
 Open access Proceedings Article DOI:10.1145/2485732.2485741

Direct lookup and hash-based metadata placement for local file systems
— Source link

Paul Hermann Lensing, Toni Cortes, André Brinkmann

Institutions: Barcelona Supercomputing Center, Polytechnic University of Catalonia, University of Mainz

Published on: 30 Jun 2013 - ACM International Conference on Systems and Storage

Topics: Metadata repository, Metadata, Torrent file, File system and Computer file

Related papers:

 How to get more value from your file system directory cache

 TABLEFS: enhancing metadata efficiency in the local file system

 Research and Implementation of Accelerating Metadata Access in Distributed File System

 Management method for metadata in distributed file system

 A model, schema, and interface for metadata file systems

Share this paper:

View more about this paper here: https://typeset.io/papers/direct-lookup-and-hash-based-metadata-placement-for-local-
451if6ze11

https://typeset.io/
https://www.doi.org/10.1145/2485732.2485741
https://typeset.io/papers/direct-lookup-and-hash-based-metadata-placement-for-local-451if6ze11
https://typeset.io/authors/paul-hermann-lensing-2n7bdukrf4
https://typeset.io/authors/toni-cortes-3ypyfowmj8
https://typeset.io/authors/andre-brinkmann-1swjnnm8u2
https://typeset.io/institutions/barcelona-supercomputing-center-3b1j9qz9
https://typeset.io/institutions/polytechnic-university-of-catalonia-2ol7espr
https://typeset.io/institutions/university-of-mainz-26n51ku2
https://typeset.io/conferences/acm-international-conference-on-systems-and-storage-2ypdvqfa
https://typeset.io/topics/metadata-repository-2xt80uiv
https://typeset.io/topics/metadata-2qrcqoy8
https://typeset.io/topics/torrent-file-4qixx0eo
https://typeset.io/topics/file-system-3l1fwwnc
https://typeset.io/topics/computer-file-k80s2ex8
https://typeset.io/papers/how-to-get-more-value-from-your-file-system-directory-cache-3nilyvpuam
https://typeset.io/papers/tablefs-enhancing-metadata-efficiency-in-the-local-file-gr91jefykf
https://typeset.io/papers/research-and-implementation-of-accelerating-metadata-access-3cfvjf56lx
https://typeset.io/papers/management-method-for-metadata-in-distributed-file-system-1a07cfjli1
https://typeset.io/papers/a-model-schema-and-interface-for-metadata-file-systems-2suub9n5da
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/direct-lookup-and-hash-based-metadata-placement-for-local-451if6ze11
https://twitter.com/intent/tweet?text=Direct%20lookup%20and%20hash-based%20metadata%20placement%20for%20local%20file%20systems&url=https://typeset.io/papers/direct-lookup-and-hash-based-metadata-placement-for-local-451if6ze11
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/direct-lookup-and-hash-based-metadata-placement-for-local-451if6ze11
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/direct-lookup-and-hash-based-metadata-placement-for-local-451if6ze11
https://typeset.io/papers/direct-lookup-and-hash-based-metadata-placement-for-local-451if6ze11

Direct Lookup and Hash-Based Metadata Placement for
Local File Systems

Paul Hermann Lensing
Barcelona Supercomputing

Center
Carrer Jordi Girona 29

Barcelona, Spain
paul.lensing@bsc.es

Toni Cortes
Barcelona Supercomputing

Center
Carrer Jordi Girona 29

Universitat Politècnica de
Catalunya

Carrer Jordi Girona 31
Barcleona, Spain

toni.cortes@bsc.es

André Brinkmann
Johannes

Gutenberg-Universität Mainz
Saarstraße 21

Mainz, Germany
brinkman@uni-mainz.de

ABSTRACT
New challenges to file systems’ metadata performance are
imposed by the continuously growing number of files existing
in file systems. The total amount of metadata can become
too big to be cached, potentially leading to multiple storage
device accesses for a single metadata lookup operation. This
paper takes a look at the limitations of traditional file sys-
tem designs and discusses an alternative metadata handling
approach, using hash-based concepts already established for
metadata and data placement in distributed storage systems.
Furthermore, a POSIX compliant prototype implementation
based on these concepts is introduced and benchmarked. A
variety of file system metadata and data operations as well
as the influence of different storage technologies are taken
into account and performance is compared with traditional
file systems.

Categories and Subject Descriptors
D.4.3 [OPERATING SYSTEMS]: File Systems Manage-
ment

General Terms
Design, Performance, Measurement

Keywords
File system design, metadata placement, randomization,
hashing, direct lookup, metadata performance

1. INTRODUCTION
Storage capacity of hard drives has increased from 5 MB in
the 1980’s to today’s 4 TB drives: An increase of almost six
orders of magnitude. While file system studies [2, 10, 14, 19]
show that the average file size also has increased, the increase
is much less significant at roughly one order of magnitude.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SYSTOR ’13, June 30 - July 02 2013, Haifa, Israel
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2116-7/13/06 ...$15.00

The number of files and directories existing in file systems, as
well as the depth and complexity of the resulting hierarchical
namespace, have thus grown continuously over decades and
there is no indication of an end to this development.

While file systems have improved drastically in this time
frame, some conceptual design decisions have remained con-
stant. The component based lookup process used by today’s
file systems, for example, has remained conceptually un-
changed. In order to read a file, every directory in the path
has to be read as well. If the required metadata is not already
cached, this leads to I/O for every single path component.

The high locality of accesses in most single user scenarios
conceals this conceptual drawback in many cases, even for the
number of files encountered in today’s file systems. However,
when more randomized access patterns exist, as are typically
observed in multi-user scenarios such as web-servers [3, 6], the
amount of main memory required to cache all in-use metadata
can become infeasible and metadata operations can become
the major single influence on file system performance [16,
22].

It is our opinion that the traditional lookup approach needs
to be re-examined. An alternative approach to component
based lookup is the direct lookup approach. Instead of dis-
covering the location of a file’s metadata by accessing its
directory it relies on computing the location. This can be
achieved by defining a number of hash buckets on the storage
device and then hashing a file to one of these buckets based
on its path. During a lookup operation the hash bucket is
read in and the metadata of the file can be obtained from
it. Because this process does not rely on the information
normally gained through component traversal, no directories
have to be accessed during the lookup operation. This ad-
vantage grows with the size of the file system, as the number
of directories which would otherwise have to be accessed -
potentially leading to I/O - increases. On the other hand,
additional complexity is introduced to handle hash collisions,
to achieve a non-fragmented data layout, to provide POSIX
conform access permissions and to handle changes in the
file’s path due to a directory move operation.

In [13] we experimented with metadata placement and direct

lookup by implementing a limited prototype on top of Ext-2.
Due to the conceptual differences of the metadata handling
and the correspondingly required changes to file system ar-
chitecture it couldn’t provide much functionality outside of
cold-cache lookups (e.g. no caching / links / moves / access
restrictions). As results nevertheless looked quite promising
we felt a more in-depth look at the approach to be warranted.
In order to properly evaluate the performance implications of
the proposed approach, a new, POSIX compliant file system
was designed and implemented from scratch.

2. FILE SYSTEM DESIGN
As mentioned in the introduction, the main aim of the file
system is to achieve direct lookup functionality using a hash
based metadata placement strategy. In Linux, the different
file system functions are called from the Virtual File System,
which uses path components instead of the full path during
the lookup process. Therefore, some slight modifications to
the name resolution of the VFS Layer are necessary that
cause it to use full paths exclusively if the underlying file
system requests it (which poses no problem, as the current
directory is always known during name resolution).

In the following the ’Direct Lookup File System’ (DLFS
for short) is described. The source code is available at
www.scalus.eu/projects/dlfs.

2.1 On-Disk Layout
There are two fundamentally different ways the storage area
of the underlying block device is used by the DLFS file
system, which is reflected in the on-disk layout. Hash buckets
store metadata and (optionally) small file data while big file
spaces store the data of big files. This partitioning of the
storage space is not part of the core file system. Different
layout implementations can be plugged into the file system
similar to how different file system implementations can be
used by the Virtual File System. The functionalities required
of a layout implementation are:

• unambiguously assign file paths to buckets (and return
the bucket starting location)

• arbitrarily assign a big file space to an inode (and return
the big file space starting location)

In the scope of this paper, including the evaluation part, we
will use the most basic layout possible: a number of sequential
hash buckets of homogeneous size followed by a single big file
space as shown in Figure 1a. As the number of hash buckets
is static with this simple layout, it has to be configured at
file system creation time similar to traditional file systems
which use static metadata structures (e.g. ext-2/3/4).

Inodes in Hash Buckets. The file system needs to be able
to differentiate between multiple files that are hashed to the
same bucket. As the full path of a file can be arbitrarily
long, it is not practical to store it for each inode. Instead,
a second hash value, the identification hash, is used. The
possibility of hash collisions (more than one file with the same
identification hash assigned to the same bucket) is discussed
in Section 2.2.

While a file is assigned to a hash bucket, the actual inode
representing the file metadata is stored in a four kilobyte

(a) Simple Disk Layout

(b) Empty Hash Bucket

(c) In-Use Hash Bucket Example

Figure 1: On Disk Layout

sized inode block structure contained in the hash bucket.
Figure 1b shows the contents of an example hash bucket
containing a single inode block (the diagram shows a file
system block size of one kilobyte). If more files are assigned
to a hash bucket than can be stored in a single inode block,
additional inode blocks are allocated on demand (all inode
blocks allocated for a bucket build a linked list). This can
impact performance: If multiple inode blocks have to be
read in to find a specific inode, multiple drive accesses are
required.

Data in Hash Buckets. Similar to many existing file sys-
tems, direct addressing of data blocks for small files is sup-
ported by storing a configurable number of block numbers
directly in the inode. These data blocks can be allocated
in the hash bucket, which is an optimization aimed at hard
drives: After reading in the inode block where the file meta-
data is located, access to these data blocks will be covered
by drive-readahead in most cases, allowing rapid access to
data of small files. Figure 1c shows an in-use hash bucket: In
addition to a second inode block, multiple file system blocks
have been allocated for small file data of inodes assigned
to the bucket. Allocation inside a hash bucket is managed
using an allocation bitmap contained in the primary inode
block structure. Already allocated data blocks are migrated
to a big file space if the corresponding file grows beyond a
defined threshold value or when space is required to allocate
additional inode blocks. If no free space should exist in the
hash bucket, allocation that would normally occur inside the
bucket is moved to a big file space.

Data in Big File Spaces. If a file grows beyond a size that
can be directly addressed by its inode, standard indirect
addressing techniques are used. Data blocks of such files are
allocated in a big file space. A big file space will never contain
inodes, and only contain data blocks of small files if they
could not be allocated in the same bucket as the inode itself.
While not evaluated in this paper, intuitively this should
have a positive effect on data fragmentation inside the big
file space. A segment (also called extent) based addressing
scheme was chosen in order to minimize metadata required
for indirect addressing.

One interesting opportunity that follows from the different
allocation processes of data blocks for small and big files is
to introduce the possibility of different allocation granulari-
ties. It is possible to have fine grained allocation inside hash
buckets, reducing internal fragmentation for small files due
to a small file system block size, while - at the same time -
benefiting from the advantages of a coarse allocation granu-
larity (such as minimizing required file system metadata) for
data allocated in the big file space.

2.2 Hash Collisions
One problem of the approach is the possibility of a collision
of identification hashes for multiple files assigned to the
same bucket. If such a collision occurs, the file system
cannot differentiate between these file paths and will therefore
incorrectly assume that both paths correspond to the same
inode. Let us consider the probability for a hash collision for
a single bucket assuming a hash function returning uniformly
random values. This probability p is

p(m,n) = 1−

m−1
∏

k=1

(

1−
k

n

)

, (1)

where n is the number of possible hash values and m the
number of inodes in the bucket. The current file system
implementation uses 64 bit hash values for the identification
hash. Assigning 50 inodes (a single full inode block) to a
hash bucket thus leads to at least one hash collision with
a probability of 6.6 × 10−17 . It is obvious, however, that
considering a single, isolated hash bucket does not make
much sense; the whole file system has to be considered. The
accumulated probability of at least one hash collision for h
hash buckets can be computed as follows.

p(h,m, n) = 1−

(

m−1
∏

k=1

(

1−
k

n

)

)h

(2)

Allocating 15 million files on a file system containing three
hundred thousand buckets as an example leads to at least one
hash collision occurring with a probability of 1.99× 10−11.
If this probability is too high for a specific scenario, it is
straightforward to arbitrarily lower it by increasing the size
of the identification hash.

2.3 Metadata Caching
All on-disk metadata of the file system is either stored in
page sized structures (e.g., on-disk inodes in inode blocks) or
is directly page sized (e.g., allocation bitmaps in the big file
space). It is therefore very straightforward to directly use
the page cache for metadata caching. A metadata address
space is created during the mount of the file system for this
purpose, and all metadata I/O is performed using it. The
most obvious advantage of directly caching on-disk data
structures is the effect on metadata updates. Writing back a
dirty inode only causes a flush of the dirty inode block. If the
corresponding inode block were not cached, a read-modify-
write cycle would be required. There also is a positive effect
for all other metadata operations, because a single inode block
is shared by many inodes. When creating or accessing a file,
there is a chance that the inode block corresponding to the
file path is already in memory, thereby eliminating the need
to access the storage device. The number of inode blocks that
can be simultaneously cached is of course limited by available
main memory. In-memory inodes are managed as usual by

the Virtual File System; inode numbers are computed based
on the location of the on-disk inode (instead of being assigned
randomly) to prevent VFS cache inconsistencies.

2.4 Retaining Access Permissions
Traditional file systems implement POSIX compliant access
restrictions by evaluating the access permissions for every
component of a file path independently. Thus, by the time
the permissions of a file are checked, it is already verified
that the current user has the required access permissions
for every directory in the path. Due to the direct lookup
approach, however, another mechanism is required in order
to verify access permissions of previous path components
during the permission-check of the file inode itself.

For this purpose we introduce the concept of reachability sets.
A reachability set contains the set of all access restrictions
encountered in the path to an inode. There is a very limited
number of different restrictions which can be applied for a
single component of a path using POSIX security attributes:
A specific user and / or group ID can either be required
or excluded. Every inode inherits the reachability set of its
parent directory when it is created. Whenever a directory is
created or changes access permission the inherited reachabil-
ity set is extended by the additional restrictions if necessary.
Verifying that a user satisfies all entries of a reachability set
is equivalent to verifying the access permissions of each direc-
tory independently and can be executed during the normal
inode permission check.

Figure 2: Path Example

Figure 2 shows an example path including the POSIX direc-
tory execute permissions specifying the access permissions
of the path. The reachability sets for the path components
follow:

• Directory1: Only user A and group X have access to any
child of this directory. The corresponding reachability
set thus contains the restriction: user A ∨ group X

• Directory2: As everyone is allowed access, no new
restrictions apply. The reachability set can be directly
inherited.

• Directory3: Group Z is excluded from access. The new
reachability set for all children of Directory3 thus is:
(user A ∨ group X) ∧ ¬ group Z

A single reachability set can be shared by many inodes.
In the trivial case, only a single set exists in the whole

File System A File System B

files 10,770,676 6,419,483
directories 1,271,791 618,686
users-d 452 310
groups-d 115 84
reachability sets 638 391
reachability entries 821 489

Table 1: Analyzed File System Characteristics

file system. To take advantage of shared reachability sets,
multiple sets are stored in a reachability block structure
instead of storing them independently for every inode. Each
inode stores a reference to its reachability block and an index
to its reachability set.

A problem would occur if a very large number of reachability
sets exist in a file system: If the reachability block containing
an inode’s reachability set is not already cached, an access to
the storage device is necessary in order to check permissions.
In order to examine the number of reachability sets which can
be expected in a file system, two multi-user file systems at
the Universitat Politècnica de Catalunya have been analyzed.
The number of users and groups given in Table 1 refer to
unique users / groups encountered for directories in the two
file systems. As explained previously, file access rights are
irrelevant with respect to reachability sets. It is noticeable
that the average size of the reachability sets required to
express all existing access restrictions is very small: 1.29
entries per reachability set for file system A and 1.25 for file
system B. Additionally, the total number of reachability sets
is quite limited. All reachability sets of file system A could
be stored in three pages (the size of a single reachability
entry is 10 bytes), and the ones of file system B in two pages.
Caching such a small amount of data is no problem, even for
a theoretical file system containing two orders of magnitude
more reachability sets than the observed systems. It can
therefore safely be assumed, that the required reachability
check does not lead to an additional access to the storage
device.

2.5 Directories
Hash based metadata placement and direct lookup change
how metadata functionality is affected by directories. During
the lookup process, directories are not used and consequently
don’t affect performance: It does not matter if a file is
the only file of a directory or shares it with a billion other
files, or even where it is located in the directory tree. As
a consequence, however, the normally available knowledge
of the structure of the directory tree is lost and some of
the functionality normally done in the VFS layer has to be
taken over by the file system itself. When a file is created or
removed, it can no longer be guaranteed that its directory
is already cached. It is, however, required in order to add
or remove the file name to the directory (and ensure that
the directory actually exists), as well as inherit the correct
reachability set in the case of creation. Therefore, on-demand
lookup of the directory of a file has to be supported during
file creation or deletion.

In traditional file systems the directory of a to-be-created
file has to be checked to decide if the filename already exists.
This becomes unnecessary when the hash-based placement
approach is used, as name collisions are detected during the
allocation of the inode. This allows the creation process to be
optimized in DLFS: Simply appending the file name to the
directory data structure can be done efficiently no matter the
directory size, resulting in metadata creation independent
of directory size. While not feasible for a general purpose
use-case, it is possible to disable directories and just use
a flat namespace. This can be reasonable, for example, if
all file paths are computed and the file system is simply
used in the manner of a key-value store. All directory related

overhead for metadata creation and removal in the file system
is avoided in this case.

2.5.1 Special Cases
1. Links to directories All files contained in the directory

subtree of the target directory are accessible through
multiple paths. These paths naturally produce different
location and identification hashes.

2. Moving or renaming an existing directory A rename
or move operation changes the path of a directory as
well as the path of all files in the directory sub-tree. As
metadata placement depends on the path, this implies
the move of all corresponding on-disk inodes.

3. Changing the access permission of an existing directory
When access permissions of a directory change and this
change alters the reachability set for the directory’s
children (which does not have to be the case), the
childrens’ reachability sets naturally have to reflect this
change.

Due to the conceptual clash of these operations with the
hash-based placement method (cost propotional to directory
size), they need to be supported separately. We keep some
additional information for affected paths in a key-value store
to solve this problem:

If it is known at lookup-time that /symlink is an alternative
name for /a/b, the real path can be substituted before the
hashes are computed. With this substitution a call to /sym-
link/file would be exactly the same to the lookup operation
as a call to /a/b/file. The same kind of path-substitution can
be used to handle directory moves: Simply substituting the
new pathname with the original pathname before executing
the lookup operation will produce the correct behavior when
using the new name. To achieve correct behavior for the orig-
inal name (should not be valid any longer, also pathnames
need to be re-usable) the original name should map to some
non-existing file-system internal name. As an example the
operation mv a b would lead to the two mappings: b−→a
and a−→*a.

If an existing reachability set changes due to a permission
change of a directory, we store a timestamp for that path
(using the same notation as above: dir−→timestamp). If
some file in the directory subtree is accessed, for example
dir/a/b/c/file, the timestamp of when its reachability has
last been validated can be compared to the timestamp of
the most recent reachability change in its path to decide
if it is up-to-date or needs to be re-validated. If required,
the inode’s reachability set is validated against its parent’s
reachbility set (recursively as necessary), propagating the
reachability set changes down the path.

Costs & Implications. Additional memory and compute
resources are needed to cache and search the key-value store
used to keep the required additional information. The cur-
rent implementation utilizes an uthash1 hashtable as an

1http://uthash.sourceforge.net/

in-memory store for this purpose. The computational over-
head equals the costs of the hash function used internally
by uthash and is independent of the number of stored items.
However, when checking whether the hashtable contains in-
formation for a specific path, each possible sub-path has to
be checked separately (e.g. looking up path /a/b/file will
lead to checks of /a and /a/b to ensure that no additional
information for directories is required). Therefore, the com-
putational costs increase proportional to number of path
components. In absolute numbers, however, the cost of an
additional hash operation for each path component during a
lookup operation is insignificant and does not impact overall
file system performance (it only occurs when looking up a
new inode inside DLFS, there is no impact on cache lookups
inside the VFS). Required memory largely depends on the
length of the strings required to store the paths of the entries.
An average size of 150 bytes per entry is realistic, although
this number can fluctuate in both directions depending on
the actual file set and the predominating type of entries.

As the maximum practical size of the in-memory store is
limited, it is prudent to actually apply the move and chmod /
chown operations that have been executed using this store to
the file system at some point. After the operation has been
completely applied (e.g. reachability set of all children are
updated) the corresponding entry can be removed. In this
way, the total cost of the file system operations is not reduced
at all by the approach, but can be deferred arbitrarily. The
decision which operations should be applied thus depends on
the directory size (a moved directory containing a billion files
in its subtree probably should never lead to metadata mi-
gration), while the decision about when it should be applied
depends on system load.

2.6 Limitations of the Implementation

POSIX Conformity. DLFS passes the POSIX test suite2

with one notable exception: Since inode numbers are depen-
dent on the location of the inode (see Section 2.3), and the
location - in turn - depends on the metadata placement algo-
rithm and thus the file path, the inode number changes when
a file is moved or renamed. While the test suite complains
about the change of inode number, the POSIX standard does
not explicitly forbid it.

Reliability. The established method to provide reliability
in local file systems is journaling combined with offline repair
(fsck). We feel that this technique is adequately known and
has been shown to solve file system reliability in the past
and have omitted an implementation for DLFS. While some
metadata operations (e.g. renaming directories) can be a
much more time consuming in DLFS compared to traditional
file systems, they remain completely deterministic and can
therefore be journaled like any other metadata operation.

3. EVALUATION

Benchmarking Methodology: Metadata. Frequently used
metadata benchmarks such as metarates3 oversimplify ac-

2http://www.tuxera.com/community/posix-test-suite/
3http://www.cisl.ucar.edu/css/software/metarates/

cesses by constraining them to a few (or even only one)
directory and creating all files used for the benchmark during
the actual benchmark run. In contrast, our aim is to analyze
more complicated access patterns on pre-existing file sets.
The tool Impressions [1] can be used to create file sets with
realistic properties (e.g., size of files and their distribution
in the directory tree, size of directories at various depths in
the tree). We take advantage of this opportunity and modify
metarates to handle pre-existing file sets.

Instead of computing file paths during runtime, access lists
are created independently before starting the benchmark.
This decouples the knowledge of the file set from the bench-
mark; as the modified metarates does not have to store any
representation of the directory tree or a complete file list,
arbitrarily large file sets can be used even on low memory
machines. Other advantages are the possibility to directly
use trace data to specify accesses and that the complexity of
computing artificial access patterns in no way impacts the
performance of the benchmark itself

We call our modification listrates; along with a simple list-
generator, its source code is available at www.scalus.eu/

projects/listrates. The access patterns used for list gen-
eration are based on the Zipf distribution [27], commonly
observed in multi user scenarios such as web servers [3, 6],
as well as the uniform random distribution to show how file
systems handle the case of minimal metadata locality.

Benchmarking Methodology: Data. Measurements re-
garding data performance of big files are taken using the
established IOR4 benchmark tool. We separately consider
the performance of very small files in order to analyze the
various optimizations of the individual file systems for this
case.

Hardware, Software and Configuration Specifics. One
of the most critical hardware components for file system
benchmarking is the storage device. The relative performance
characteristics exhibited by hard drives (HDD) and solid state
drives (SSD) are fundamentally different. While sequential
access outperforms random access on a HDD by nearly two
orders of magnitude, this factor shrinks below one order
of magnitude for SSDs. This is highly important when
comparing the performance of file systems, as a reduction
of the total number of drive accesses at the cost of higher
randomization can lead to completely different results. We
show benchmarks for a consumer-level SSD (OCZ VERTEX
2) and HDD (WDC WD5002ABYS). A partition of the size
of the SSD (120 GB) is used on the HDD; both to limit the
time required of the various storage benchmarks as well as to
allow the same benchmarks to be performed on both drives.
The test machine has two Intel Xeon E5520 CPUs.

On the software side, the Linux kernel 2.6.35.9 is employed,
modified as mentioned at the start of Chapter 2 to support
direct lookup functionality. Further version numbers are:
IOR version 2.10.3 and Impressions version 1.0. The standard
input parameters for file set creation with Impressions were

4http://sourceforge.net/projects/ior-sio/

(a) SSD Cold Cache

(b) HDD Cold Cache

Figure 3: Stat Rates, Cold Cache

kept with the exception of the total file set size (set to 100
GB), and a slight skew towards smaller files to increase the
total number of files (µ input parameter to the lognormal size
distribution decreased by two and pareto tail disabled). The
resulting file set contains 2,555,453 files in 253,089 directories.

Ext-4 and XFS are chosen as comparison basis, as these
are widely used state of the art file systems. In order to
keep performance comparisons as fair as possible with the
non-journaling DLFS, journaling is disabled for Ext-4, and
the delayed logging feature is enabled for XFS. No other
file system configuration parameters were changed from the
standard values. All file systems were mounted with the
noatime and nodiratime parameters.

While the DLFS layout is kept extremely simple as introduced
in Chapter 2, its configuration can influence performance: If
many more hash buckets exist than necessary, it becomes less
probable to find a required inode block in the cache. If not
enough hash buckets exist for the existing file set, however,
additional inode blocks have to be allocated dynamically,
which can lead to multiple device accesses during a lookup
operation. Considering the size of the benchmark partitions,
a bucket number of 100,000 is reasonable given an initial
space of 50 inodes in each bucket. In addition, we perform
benchmarks with 10,000 buckets and 1 million buckets to
show the impact of unsuitable layout configurations on file
system behavior.

In order to limit the total number of benchmarks to a number
that can be discussed in this paper, all benchmarks are
performed with a constant number of four threads. All
displayed results are mean values of 10 benchmark runs and
show 95% confidence intervals.

3.1 Metadata Performance
Due to the limited size of both the available storage space
and the file set used for the benchmarks, it is important
to use equally limited cache settings to obtain meaningful

(a) SSD Cold Cache

(b) HDD Cold Cache

Figure 4: Stat Rates, Hot Cache

results. We show results for 512 MB and 1024 MB main mem-
ory, which corresponds to a primary memory to secondary
memory ratio of 1/240 and 1/120. For a terrabyte drive
these ratios would correspond to four and eight gigabytes of
main memory respectively (note, however, that cache size is
not equal to main memory size, as the Linux kernel requires
some space for other purposes).

All results were obtained by performing 20,000 accesses using
the given access distribution. In the hot cache scenarios,
the cache was warmed up prior to the benchmark run by
metadata operations of the respective type until no further
performance improvement could be observed.

3.1.1 Metadata Access
Measured performance is displayed in Figure 3 (cold cache)
and Figure 4 (hot cache; note that the broken diagram uses
logarithmic scale for the top half in order to display the
widely differing results). The main factors influencing file
system performance are a combination of cache size, storage
technology, and access pattern. In the following, we discuss
the influence of these factors independently.

Layout Initial IB Additional IB Total IB
10 k 10,000 68,188 78,188

100 k 100,000 3,412 103,412
1 M 1,000,000 0 1,000,000

Table 2: Number of Inode Blocks after FileSystem creation
and additional dynamic Inode Blocks created during alloca-
tion.

(a) SSD Cold Cache

(b) HDD Cold Cache

Figure 5: Utime Rates, Cold Cache

Effect of Cache Size. Logically, an increase of the cache
size beyond the total size of encountered metadata cannot
influence file system performance. Considering the cold cache
scenarios (Figure 3), the total amount of encountered meta-
data for 20,000 accesses is quite limited. In fact, both XFS
and DLFS already achieve maximum performance with 512
MB RAM, indicating that they can cache all encountered
metadata. In contrast, Ext-4 shows higher cache require-
ments. It achieves almost twice the performance in the
1024 MB RAM scenario. To understand the performance
difference of the various DLFS configurations, consider the
number of existing inode blocks summarized in Table 2. The
maximum caching requirements are proportional to the total
number of existing inode blocks. As not all inodes can be
stored in the primary inode block of a hash bucket for the
10k configuration, it can take multiple accesses to read in
the correct inode block. This leads to the 10k configura-
tion performing worse than the other configurations. The
disadvantage of the 1M configuration compared to the 100k
configuration is due to caching: With both configurations a
one-access lookup can be expected, but since the scenario
reads 20,000 inodes, the cache is not completely empty after
the first access. The probability that the inode of an ac-
cessed file is located in the same inode block as the inode of
a previously accessed file is obviously higher the fewer inode
blocks exist in the file system.

In contrast to cold cache performance, hot cache performance
(Figure 4), is highly influenced by cache size across all file
systems. Ext-4 and XFS are limited in cache usage by the
traditional lookup approach, as it requires caching directory
data in addition to metadata. Nevertheless, the absolute
performance of these file systems triples when increasing the
main memory from 512 to 1024 MB RAM. The performance
gain for DLFS is far more drastic, however, especially for the
10k and 100k DLFS configurations. Due to not having to
cache directory data and the relatively low number of inode
blocks a large percentage of overall metadata can be cached,
leading to many pure in-memory lookups.

(a) SSD Hot Cache

(b) HDD Hot Cache

Figure 6: Utime Rates, Hot Cache

Effect of Storage Technology. The relative performance
advantage of DLFS in the cold cache scenario (Figure 3) is
more than twice as big for the SSD compared to the HDD.
Considering the high randomization of drive accesses due to
DLFS file system design and the different random vs. sequen-
tial drive characteristics, this is expected. Because of the
one-access nature of direct lookup operations, there is a clear
worst case lookup performance for the hash-based metadata
placement approach that is based on hardware characteristics
and not - as in traditional file systems - mainly on file set
characteristics. The same impact of storage technology can
be observed for XFS. XFS performance can compete with
Ext-4 on the SSD, while it falls back to almost half Ext-4
performance on the HDD.

In the hot cache scenario (Figure 4), in contrast, the relative
advantage of DLFS is actually greater on the HDD for the
10k and 100k layout configurations. Not having to access
the disk at all for many lookups outweighs the performance
degradation of a higher randomized access pattern for the
remaining accesses. This is not true for the 1M configuration,
as only a smaller percentage of inode blocks can be cached
in this scenario.

Effect of Access Pattern. Uniform random accesses are
slower than Zipf distributed accesses for all file systems. As
multiple accesses to the same file will not result in multiple
disk accesses, this behavior is intuitive. The relative perfor-
mance difference is similar across file systems and storage
technologies.

(a) SSD Cold Cache

(b) HDD Cold Cache

Figure 7: Create Rates, Cold Cache

3.1.2 Metadata Update
The observed performance is displayed in Figure 5 (cold
cache) and Figure 6 (hot cache). Overall, the results are
quite similar to metadata accesses discussed in Section 3.1.1,
showing that metadata lookup and not metadata writeback
dominates performance. For the lookup part, the same effects
for cache sizes, storage technologies and access patterns apply
as discussed previously.

Cold cache results are almost identical to metadata access,
with absolute performance numbers decreasing only slightly.
The updated metadata is, for the biggest part, simply not
yet written back to the secondary storage device at the end
of the 20,000 metadata updates. The hot cache results,
in contrast, show the performance impact of writing back
the updated metadata. The expected loss of performance
compared to metadata accesses can be observed for all file
systems. Generally speaking, the update performance in
the hot cache benchmarks lies between 60% and 80% of the
metadata access performance.

3.1.3 Metadata Creation
For metadata creation the access distributions have a slightly
different meaning. Instead of choosing the files themselves
according to the distribution, the directories the files are
created in are chosen (after all it makes no sense to create
the same file multiple times).

It should be noted that if directories are disabled as described
in Section 2.5, metadata creation becomes equivalent to the
metadata update operation from a performance point of
view. If, however, full directory support is required DLFS
loses some of its advantages when creating files instead of
only accessing them. The directories the files are created in
have to be read in, resulting in additional lookups as well
as reducing the cache size available for metadata. As these
steps are part of the traditional lookup process, there is no
additional effort involved for Ext-4 and XFS. Figure 7 and
Figure 8 show the measured results for metadata creation,

(a) SSD Hot Cache

(b) HDD Hot Cache

Figure 8: Create Rates, Hot Cache

which are, as anticipated for the above reasons, less clear-cut
than previous results.

In the cold cache scenario (Figure 7), the relative performance
of the different DLFS configurations remains similar to pre-
vious observations. Differently from previous benchmarks,
however, it is not the clear winner in absolute performance
and Ext-4 can take the performance lead on the HDD.

In the hot cache scenario (Figure 8), DLFS performance char-
acteristics differ from previous observations. As directory
metadata and data now have to be cached, the previously
achieved high percentage of in-memory inode blocks is not
reached. The drastic performance gain observed in previ-
ous hot cache benchmarks is not repeated, although DLFS
performance still profits from the available cache compared
to Ext-4 or XFS. Another difference to previous results is
that the 10k DLFS configuration performs worse in the 512
MB RAM scenarios than the 100k configuration. Apparently,
the cache is limited by read in directory data so much that,
contrary to all previous metadata benchmarks, the lesser
overall number of inode blocks of the 10k configuration does
not outweigh the possibility of multiple drive accesses in case
the correct inode block was not found in the cache.

3.2 Data Performance
Differently from the metadata benchmarks, the number of
buckets of the DLFS file system layout cannot influence data
performance. For big files, the storage of the allocation meta-
data as well as the allocation process itself takes place solely
in the big file space as discussed in Section 2.1. In our small
file benchmarks, we measure the completion time of a read
request sent directly after a small file is opened successfully,
in order to obtain small file performance independent of the
lookup performance. As just a single hash bucket will be
accessed for each measurement, the total number of buckets
in the file system is irrelevant.

(a) SSD

(b) HDD

Figure 9: Big File IOR Performance

3.2.1 Big File Performance
In order to obtain meaningful results that do not solely rely on
the cache the total file size is set to twice the main memory
size of 512 MB. The I/O transfer size is set to 4 KB for
sequential and random accesses, as large transfer sizes do not
adequately measure random access performance. All other
parameters were left at the initial IOR values (all threads
share a single file). The results of the various benchmarks
are summarized in Figure 9. It is important to note that
we differentiate for read accesses between a sequentially or
randomly allocated file, as XFS in particular shows highly
different performance depending on the allocation type.

Write Performance. Ext-4 and DLFS performance is straight-
forward. Random writes performed by IOR translate directly
to random write requests issued to the physical device; per-
formance therefore equals random write bandwidth. XFS
on the other hand employs a more complex block allocation
strategy, where data blocks are only allocated when the data
is flushed to the storage device. If the allocated file fits
completely into the cache, this enables XFS to perform com-
pletely sequential allocation even if the file data is written
randomly. In this benchmark, however, the file data does
not fit into the cache. As a result, XFS assumes that the
missing data does not exist and ends up allocating the data
in small data extends (fragmented with respect to relative
position inside the file). However, because the logical blocks
mapped to this fragmented file data are sequential, writes on
the device are much faster compared to the other file systems
due to asynchronous random / sequential write bandwidth
of the storage devices.

Read Performance. Ext-4 and DLFS read access to the
randomly allocated file is almost equivalent to the sequen-
tially allocated case. XFS on the other hand suffers from
its allocation strategy. As the file data is stored in a very
fragmented way, sequential access is limited by the random
read performance of the underlying storage device. Random

(a) SSD

(b) HDD

Figure 10: Small File Results (lower bars are better)

access is also slower compared to the other file systems. Due
to the large number of data extents, the B-Tree used to store
extents is equally extensive. This leads to a large number of
accesses to the storage device in order to read in the relevant
metadata. Once again, it should be noted that XFS only
shows this behavior for randomly allocated files bigger than
the cache size.

3.2.2 Small File Performance
As each file will only be accessed once in this benchmark and
cached metadata is not important for performance (measure-
ments start after the inode is read in successfully), cache size
is irrelevant for the results. Multiple scenarios are analyzed
in order to measure the impact of data placement and reada-
head strategies of the file systems. 1,000 4 kilobyte files are
used in all scenarios, which are accessed sequentially in the
order they were allocated. Additional 4 megabyte files were
used in some scenarios to show non-ideal cases:

1. One directory per small file, no big files are allocated.

2. One directory per small file, one big file is allocated
after each small file.

3. One directory containing all files, no big files are allo-
cated.

4. One directory containing all files. Small and big files
are allocated alternately.

The results displayed in Figure 10 show a very different
picture for the two tested storage media. On the SSD results
are fairly homogeneous across file systems and scenarios. XFS
shows the highest variance, with scenarios not containing
big files performing ∼ 60% faster compared to scenarios that
contain big files. On the HDD, in contrast, results differ by
a factor of more than 40. This difference is explained by the
performance characteristics of the storage media: While the

random access performance on the HDD depends directly on
the distance of the accessed data to the current drive-head
position (as well as hits in the drive readahead cache having a
huge influence), the SSD performance is mostly independent
from the data position. Thus, the effect of different allocation
strategies becomes very obvious on the HDD.

Ext-4 handles scenarios 3 and 4 well, where files are allocated
in the same directory. Since files are accessed sequentially,
and the data of files inside a directory is stored (if possible)
sequentially, it can take advantage of readahead in these
cases. However, if accessed files are contained in different
directories, the partitioning of metadata and data, as well as
the distribution of directories across block groups, lead to a
performance problem.

XFS performs well as long as only small files are contained in
the scenario, as this data can be stored near - or even inside
of - the XFS metadata structures. The introduction of big
files, however, degrades the performance significantly even
though they are never accessed.

DLFS shows the most constant performance of all file systems.
While it is outperformed by both XFS and Ext-4 in their
respective best-cases, the extreme performance degradation
observed for the other file systems outside their best case
scenarios is never encountered. As explained in Section 2.1,
DLFS can take advantage of hardware readaheads in many
cases to speed up file access.

4. RELATED WORK
Related work on metadata placement is primarily done in the
context of metadata distribution across multiple metadata
servers for parallel file systems. Although this is a higher-
level approach, conceptually there are many similarities and
a hash bucket of DLFS can be thought of as an extremely
small metadata server for many comparison purposes. The
Lazy Hybrid approach [5], which uses a hashing based meta-
data placement scheme and supports lookup independent of
the directory path, shows the highest correlation with our
work. Other work considering direct lookup approaches rely
on other mechanisms for metadata lookup, such as bloom
filters [26, 12] or additional directory information available in
a distributed database [23]. All these approaches use a dual-
entry access control list (ACL) structure to resolve access
permissions, where the first ACL stores normal file permis-
sions and the second ACL represents the path permissions
by storing the intersection of all file permission ACLs of the
path. Conceptually, if not from an implementation point of
view, this is quite similar to reachability sets. The use of
hash functions in file systems is researched more extensively
for data distribution purposes in big storage networks [7, 18,
24].

Apart from our own work [13] mentioned in the introduction,
no further work on direct lookup and randomized metadata
placement in the context of local file systems is known to
the authors. There are, however, approaches to optimize the
performance of the traditional component-based lookup: The
embedded inode technique, for example, stores inodes inside
the directory data [9] and can thus aggregate two separate
steps of the lookup process into one disk access.

There exist a number of optimizations concerning access to
the data of small files. Conceptually, almost all approaches
follow the same idea: Storing the file data as close as possible
to the metadata. In the best case scenario, file data can
be stored directly inside the inodes [25], using the space
normally reserved for block pointers. Another approach is to
cluster the data of multiple small (sub-blocksize) files into
a single file system block [9]. Assuming that the clustered
files are often accessed together, this can lead high cache-hit
rates.

A completely reverse view of metadata performance is taken
by log-structured file systems [17, 15]. While metadata access
is heavily penalized due to non-deterministic inode placement,
the update-out-of-place technique enables metadata creation
limited only by the sequential bandwidth of the storage device.
Another approach to avoid file system related metadata
problems is to drastically reduce the number of existing
files by storing many (logical) files in one big file system
file and move required metadata functionality from the file
system into the file itself. Representatives of this approach
are Facebook’s photo store Haystack [4] and the Hierachical
Data Format5.Finally, there are suggestions for both the
distributed [11] and the local case [21] to completely abandon
the hierarchical namespace concept in favor of a search based,
semantic one.

5. SUMMARY
We introduced a kernel level file system implementing hash-
based metadata placement and the direct lookup approach,
as well as an extension to the metarates metadata benchmark
that can be used with pre-existing file-sets; both of which
are available open source. Some unusual file-system internal
functionality is required to provide POSIX conform hierarchi-
cal access permissions in combination with the direct lookup
approach (Section 2.4) as well as providing the possibility
of multiple (links) or changing (moves) file paths (Section
2.5.1). The evaluation has shown that the direct lookup
approach has a profound impact on file system metadata
performance. The different caching requirements (no need to
cache directory metadata or data) lead to pure in-memory
lookups for DLFS in many hot cache scenarios, while cold
cache scenarios showcase the fileset independent one-access
lookup property. Even with a highly disadvantageous file
system layout, metadata access in the examined scenarios is
consistently faster than in compared systems. As has to be
expected, data performance is not significantly affected by
the different approaches to metadata.

6. ACKNOWLEDGMENTS
This work was partially supported by the Spanish Ministry
of Science and Technology under the TIN2012-34557 grant,
the Catalan Government under the 2009-SGR-980 grant, and
the EU Marie Curie Initial Training Network SCALUS under
grant agreement no. 238808.

7. REFERENCES
[1] N. Agrawal, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. Generating realistic impressions for
file-system benchmarking. ACM Transactions on
Storage, 2009.

5http://www.hdfgroup.org/

[2] N. Agrawal, W. Bolosky, J. Douceur, and J. Lorch. A
five-year study of file-system metadata. ACM
Transactions on Storage, 2007.

[3] V. Almeida, A. Bestavros, M. Crovella, and
A. deOliveira. Characterizing reference locality in the
www. Technical report, Boston University, Boston, MA,
USA, 1996.

[4] D. Beaver, S. Kumar, H. Li, J. Sobel, and P. Vajgel.
Finding a needle in haystack: facebook’s photo storage.
Symposium on Operating Systems Design and
Implementation, 2010.

[5] S. A. Brandt, E. L. Miller, D. D. E. Long, and L. Xue.
Efficient metadata management in large distributed
storage systems. IEEE/NASA Goddard Conference on
Mass Storage Systems and Technologies, 2003.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web caching and zipf-like distributions: Evidence and
implications. IEEE International Conference on
Computer Communications, 1999.

[7] A. Brinkmann, S. Effert, F. Meyer auf der Heide, and
C. Scheideler. Dynamic and redundant data placement.
IEEE International Conference on Distributed
Computing Systems, 2007.

[8] A. Brinkmann, K. Salzwedel, and C. Scheideler.
Compact, adaptive placement schemes for non-uniform
capacities. ACM Symposium on Parallel Algorithms
and Architectures, 2002.

[9] G. Ganger and M. F. Kaashoek. Embedded inodes and
explicit grouping: Exploiting disk bandwidth for small
files. USENIX Annual Technical Conference, 1997.

[10] T. J. Gibson, E. L. Miller, and D. D. E. Long.
Long-term file system activity and inter-reference
periods. International Computer Measurement Group
Conference, 1998.

[11] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian.
Smartstore: A new metadata organization paradigm
with semantic-awareness for nextgeneration file systems.
High Performance Computing Networking, Storage and
Analysis, 2009.

[12] Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian.
Scalable and adaptive metadata management in ultra
large-scale file systems. IEEE International Conference
on Distributed Computing Systems, 2008.

[13] P. Lensing, D. Meister, and A. Brinkmann. hashfs:
Applying hashing to optimize file systems for small file
reads. International Workshop on Storage Network
Architecture and Parallel I/Os, 2010.

[14] D. Meyer and W. Bolosky. A study of practical
deduplication. USENIX Conference on File and Storage
Technologies, 2011.

[15] J. Piernas, T. Cortes, and J. Garćıa. Dualfs: a new
journaling file system without meta-data duplication.
International Conference on Supercomputing, 2002.

[16] D. S. Roselli, J. R. Lorch, and T. E. Anderson. A
comparison of file system workloads. USENIX Annual
Technical Conference, General Track, 2000.

[17] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Trans. Comput. Syst., 1992.

[18] J. Santos and R. Muntz. Performance analysis of the
rio multimedia storage system with heterogeneous disk
configurations. ACM International Conference on
Multimedia, 1998.

[19] M. Satyanarayanan. A study of file sizes and functional
lifetimes. ACM Symposium on Operating Systems
Principles, 1981.

[20] C. Schindelhauer and G. Schomaker. Weighted
distributed hash tables. ACM Symposium on Parallel
Algorithms and Architectures, 2005.

[21] M. Seltzer and N. Murphy. Hierarchical file systems are
dead. Hot Topics in Operating Systems Workshop,
2009.

[22] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller,
D. D. E. Long, and T. T. McLarty. File system
workload analysis for large scientific computing
applications. IEEE Conference on Mass Storage
Systems and Technologies, 2004.

[23] J. Wang, D. Feng, F. Wang, and C. Lu. Mhs: A
distributed metadata management strategy. Journal of
Systems and Software, 2009.

[24] S. A. Weil, A. W. Leung, S. A. Brandt, and
C. Maltzahn. Rados: A fast, scalable, and reliable
storage service for petabyte-scale storage clusters.
International Petascale Data Storage Workshop, 2007.

[25] Z. Zhang and K. Ghose. hfs: a hybrid file system
prototype for improving small file and metadata
performance. ACM SIGOPS/EuroSys European
Conference on Computer Systems, 2007.

[26] Y. Zhu, H. Jiang, J. Wang, and F. Xian. Hba:
Distributed metadata management for large
cluster-based storage systems. IEEE Transactions on
Parallel and Distributed Systems, 2008.

[27] G. K. Zipf. Relative frequency as a determinant of
phonetic change. Harvard Studies in Classical Philology
15, 1929.

