in for charging as soon as they reach home. Each EV will
nearly need a power of 1.5 kW for charging and the duration
of a full charge is about 6-8 hours. We call Cmax the maxi-
mum charge time. A full charge is of course not always the
case. It is foreseen [5] that the customers who will purchase
EVs during the first decade of their appearance will mainly re-
side in certain neighborhoods and thus, if not controlled, this
pattern will cause the transformer stations to overload and will
nearly double the peak demand of the residential section.

The literature is considering two possible models to han-
dle the EVs. One is emulating the gas station model, by re-
placing them with charging stations, which will essentially
offer the service of managing sufficient reserve to provide the
required charge. The question is what to do when the car is
plugged directly to the grid. There are recent articles in the
literature that discuss strategies to shift the load due to EV
charging cycles to off-peak hours. Several of these papers
rely on pricing strategies [6, 7]. Although this is a valid strat-
egy, the reasonable concern is if these mechanisms will lead
to stable network conditions, since they may offset a large
chunk of the load simply moving the peak to a different time.
Another issues with EVs is their mobility. How can one pre-
vent energy theft if the activities of the EV are not carefully



monitored? To avoid this, smart grid strategies envision an
active management system that continuously monitors all the
elements of the system and makes decision on when the EVs
should start charging their batteries based on the amount of
available energy.

Our paper is concerned with modeling the statistics of the
load offered by EVs (in Sec. 2.1) and proposes an communi-
cation architecture (in Sec. 3) to accrue the data that would
permit to enforce the correct actions. The work presented can
be divided into two scenarios. In the first scenario, we have
no control over the EVs but we have real-time data about their
arrivals and the amount of energy required for a full charge
by each of the vehicles. In this case, the new information is
proven to be essential (c.f. Sec. 4) to reach accurate load
forecast and thus, plan the generation accordingly. In the sec-
ond scenario, we have an active control over the time at which
each vehicle starts to charge its battery and we can use our au-
thority to lower our peak generation cost. For both cases we
outline a solution to manage the SmartGrid information that is
based on associating charging events with a mobile cellphone
application and service.

2. EV FORECASTING MODEL

EVs can be modeled as customers arriving in a queue to re-
ceive energy for charging (service). There are two options:
(Scenario I) serving them immediately as they are plugged in,
or (Scenario II) queueing them, controlling their access to en-
ergy. In both cases we quantize the charging duration of the
EVs inQ levels, and denote byDt the P×Q array containing
the number of cars that arrived in interval t, in each charging
class, based on charging duration (column) and price (row).
We assume that Cmax/Q = T . Further, we call εt the P ×Q
array of cars unplugged before ending the required charge,
in each charging duration and price class. We will assume
that εt has negligible impact on N(t). In Scenario II, we di-
vide the customers in P × Q-queues and update the array of
queue-states St every t (see Fig. 1) and at(i, j) is the number
of servers allocated for each queue, which correspond to the
number of cars in each queue that we start charging at time
t, at price i and charging level j. In both cases, at each deci-
sion epoch, the control center receives via a communication
infrastructure Dt. EVs arrivals can be modeled as a Poisson
process with a time-dependent rate λ(t). For simplicity, we
assume that the charging times are independent and identi-
cally distributed and are also independent of the arrival pro-
cess.

2.1. Scenario I: Uncontrolled Arrival Of Electric Vehicles

If no control is applied to the EVs access, charging starts at
the moment when the EV is plugged in. The time t is discrete
and the sampling interval is T . In this case, we can model
LEV (t) = −gN(t) as the workload of an Mt/GI/∞ queue,

i.e. ai =∞ in Fig. 1. For this scenario we also consider a sin-
gle price, i.e. P = 1 and all the arrays are vectors. Since no
queue is even formed, ∀t, St = 0. Our goal is to predict the
number of customers N(t) that are receiving service from the
system at a future time t. It was shown separately by Palm [8]
and Khintchine [9] that when an Mt/GI/∞ system is initial-
ized at t = −∞ with no cars (customers) in the queue, the
numberN(t) of the cars present in the grid at time t will have
a Poisson distribution with a mean that is a function of λ(t)
and the distribution of the charging time of the cars, FC(t).
Define the random variable Cc with the associated stationary-
excess or equilibrium-residual-life CDF1 of

FCc
(t) =

1

E[C]

∫ t

0

(1− FC(v))dv, t ≥ 0. (2.1)

Then, the number of cars N(t) charging from the grid at time
t is a Poisson random variable with mean m(t):

m(t) = E[N(t)] = E

[∫ t

t−C
λ(u)du

]
= E[λ(t− Cc)]E[C]

(2.2)
Since our system starts at t = t◦ with N(t◦) customers, for
which the remaining service times are known, then the num-
ber of cars present in the system at time t will be:

N(t) = Nnew(t) + ν(t) (2.3)

where Nnew(t) =
∑Q
q=1Dt(q) is a Poisson random vari-

able with the mean given in 2.2, with λ(t) set to zero for
t ≤ t◦, and ν(t), is deterministic and equal to N(t◦) (the
number of cars that where present at time t◦ ) minus those
that departed before time t. Note that ν(t) is determinis-
tic since, by knowing Dk,∀ k < t we can derive ν(t) =∑Q−1
i=0

∑Q
j=i+1Dt−i(j). Furthermore, Dk,∀ k < t allows to

estimate of λ(t) and FC(u). The estimation of λ(t) can be
performed using the method described in [10]. FC(u) can be
obtained from the average histogram of charging times, that
can be also updated adaptively with a forgetting factor if nec-
essary. In this Scenario I, while the EVs arrivals provide in-
formation to fill up the array Dt, there is no information feed-
back sent to the EVs, since their access is not controlled. The
only feedback is physical, and consists in the energy dispatch

1This random variable frequently shows up in renewal theory.

Fig. 1. Queuing model for price category p



that is adjusted according to the forecast. This is true unless
the price is changed, and that has an effect on λ(t): a useful
remark is that if the price is updated at every interval t (dy-
namic pricing) λ(t) will become considerably non-stationary
and hard to track and models such as the one used in [10]
will be insufficient to forecast the load statistics. Note that,
since we serve any car that arrives, in principle we only care
about the number of cars, not their charging classes. However,
the subdivision in classes is needed to derive the statistics of
Nnew(t) and to calculate ν(t).

2.2. Scenario II: Direct load management of EVs

In this scenario, the access to energy is controlled and, thus,
the infinite server assumption is no longer valid. We consider
two possible price classes: green energy and traditional en-
ergy. Hence, the customer is given the option to select elec-
tricity generated by wind, solar power or the traditional way.
The arrival rates are λi(t), i = 1, 2 respectively. Green energy
is cheaper but may have a longer waiting period.

The queues state matrix St follows the dynamics:

St = St−1 − at−1 +Dt − εt (2.4)

where at is the 2×Q decision matrix with at(i, j) = Number
of vehicles in the ith supply method with charging duration
j allowed to join the grid at time t. As mentioned, we will
neglect the effect of εt. All the unfulfilled requests at each
epoch are backlogged and no car is dropped from the queue.
Thus, a part of the request at the next epoch is deterministic
since it is equal to the current excess demand. The number of
arrivals in the future interval in each supply category (i, j) is
a Poisson random variable with mean

αt(i, j) = [FC(cj)− FC(cj−1)]

∫ t

t−T
λi(t)dt (2.5)

where [cj−1, cj ] is the charging interval that defines the jth
queue. The model (2.4) is updated, by computing St−1 based
on the information received on the realized value for Dt−1

and on the action performed at−2; with the model for the fu-
ture Dt(i, j) just discussed, the control center has the ability
to forecast the statistics of St and plan the next action, which
consists of: 1) updating if necessary the energy dispatch; 2)
deciding at−1. In this case in addition to forwarding the infor-
mation on Dt the control center has to feedback information
that would allow to perform the control action at. To reach
this goal, a message Mt with a dimension of 2×Q is broad-
cast, where the (i, j)th element ofMt consists of a time index
Ti,j . The action is computed as follows: vehicles that are in
the (i, j)th category, and whose arrival time is before Ti,j , can
start charging right away; other vehicles have to wait until the
next epoch. Ti,j is computed from the equation

Ti,j = max(τ ≤ t :
t∑

k=τ

Dk(i, j) ≥ St(i, j)−at(i, j)). (2.6)

3. COMMUNICATION INFRASTRUCTURE

One of the key aspects that is motivating the deployment of
the Advance Metering Infrastructure (AMI) is accurate billing
and remote disconnection. The deployment is not, however,
really incorporating any basic ability to roam its customers
and to track consumption of specific appliances in real time;
hence, the surge of EVs will pose significant billing problems,
in addition to the control problems discussed previously. For-
tunately, the aggregate traffic of incoming vehicles may be
mapped into modest information traffic. We identify two ar-
chitectural functions are needed to manage EVs and outline
possible sensible solutions to handle them: 1) mobility and
roaming management; 2) sensing and data acquisition.

Mobility Management– Mobility management is a ma-
ture technology in wireless networks [11]. Rather than re-
inventing the wheel, we propose to integrate the management
of EV mobility with the management of wireless device mo-
bility. In fact, location based services to support the EVs
can be a major area of expansion for the wireless market,
generating relatively low traffic. Two international standards
support (2G) mobility and they are both based on Signal
System 7 (SS7) [11]: the Electronic/Telecommunications
Industry Associations Interim Standard 41 (EIA/TIA IS-41)
(AMPS and IS-54/IS-136 networks), and the GSM Mobile
Application Part (MAP) (GSM, DCS-1800, and PCS-1900).
Groups of geographically contiguous cells are managed by
mobile switching centers (MSC) which update a database
called visitor location register (VLR). Each subscriber is
recorded in a higher level database called home location reg-
ister (HLR) which is linked to the VLR of the area (including
several cells) the subscriber is currently visiting. The updates
on these databases occur when a terminal changes its base
station which, upon detecting the presence of a new mobile,
sends information to the MSC to update the VLR. If the
Mobile Identification Number (MIN) is in the VLR nothing
changes, otherwise the MIN is appended to the VLR and
the MSC sends a message to update the HLR link, which
authenticates the terminal with an ACK that also signals the
successful update of the link registry. The previous VLR is
also updated, removing the outdated entries.

Most cellphone technology is equipped with Bluetooth
connectivity and, in necessary to corroborate the data, a GPS
that allows to accurately time stamp and locate the mobile. It
is only natural to associate the EV charge event to the same
MIN number of the driver who is interested in charging the
car. The billing can be bundled with other mobile commu-
nication services, as an EV billing plan, whose management
cost can be spread among all the parties that benefit from this
service.

When the vehicle is plugged, a smart plug will interact
first with the cell user via Zigbee or Bluetooth to authorize the
transaction, requiring a code or a password from the mobile
user. Then, the smart plug will contact the Smart reader and



communicate the MIN number and the charging parameters.
If the Smart meter authorizes the charge to take place it will
again contact the phone via Bluetooth and the phone will send
a charge activation text message, to update an EV register
(EVR) with the MIN, the location and the charging parame-
ters for the transaction. When the vehicle is unplugged an end
charge message, with the total battery charge accrued from
the grid, is also sent to mobile phone, to acknowledge how
much energy was absorbed, and to the Smart reader, which
will subtract the consumption from the premise bill. The
record of the transaction can be paged to update the EVR for
the EV billing. Since the information of the EVRs is volatile
it is natural to handle them in a way that is similar to VLR,
and place them in the MSC.

Sensing and data acquisition- The same charge activa-
tion messages recorded in the EVR can be mined to construct
the record of the realized Dt at a higher level, to update the
forecasting and decide on the control actions. To do so, coun-
ters at each MSC can be maintained for each entry of Dt(i, j)
and information can be sent to the control center to aggre-
gate the information and form Dt. In Scenario II a response
mechanism tied to the SmartGrid infrastructure is required to
broadcast the message Mt, thereby allowing the cars to acti-
vate their charge.

4. EXPERIMENT

We generated EV arrivals according to the Mt/GI/∞ model
we proposed and added that load to a normalized load curve
from the database [12]. The arrival rate λ(t) is a double-
periodic rate with 24-hour and one week periods, generated
using a (1× 1× 0)× (1× 1× 0)48× (1× 1× 0)336 ARIMA
process [13]. we assumed that the charging time S (see Sec-
tion 2.1) of each car will have a clipped Weibull distribution,
truncated at 8 hours. The traditional method used models the
load as an ARMA process [2]. To evaluate m(t) in (2.2)., we
forecasted the arrival rate of the cars using the same ARIMA
model parameters used in generating the λ(t) and then evalu-
ated the integral (2.2) numerically. Fig. 2 shows the average
normalized Mean Square Error of forecast of a set of load
curves using the smart and the classical predictions. One can
clearly observe that the classical technique prediction has an
MSE that grows up to be an order of magnitude worse than
the smart one, when the arrival rate climbs during night hours.

5. CONCLUSION

In this paper, we introduced a model to effectively model the
arrival of EVs. We then showed that a direct load manage-
ment of EVs does not necessarily need a direct link between
every single EV and the control center and we proposed a
communication structure to manage gathering and broadcast-
ing the required data.

Fig. 2. Comparison of Normalized MSE of Predictions
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