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Measurements of magnetic noise emanating from ferromagnets due to domain motion were

first carried out nearly 100 years ago [1] and have underpinned much science and technol-

ogy [2, 3]. Antiferromagnets, which carry no net external magnetic dipole moment, yet have

a periodic arrangement of the electron spins extending overmacroscopic distances, should

also display magnetic noise, but this must be sampled at spatial wavelengths of order sev-

eral interatomic spacings, rather than the macroscopic scales characteristic of ferromag-

nets. Here we present the first direct measurement of the fluctuations in the nanometre-scale

spin- (charge-) density wave superstructure associated with antiferromagnetism in elemental

Chromium. The technique used is X-ray Photon Correlation Spectroscopy, where coherent

x-ray diffraction produces a speckle pattern that serves as a “fingerprint” of a particular

magnetic domain configuration. The temporal evolution of the patterns corresponds to do-
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main walls advancing and retreating over micron distances.While the domain wall motion

is thermally activated at temperatures above 100K, it is notso at lower temperatures, and

indeed has a rate which saturates at a finite value – consistent with quantum fluctuations - on

cooling below 40K. Our work is important because it providesan important new measure-

ment tool for antiferromagnetic domain engineering as wellas revealing a fundamental new

fact about spin dynamics in the simplest antiferromagnet.

Because of scientific and technical interest in ferromagnetic domains, there has been large,

long-standing activity on magnetic noise in ferromagnets as a direct witness of domain motion.

As antiferromagnets begin to find applications themselves,for example as pinning layers in spin-

tronics, there is a need for measurements of the noise associated with moving antiferromagnetic

domains. Antiferromagnetic domain dynamics are also important because they are implicated

in basic problems in condensed matter physics, such as high temperature superconductivity and

‘heavy’ Fermions. Neutrons are an excellent non-local probe of antiferromagnetism and its dy-

namics [4]. However, a directlocal probe of mesoscopic antiferromagnetic domain dynamics has

not been hitherto available because the magnetic dipole moments for antiferromagnets vanish on

the scale of a nanometer, rendering the domain fluctuations responsible for noise essentially in-

visible to the direct magnetometer probes (e.g. superconducting interference devices) which have

been so successful for ferromagnets [5].

Chromium is a body-centred cubic (bcc) metal with an antiferromagnetic state nearly de-

scribed by the simple rule that the electrons surrounding each Cr atom have magnetization oppo-
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site to those on the nearest neighbour Cr atoms. What actually occurs is sinusoidal modulation

of this elementary magnetic structure, called a spin density wave (SDW) with wavelengthλ=6-8

nm, along one of the three equivalent cubic (100) directions. A single crystal chromium sample

cooled below the Néel temperature TN=311 K spontaneously breaks (see Fig. 1) into three types of

magnetic domains characterized by the three different choices for the SDW propagation direction

[6]. The SDW is accompanied by a charge density wave (CDW), a combination of both itinerant

and ionic charge modulation.

X-ray microdiffraction reveals that the typical size of theSDW domains in bulk Cr samples

is on the order of 1-30µm [7]. Fluctuations of domain walls at fixed temperature havebeen

studied via random electrical telegraph noise in thin Cr films for temperatures above 140 K [8].

Even though the measurements were done for mesoscopic samples, the effects on the electrical

resistance R of the switching dynamics were small (δR/R∼10−5) and the interpretation difficult

because R is an indirect probe of the underlying SDW and CDW order.

We report the first direct observations of domain wall fluctuations in bulk Cr using X-ray

Photon Correlation Spectroscopy (XPCS), which overcomes the limitations of the classic bulk and

laser probes in that it accesses the short wavelength structure associated with the SDW directly.

A coherent beam illuminating a partially ordered system (inour case consisting of SDW/CDW

domains) produces an interference pattern, also known asspeckle [9, 10]. Due to the high sensi-

tivity of speckle to minute changes in domain wall configuration, the time variation of the speckle

pattern directly reveals the dynamics of domain structure.Fig. 2a is a schematic of the experi-
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mental configuration, and Figure 2b shows a speckle pattern of the (200) Bragg peak for the bcc

Cr lattice. Interference fringes arising from partial coherence of the x-ray beam are clearly seen in

the image as well as in the line scans shown in Fig. 2c. Incoherent diffraction would produce the

Gaussian-like profile represented by the black line in Fig. 2c. The lattice Bragg speckle pattern is

static over 5 hrs indicating the high level of stability for our instrumentation and the sample.

We turn next to the speckle pattern for the (2-2δ, 0, 0) CDW superlattice reflection, displayed

for 17 K at a variety of times in Fig. 3b. The patterns in subsequent frames, separated by 1,000

s, grow increasingly dissimilar for longer time lags – patterns within frames collected more than

3,000 s apart appear completely uncorrelated. Thus, the CDWspeckle evolves with a characteristic

time of a few thousand seconds or less, much shorter than the>20,000 s relaxation time for the

bcc Bragg speckle of Fig. 2c. This indicates that the changesin the CDW speckle are indeed

due to changes in the magnetic domain configuration, rather than some experimental artefact. For

example, drift of the x-ray beam or the cryostat, motion of crystalline defects within the Cr sample

or any other effect not related to magnetic domain dynamics would inevitably cause changes in

both the CDW and (200) Bragg speckle.

The spatial sensitivity of the speckle to domain motion is described by two distinct lengths:

the first is 1/∆Q∼100Å, where∆Q=10−2Å−1 is the total size of visible speckle pattern in recip-

rocal space (See Figs. 2b, 2c and 3b) and represents the minimum size of domains with a visible

impact on the speckle pattern. The second is the domain wall displacement necessary to produce

a speckle pattern that is highly dissimilar (or uncorrelated) to the original one. A combination of
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x-ray microdiffraction images of domain configurations andspeckle simulations indicate that this

second length is 1µm (see Methods and Supplementary Information).

Beyond revealing that domain walls are moving by distances of order 1µm, the data provide

several other important quantities. For example, we can evaluate the autocorrelation function g2(t):

g2(t) =
〈I(τ)I(τ + t)〉τ

〈I(τ)〉2τ
= 1 + A |F (Q, t)|2 (1)

where I(τ ) and I(τ+t) are the intensities in a given pixel for frames taken at timesτ andτ+t respec-

tively, F(Q,t) is the intermediate scattering function,A describes the beam coherence [9,10], and

the averaging is performed over timesτ and pixels. Figure 3a shows|F(Q,t)|2for several tempera-

tures calculated from the CDW speckle. For large time delaysthe speckle patterns become uncor-

related, resulting in g2(t)=1, corresponding to|F(Q,t)|2 =0. The dynamics are strongly temperature-

dependent: upon cooling, the domain fluctuation times increases by nearly two decades. Surpris-

ingly, below 40 K the times remain finite, rather than diverging as expected for thermally driven

fluctuations.

Two distinct fluctuation timescales are visible in most datasets presented in Fig. 3a. The

measured|F(Q,t)| was therefore modelled by a double exponential form:

|F (Q, t)| = a exp[−(t/τF )
β] + (1− a) exp[−(t/τS)

β] (2)

A small value of a=0.03-0.10 indicates that the time dependence of|F(Q,t)| is mainly due to slow

fluctuations. The value of the stretching exponentβ was found to be greater than 1, manifested

by the “compressed” shape of the|F(Q,t)|. Compressed exponential relaxation has been observed
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for a variety of soft matter systems undergoing “jamming” transitions which results in arrested,

solid-like collective dynamics [11, 12, 13] withβ >1, as instead of liquid-like fluctuations with

β ≤1. Extended to our system, this points to elastically coupled dynamics between blocks of spins,

similar to elastic collective depinning dynamics observedin CDW conductors [14], an observation

also consistent with the weakly pinned nature of SDW/CDW domains [15-17]. Furthermore, the

fit value ofβ at T<100K is approximately 1.5 (Fig. 4b), a universal value for dynamics of soft

condensed matter systems in a jammed state [18].

Fig. 4 shows the T-dependence of the slow relaxation timesτS obtained from fits to autocor-

relation functions in Fig. 3a. The 20% uncertainty in fittingparametersτSarises primarily from

counting statistics of the autocorrelation function g2(t) (see Supplementary Information). Standard

thermal activation (τ−1

t = fo exp(−∆E/kBT ), blue line) with a single attempt frequencyfo and

activation barrier∆E/kB = 240 ± 50K accounts for the data at high T. The thermal picture fails

spectacularly at low temperature for T<40 K, and a switching mechanism which is temperature-

independent in this range is required. The simplest possibility is that switching between low-energy

domain wall configurations occurs via quantum tunneling, rather than classical thermal activation.

A fit to the data that combines a thermally activated model anda quantum tunneling contribution

represented by a temperature-independent residence timeτQT , τ−1

S = τ−1

QT + τ−1

R exp(−∆E/kBT )

is shown by the red solid line in Fig. 4 forτQT=5,000 s andτR =15 s (confidence limits obtained

from the fits areτQT=5,000±1,000 s and tR=4-60 s). The short-term fluctuation rateτ−1

F observed

in the autocorrelation data in Fig. 3a has the same magnitudeas the attempt frequencyτ−1

R . In

analogy with alpha and beta relaxation observed in glasses,supercooled liquids and jammed soft
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matter systems, faster fluctuations represent local relaxation, while slower fluctuations are due to

collective relaxation modes.

The relaxation times observed here are similar to those associated with magnetization switch-

ing in ferromagnets first observed by Barkhausen [1] and studied since then in systems from bulk

materials to magnetic molecules [5, 19-22]. Antiferromagnets have more complex order than fer-

romagnets because they break translation as well as spin rotation invariance, which has forced

us to formulate a very crude physical picture, to understandour data at a semi quantitative level.

We start with the realization that to minimize the very largeexchange energy (>0.4 eV) [23, 24]

associated with domain walls, it is clearly advantageous for the nodal planes (where the spin po-

larization vanishes) of the SDW with its propagation vectorperpendicular to the domain wall to

lie on the walls [25]. Such an assumption is further supported by the previously observed prefer-

ence for the formation of SDW nodes at Fe/Cr interfaces [26].This implies that the fundamental

switching unit (grey shaded region in Fig. 1a) is of volumeVS ∼ (λ/2)3 whereλ is the underlying

period of the SDW. In the simplest Gaussian model where underlying units are switching randomly

at typical timesτU , we would conclude that the switching time for a volume of V=1µm3 would

be (V/VS)
2τU . Using our experimental value for the attempt frequencyτ−1

R , we therefore obtain

τ−1

U = 36 THz=140 meV as the attempt frequency for rotating an entire unit. This is an electronic

energy scale, and could therefore be derived from the hopping of electrons across the domain wall;

such electrons (also important in electrical noise measurements [8]) are, after all, responsible for

the current fluctuations which sample the possibility of rotating the Fermi surface of a ‘quantum

dot’ with the fundamental unit volume VS. It is fortunate that the barrier for rotation between
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two minima has been identified by neutron spectroscopy on Cr0.95V0.05 (data for pure Cr are not

published) (See Fig. 2 of Ref. 27) as the energy Eo at which the incommensurate spin density

fluctuations no longer display distinct peaks at the incommensurate satellite positions; Eo is found

to be of order 25 meV (or 290 K), which is not far from the tunnelling barrier∆E=20 meV (or

240 K) established in our own experiments. Interestingly, it is this energy, rather than the much

larger exchange coupling, which corresponds to TN .

In the simplest WKB approximation (see e.g. Ref. 22), the dimensionless ratioτR/τQT is

equal toexp(−S/h̄), whereS =
√
I∆E is the tunneling action. Because the underlying attempt

frequencies and their rescaling to account for observable effects in the X-ray experiment are the

same for both incoherent quantum and classical processes, all of the detail – invoking multiple

rotors - of the last paragraph drops out, and S characterizesa single rotor. We can therefore

calculate the moment of inertia I of the quantum rotor using the measured parametersτQT , τR and

the barrier height∆E=20 meV obtained from the Arrhenius regime. The result is I=100 me nm2,

which, assuming a cube of uniform density distributed over the (λ/2)3 volume of the fundamental

unit corresponds to 0.1 electron mass me per Chromium unit cell. This remarkable result, derived

only from our data and the simple physical picture of Fig. 1, is consistent with Hall effect data

[28, 29] showing that the SDW is associated with the loss of a similar number of carriers, which

of course must be moved with the rotors when there is a switching event.

We have introduced the direct measurement of noise spectra in antiferromagnets. Our ex-

periments access local mesoscale spin dynamics with just a few domain walls in the illuminated
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volume, an advantage over non-local experimental probes that cannot be easily applied for macro-

scopic or bulk structures. The key finding is that even in bulksamples, and at temperatures very

low compared to the Neel temperature, domain walls can be unstable on time scales of fractions

of an hour. What this means is that the stability of antiferromagnetism needs to engineered, e.g.

by insertion of appropriate pinning centres, into devices that exploit it. This will become even

more important for nanoscale spintronics including antiferromagnetic elements. Beyond the obvi-

ous advantages for magnetic engineering of now having a technique with which antiferromagnetic

domain fluctuations can be readily assessed, we foresee tremendous opportunities in areas such as

the science of antiferromagnetic nanoparticles.

Methods. Experiments were carried out at beamlines 33-ID and 8-ID of Advanced Photon

Source, Argonne National Laboratory. The undulator-generated x rays are monochromatized by

a Si (111) crystal at an energy E=7.35 keV (wavelength 1.686 Angstroms). A 10µm pinhole

aperture or a 10gµm (horizontally) by 40µm (vertically) slits placed 5 cm upstream from the

sample selected partially coherent portion of the x-ray beam with a resulting coherence fraction

A≈0.07-0.18. A high purity (111) Cr wafer (Alfa Aesar, Ward Hill, MA) was used to ensure

roughly equal population of domains. The sample was mountedinside a low-drift He flow cryostat,

with thermal shielding provided by 600µm thick Be dome. Speckle patterns were recorded with

a Princeton Instruments PI-LCX 1300 deep depletion x-ray CCD camera (1340x1300 pixel array

with 20 micron by 20 micron pixel size), located 150 cm from the sample in reflection geometry.
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Figure 1 | Spin Density Wave Domain Wall in Chromium. a , Schematic represen-

tation of the domain wall (red dashed line) separating two regions with perpendicular

orientations of transverse spin density wave. The domain wall is shown to propagate

along the weak nodal planes – where local magnetization approaches zero. Shaded re-

gion represents an elementary domain unit with volume (λ/2)3 that can be thought of as

a magnetic quantum dot in a cubic lattice of a similar quantum dots. b, Reciprocal space

configuration of lattice (200) Bragg peak (blue) and six surrounding charge density wave

satellites (red). Domains marked as 1 and 2 in a contribute to pairs of satellites marked 1

and 2 in b, respectively. 90 degree rotation of SDW propagation vector within the shaded

elementary volume of domain 1 would realign spins with domain 2, resulting in shift of

domain wall and transfer of scattering intensity from satellite pairs 1 to 2, marked with an

arrow in b.

Figure 2 | X-ray speckle measurements. a , Schematic of the experimental setup.

b, CCD image of the x-ray speckle observed for the [200] lattice Bragg reflection. c,

Intensity distribution for a line scan across a region shown with a bar in (B) panel. Five

differently coloured and nearly identical lines represent line scans of the portion of speckle

pattern shown with red dashed line in b, taken one hour apart. Black line is a simulated

statistically averaged Gaussian profile, expected for completely incoherent beam.

Figure 3 | Autocorrelation of speckle images. a, Intensity autocorrelation data for
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[200] lattice Bragg peak as well as for CDW superlattice [2-2δ, 0, 0] peak at T=150 K, 100

K, 70 K, 40 K, 30 K, 17 K and 4 K. Two distinct timescales are clearly present in the CDW

autocorrelation function. Solid lines represent theoretical fits to the data. See text for

further details. b, Time sequence of CDW speckle pattern evolution at 17 K. Subsequent

images are taken 1,000 s apart, each image is 10−2 Å−1by10−2 Å−1.

Figure 4 | Temperature-dependent domain wall dynamics. Characteristic slow fluc-

tuation timescale τs obtained from fits to autocorrelation function data shown in Fig. 3a,

compared to classical Arrhenius model (blue line) and a model that also includes a

temperature-independent switching rate term (red line). a, Potential energy surface in-

cluding thermally activated (blue dashed line) and quantum tunnelling (red dashed line)

mechanisms of the transition between the two low energy domain configurations 1 and 2

(see Fig. 1 for an example involving elementary switching volume) separated by energy

barrier ∆E b, Values of stretching exponent β for various temperatures.
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