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Abstract:

The Boltzmann transport equation can be solved to give analytical solutions to the resistivity, Hall, Seebeck, and

Nernst coefficients.  These solutions may be solved simultaneously to give the density-of-states (DOS) effective

mass (  md
* ), the Fermi energy relative to either the conduction or valence band, and a scattering parameter that is

related to a relaxation time and the Fermi energy.  The Nernst coefficient is essential for determining the scattering

parameter and, thereby, the effective scattering mechanism(s).  We constructed equipment to measure these four

transport coefficients simultaneously over a temperature range of 30-350 K for thin, semiconducting films deposited

on insulating substrates.  We measured these coefficients for rf magnetron-sputtered zinc oxide, both doped and

undoped, with aluminum with carrier concentrations in the range of 1x1019 - 5x1020 cm-3.  The (  md
* ) was not constant

over this carrier concentration range: varying from 0.3 to 0.48 me, leading us to conclude that zinc oxide has a non-

parabolic conduction band. Conductivity effective mass values for zinc oxide matched our   md
*  values, revealing a

single valley, nearly spherical, constant energy surface for zinc oxide.  The measured scattering parameter changed

from close to zero to 1.5 as the carrier concentrations increased.  The scattering parameter, Seebeck, and mobility vs.

temperature data support neutral impurity scattering in the undoped material and ionized impurity scattering in the

Al-doped ZnO.  The transport theory also allows an extrapolation for an  md
*  value at the bottom of the conduction

band, which was found to be 0.27 me.
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Introduction

Transparent conductive oxide (TCO), thin-film semiconductors are used in many large-volume and

technically significant applications,1 yet they remain some of the least-understood materials, in part due to their

relatively poor transport properties.  TCO films represent a compromise between optical transmittance, bounded by

absorbance at the optical band gap and reflectance at the plasma frequency, and electrical conductivity.  As noted by

Coutts et al.,2 this compromise must pivot about maximizing the mobility.  For highly degenerate, metal-like TCO

films, mobility may be defined by the Drude theory,  µ = qτ m* , where m* is the conductivity effective mass and τ

is the time between carrier-scattering elastic collisions, known as the relaxation time.  Obviously, either a long

relaxation time or a small m* will increase the mobility, but either quantity represents a formidable task to measure;

the former is very difficult.  Cyclotron and de Haas van Alphen resonance techniques, the traditional methods for

probing the Fermi surface via the effective mass, are only applicable for high-mobility materials because of the

constraint that the product  µB >> 1 so that electrons complete at least one orbit before they are scattered.  With

typical magnetic fields in the laboratory being on the order of one Tesla, the mobility must be in the tens of

thousands cm2/V-s.  TCOs, with their relatively small mobilities (µ < 300 cm2/V-s) and short relaxation times (~10-15

s), do not meet the µB >> 1 requirement and are thus unsuitable for these measurement techniques.  Effective mass

values for polycrystalline, thin-film TCOs are usually inferred from optical modeling (plasma frequency, or

transmission, reflection data) or assumed to be equal to single-crystal bulk values.

In addition to the need for a direct measure of m*  in TCOs and other polycrystalline thin films,

understanding the mechanism for scattering of carriers in films is of great importance for improving transport

properties.  To better understand the band structure and the dominant scattering mechanisms, a novel measurement

technique, based on transport phenomena, has been applied to TCO thin-films.  Transport-phenomena coefficient

measurements � resistivity, Hall, Seebeck, and Nernst (sometimes referred to as Nernst-Ettingshausen) � on thin-

film TCO samples were used with solutions to the Boltzmann transport equation to make direct measurements of the

DOS effective mass,  md
* , and an energy-dependent scattering parameter, s.  We have constructed equipment to enable

these measurements for films grown on electrically insulating substrates.  We have applied this technique to TCO

thin-film samples and have made, to our knowledge, the first direct measurements of   md
*  and s on films of cadmium
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stannate, zinc oxide, tin oxide, and cadmium oxide.  In this paper, we will discuss transport theory, our transport

coefficient equipment, and data obtained from our zinc oxide study.

Theory

Transport, or motion of charge carriers in a material, is described by Boltzmann�s transport equation, which

relates changes in the carrier distribution (occupied energy states) to forces that drive the carriers to a non-

equilibrium state.  The carriers (electrons for n-type materials) in a degenerate material in equilibrium are described

by the Fermi-Dirac distribution function, 
� fo(

��

k ,
��

r ) .  When external driving forces from temperature gradients or

electric and magnetic fields are imposed on a material, the carriers are driven to higher energy (excited) states.  The

redistribution of occupied energy levels from the equilibrium configuration may be described by a non-equilibrium

distribution function, 
��

f (
��

k ,
��

r ) .  Carriers in excited states will return to their equilibrium distribution after collision,

scattering events between other charge carriers or imperfections in the material.3  Transport by electric and thermal

current densities in a material are described by

��

��

J = q
4π 3

��v f (
��

k ,��r )dk�     Amps/m2 
�

��

Q = 1
4π 3 (E − EF )

��v f (
��

k , ��r ,)dk�     Watts/m2,     [1]

where 
��  
��

v  is the carrier velocity.  To solve these integrals, 
�

f (
��

k ,
��

r )  must be determined by solving the steady-state

Boltzmann transport equation,4

��

∂f
∂t

� 
� 
� � 

� 
� ≈

q
�

(
��
E +

��
v ×

��
B ) ⋅

��
∇ k f (

��
k ,
��
r ) +

��
v ⋅

��
∇ r f (

��
k ,
��
r ) ,

which relates the rate-of-change of the non-equilibrium function to driving forces acting on the non-equilibrium

energy distribution of carriers.  Obviously, this is a very difficult equation to solve because it requires knowledge of

occupation and transition probabilities between excited and equilibrium states.  Traditionally, a relaxation time

approximation has been made to allow analytical solutions.  This approximation assumes a mean time between

collisions, when carriers are forced from an excited to an equilibrium distribution or vice versa�known as the

relaxation time, τ.  The change in the distribution function can be approximated by

  
∂f
∂t

� 
� 
� � 

� 
� ≈

f0 − f
τ

� 
� 
� � 

� 
�     1/sec.

The relaxation time between collisions is not a function of direction of the carrier motion, but is a function of energy

and possibly temperature.3  The frequency of elastic collisions, τ-1(E), depends on the density-of-states function,
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g(E), and the square of the matrix element of the scattering transition from one energy state to a final state of the

same energy, w(E).  For parabolic energy bands,   g( E ) ∝ E1/ 2 , while w(E) is a power function of energy

    w( E ) ∝ E− s ∝ ( k 2 )−s .  Thus,     τ
−1( E ) = w( E )g( E ) = E − sE1/ 2 = E1/ 2− s , which is often written

    τ ∝ E s−1/ 2 ∝ E ′ s  with s' = s - 1/2.  For the parabolic band model, s' has been identified for several scattering

mechanisms that are:

Acoustic Phonon scattering �> s' = -1/2,  s = 0

Neutral Impurity scattering �> s' = 0,  s = 1/2

Ionized Impurity scattering �> s' = 3/2  s = 2

In the non-parabolic energy-band case, the energy of the carriers can be described by the function

��    

�
2k 2

2md0
*

= γ ( E ) = E +
E 2

E1
+

E 3

E2
+ ...  [2]

where E1 and E2 are constants, which preserves the same transition matrix element dependence on   k 2 as in the

parabolic case.  The non-parabolic density-of-states function, 
  
gN .P .( E ) ∝γ 1/ 2 dγ

dE
� 
� 
� � 

� 
, leads to

    
τN .P.

−1 = w( E )N .P.g( E )N .P. ∝γ − sγ 1/ 2 dγ
dE

� 
� 
� � 

� 
,

and finally,

    
τ ∝ γ s−1/ 2 dγ

dE
� 
� 
� � 

� 

−1

∝γ s' dγ
dE

� 
� 
� � 

� 

−1

. [3]

Clearly, the s' values for different scattering mechanisms in the non-parabolic case are the same as in the parabolic

case.

Many texts3-6 outline the solution of Boltzmann�s equation for 
�

f (
��

k ,
��

r )  using the relaxation time

approximation and further solve equations [1] for electric and thermal current densities.  In general, equations [1]

have the following form,3

Jα =
q

4π 3 vα
2

� τGα (E)
∂f0

∂E
dk    and   Qα =

1
4π 3 (E − EF )vα

2
� τGα (E)

∂f0

∂E
dk , [4]

where Gα (E)  is a function of temperature gradients and electric and magnetic forces, and α represents different

crystallographic directions.  Equations [4] may be related to the phenomenological equations for carrier transport,
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Jα = σαβEβ −θαβ
dT
dxβ

    and Qα = χαβ Eβ − ξαβ
dT
dxβ

, [5]

to identify specific transport coefficients.  In equations [5], Eβ  is an electric field, dT dxβ  is a temperature gradient

across a sample, andσαβ ,θαβ , χαβ ,ξαβ  are transport tensors that depend on the orientation and strength of a magnetic

field.7  To match experimental setups, temperature gradients and electric fields are placed in the x, y plane, whereas

magnetic fields are parallel to the z-axis.  This arrangement leads to analytical solutions for conductivity, Hall,

Seebeck, and Nernst coefficients.  Integral equations for n-type material coefficients are

σ =
q2n
m *

τ conductivity, RH =
−1
nq

τ 2

τ 2 Hall,

α =
−1
qT

τE
τ

− EF

� 

� 
� 

� 

� 
� Seebeck, Q =

−µn

qT
τ 2E
τ 2 −

τ 2 τE
τ 3

� 

� 
� 

� 

� 
� Nernst,

where τ mEn =
τ m En( )Eg(E)

∂f0

∂E
dE

0

∞

�

Eg(E) ∂f0

∂E
dE

0

∞

�
 and g(E)  is a density-of-states function.

Kolodziejczak et al.7 first solved equations [6] for materials with ellipsoidal energy surfaces.  Later, Kaydanov8 also

solved the equations using the energy function described by equation [2].  When  γ ( E ) = E , the (in general) non-

parabolic energy bands become parabolic.   γ ( E ) , then, describes the state of non-parabolicity for the energy bands

in a material.  Analytic expressions for equations [6] are solved using the method of Bethe-Sommerfeld9 to

approximate the Fermi integrals.  Keeping only lowest-order, non-vanishing terms, the conductivity and Hall

coefficients require only first-order terms in the Sommerfeld expansion, whereas the Seebeck and Nernst coefficients

require retention of second-order terms to first-order in temperature.  The results for the Seebeck and Nernst

coefficients for low magnetic fields µB << 1 and isotropic materials of high degeneracy are

    
α0 =

2
3

α∞ s + 1 − λ{ }  Seebeck coefficient [7]

    
Q0 = µ 2

3
α ∞ s −

1
2

− λ� 
� 
� 

� 
� 
� 

  Nernst coefficient, [8]

[6]
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where
    
λ = 2γ dγ

dε
� 
� 
� � 

� 

−2
d 2γ
dε 2

, s is the scattering parameter, and µ  is the mobility.  The term
��    
α∞ =

k0
2T

q�2
π
3n

� 
� 
� � 

� 

2 3

md
*  is

the Seebeck coefficient under high magnetic field (µB >> 1) and 
  
md

* = md0
* dγ

dε  is the energy-dependent DOS

effective mass, with     md 0
*  representing the DOS effective mass at the conduction-band minimum.  Notice that the

second term within the braces for equations [7] and [8], λ, depends on the energy bands of the material and vanishes

for parabolic-band materials when  γ ( E )  is constant.  Kolodziejczak et al.10 noticed that the high field Seebeck

effect could be used to probe the energy band of a material without knowledge of the scattering mechanism.

Dubrovskaya et al.11 investigated single-crystal PbTe in this manner.  Unfortunately, this technique is not applicable

for TCOs, again, because of their low mobilities and the µB >> 1 requirement for high field measurements.

Zhitinskaya et al.12 were the first to recognize that equations [7] and [8] could be combined to give equations

for the effective density-of-states mass at the Fermi level,

��    
md

* =
3n
π

� 
� 
� � 

� 

2
3 q�2

kB
2T

α −
Q
µ

� 
� 
� � 

� 
, [9]

and s, the scattering parameter,

    

s =
3
2

Q
µ

� 
� 

� 
� 

α − Q
µ

� 
� 

� 
� 

+
1
2

+ λ . [10]

Substituting into [9] µ = RH σ  and n ≈ 1 RHq , where  RH  is the Hall coefficient, we obtain

��

md
* =

3
RH qπ

� 

� 
� 

� 

� 
� 

2
3 q� 2

kB
2T

α −
Q

RH σ
� 

� 
� 

� 

� 
� , [11]

which illustrates that the DOS effective mass may be experimentally determined by measuring the conductivity, Hall,

Seebeck, and Nernst coefficients of a sample.  This technique has been coined the method of four coefficients8 and

was originally applied to p-type PbTe single crystals.13  Our group has applied the method of four coefficients to

thin-film TCO samples, using a specially designed instrument to measure the four coefficients on the same sample.
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Experimental Procedure

Our four-coefficient instrument for thin films has already been discussed in detail,14 but a brief review of its

operation is in order.  Measurement of four transport coefficients on thin-films has been attempted by other groups15

and emphasizes the need for a clever pattern in the film to accomplish all of the measurements on the same sample.

For our machine, thin-film TCO samples are deposited on electrically insulating substrates and photolithographically

etched to the pattern shown in Figure 1.  The high aspect ratio of W << L conforms to the specimen shape dictated by

the ASTM designation F76-8616 for van der Pauw resistivity and Hall measurements, as well as ensuring a large

Nernst voltage between contacts 1 and 3 and a large temperature gradient between contacts 2 and 4.  As depicted in

Figure 1, the film is placed film-side down across two copper heater blocks, with contacts 2 and 4 making ohmic

contact with the heater blocks by silver paint or an indium dot.  Contacts 1 and 3 are indium-soldered to fine copper

wire.  The heater blocks are electrically isolated from each other, and each has a copper wire attached to it to make

electrical contact to the film.  The heater blocks have a differential thermocouple mounted between them to measure

the temperature gradient across the sample.  Heater block 2 has an additional embedded thermocouple for absolute

temperature measurement.  The entire sample holder of Figure 1 is cooled by a closed-cycle helium cryostat for

temperature-dependent measurements from 30 - 350 K.

To measure the four coefficients, a specific data collection sequence is followed, as depicted in Figure 2.

Resistivity is measured by the van der Pauw method, i.e., biasing contacts 3 and 4 while measuring the voltage across

contacts 1 and 2, as per ASTM designation F 76-86.  The Hall coefficient is measured by biasing contacts 1 and 3

while a z-directed magnetic field (Fig. 1) is applied and measuring the voltage across contacts 2 and 4.  Again, the

Hall coefficient measurement is specified by ASTM designation F 76-86.  The thermoelectric, or Seebeck,

coefficient is measured by establishing a temperature gradient between contacts 2 and 4 and measuring the voltage

developed between the same two contacts.  This measurement requires a calibration with a material of known

absolute Seebeck coefficient because the TCO thin-film and the sample holder itself form a thermoelectric couple.

Pb and Pt were used to calibrate our instrument, which allows a direct measure of the absolute Seebeck coefficient of

the thin-film sample.   Finally, the Nernst coefficient is measured by maintaining the temperature gradient between

contacts 2 and 4 while applying the z-directed magnetic field.  A Nernst voltage is established between contacts 1

and 3.
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Transport Phenomena

A brief review of the four transport phenomena of interest will be helpful to our understanding of the results

presented in the next section.  Figure 3a depicts cases for the Hall, Seebeck, and Nernst coefficients for n-type,

isotropic, parabolic energy-band materials, exhibiting ionized impurity scattering.  The Hall effect is a measure of the

deflection of the drift carriers in a magnetic field.  This deflection is measured by the Hall angle, φ.  The magnitude

of φ depends on the scattering mechanism through the relaxation time,τ , ([3]) whereas its orientation is sensitive to

carrier type.  The Seebeck effect is an electric field established under steady-state conditions between diffusion

current from a temperature gradient and the counteracting drift current.  The direction of the field is carrier-type

dependent.  The Nernst effect is analogous to the Hall effect except that the carriers are driven by a temperature

gradient rather than by an applied bias.  Carriers originating from the hot end of the sample will, on average, have

more energy and have a higher velocity with respect to carriers from the cold end.  The magnetic field will deflect the

slower-moving carriers into a shorter-radius orbit than the faster-moving carriers and will establish a net charge, and

thus, a Nernst electric field as shown.5  The Nernst field is not carrier-type sensitive, but is, as will be shown next,

highly dependent on the scattering mechanism.

Figure 3b depicts the path of an electron in crossed electric and magnetic fields.  The net path or drift

velocity is shown as a result of scattering events between the electron and the lattice.  The angle φ is shown with

respect to the electric field.  The time between collisions, τ , is proportional to the arc length of the orbit.  If the

relaxation time,τ , is short for a material, the Hall angle, φ, will be smaller than for a material with a longer relaxation

time.  Consider Figure 3c showing the Nernst effect for three different scattering mechanisms for n-type, isotropic,

parabolic energy-band materials.  The left figure shows the Nernst effect for ionized impurity scattering.  Note that

because s' > 0, the relaxation time, and hence the Hall angle, must be larger for the more energetic (hot) electrons.

This condition gives a  Nernst electric field directed to the right.  Following Gerlach�s sign convention,5 this

configuration would give a positive Nernst coefficient.  The center cartoon of Figure 3c depicts scattering by acoustic

phonons.  This time s' < 0, making the relaxation time and the Hall angle larger for the less energetic (cold) electrons,

establishing a Nernst electric field directed to the left and a negative Nernst coefficient.  The right-most cartoon of

Figure 3c shows that if scattering is by neutral impurities (s' = 0), then both Hall angles are equal and no Nernst
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electric field is established.  The Nernst effect gives a clear signal for the type of scattering occurring in a parabolic

band material by changing the sign of the Nernst voltage.

It is interesting to note that if the γ (ε )  function in [7] and [8] is not constant (non-parabolic energy bands),

then the last term in [7] and [8] could become large enough to change the sign of the Seebeck and Nernst

coefficients.  This condition was first observed in n-type InSb,10 and it has appeared in our work with CdO,[Coutts,

2000 #96] where the effective mass changes by a factor of three over an order of magnitude increase in carrier

concentration.  Because the degree of non-parabolicity of the energy bands can affect the sign of the Nernst effect,

one must be careful in drawing conclusions about the scattering mechanism based solely on the sign of the Nernst

coefficient, until the band shape has been mapped with a variety of carrier concentration samples.  The last term in

equations [7] and [8] may be shown to equal

    

2γ dγ
dε

� 
� 
� � 

� 

−2
d 2γ
dε 2

E F

= 3
n

md
*

dmd
*

dn = 3
dLn[md

* ]
dLn[ n] = λ , [12]

which allows direct measurement of the degree of non-parabolicity of a material once   md
*  is known (via equation

[11]) for a number of samples of different carrier concentrations.

Results

Our group has applied the method of four coefficients to several TCO thin-films grown under a variety of

conditions.  In this paper, we will present our preliminary findings on rf magnetron sputtered, undoped zinc oxide,

and zinc oxide doped with aluminum thin-films.  Prepared samples were photolithographically patterned to the shape

shown in Figure 1 with film thickness measured by profilometry.  The four relevant transport phenomena coefficients

(conductivity, Hall, Seebeck, and Nernst) were measured by the method and by the instrument described above, and

they were then used in equation [11] to calculate the DOS effective mass,  md
* .  Figure 4 shows the  md

*  values plotted

against the carrier density, n.  A best-fit line was drawn through the points, which was then used to calculate λ in

equations [10] and [12].  We first note that  md
*  is not constant with carrier density and varies from about 0.3 to 0.45

as the carrier density changes from 2 x 1019 - 5 x 1020 cm-3.  This trend shows that the conduction energy band for

ZnO is non-parabolic in this carrier density range and will make the energy-band term, λ, non-zero in equations
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[7],[8], and [10].  In addition to our   md
*  values for ZnO plotted in Figure 4, conductivity effective-mass values are

plotted, as well.  These values were taken from the literature17,18 on plasma frequency-calculated conductivity

effective masses.   Note that the conductivity and DOS effective mass are in good agreement with each other, but that

the error bars on the DOS effective mass are much smaller.  Recalling that the relationship between the two effective-

mass values is given by     md
* = N

2
3( m1

* m2
* m3

* )
1

3 , we conclude that N, the number of ellipsoids of revolution, must

be one and that the conductivity effective-mass values (   m1
* m2

* m3
* ) for different crystallographic directions must be

approximately equal.  This being the case, we may conclude that ZnO has a single-valley minimum in the conduction

energy band and that the constant energy surface must be spherical to within experimental uncertainty.  The single-

valley minimum of ZnO is predicted by theory,19 but the uncertainty in the plasma frequency data makes it difficult

to be certain of the spherical nature of the energy surface.  We note that ZnO is hexagonal and that our films have a

(200) orientation.  Anisotrophy in the effective mass is not found in the literature, nor is it observed in the mobility

above 100 K.20

With   md
*  known as a function of n, we solve for λ to determine the degree to which the band shape affects

the scattering parameter, s, in equation [10].  Figure 5a shows the calculated scattering parameter values from

equation [10] for our ZnO samples, along with the predicted trends in the scattering parameter for three different

scattering mechanisms.  For the ZnO:Al samples, the measured scattering parameter matches well with the trend

expected for ionized impurities.  This result is expected for these films, where aluminum is added to dope the films n-

type by contributing an electron to the conduction band, leaving behind an ionized aluminum atom.  For the undoped

material, the scattering parameter is found to lie most closely with the neutral impurity trend.  To further support our

claim that neutral and ionized impurity scattering are the main scattering mechanisms in ZnO and ZnO:Al,

respectively, Figure 5b shows our Seebeck measurements plotted against expected Seebeck values for three

scattering mechanisms.  Again, ionized and neutral impurity scattering are the apparent mechanisms.  Mobility vs.

temperature data for both a ZnO and ZnO:Al film are shown in Figure 5c.  The undoped ZnO film shows a clear

positive dependence of mobility on temperature, indicative of neutral impurities.  As the temperature decreases, the

number of neutral impurity centers will increase, decreasing the relaxation time between collisions, and thus

decreasing the mobility.6   For the doped material, the mobility is seen to be almost constant with temperature,
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characteristic of ionized impurity scattering.4  A comparison of optical and Hall mobilities is needed to rule out

grain-boundary scattering in the undoped films.

In addition to providing the DOS effective mass and scattering parameter values, the method of four

coefficients may also be used to extrapolate   md 0
* , the effective mass at the conduction-band minimum, and to

measure the Fermi energy level relative to the conduction band.  Equation [2] describes the energy function used for

solving the transport equations, allowing a first-order non-parabolicity approximation to be defined by keeping only

the first two terms in the energy expansion.  Using the relations

    
md

* = md0
* dγ ( E )

dE  and 
  
n =

8π
3

2md0
*( )3

2

h3
γ

3
2 , one can solve for

    
md

*( )2 = md 0
*( )2

+ 4
md0

*

E1

3
8π

� 
� 
� � 

� 

2
3 h2

2

� 

� 
� 

	 


 
� n

2
3 . [13]

Equation [13] shows that the y-intercept of a plot of   ( md
* )2  vs. n2/3 will reveal   md 0

* , and the slope will define the

constant, E1.  Figure 6 shows a plot of     ( md
* )2  vs. n2/3 with a   md 0

*  value of 0.27 me.  Note that the plot is linear,

indicating that our first-order, non-parabolicity assumption is valid.  In addition, the Fermi energy level, with respect

to the bottom of the conduction band, can be defined by 
  
EFermi =

3
8π

� 
� 
� � 

� 

2
3 h2

2md0
*

n
2

3 1
1+ β( ), where

    
β =

md
*( E )

2md 0
* −

1
2

� 

� 
� 

� 

� 
� .  Figure 4, showing the calculated Fermi energy level above the conduction band vs. the carrier

concentration, reveals a strong degeneracy in the doped samples (EFermi - Econduction > 0.5 eV), but only a slight

degeneracy in the undoped samples.

Conclusions

The method of four coefficients  offers a powerful experimental technique for the TCO thin-film community

for both mapping the energy bands via the effective mass and determining scattering parameters.  Its benefit to our

understanding of TCO films has been very encouraging.  We plan to continue our study of TCOs, as well as other

semiconducting thin-films, with this technique in hopes of furthering our understanding of the fundamental

mechanisms in these materials.  In particular, we hope to identify the scattering mechanisms responsible for limiting



12

the all-important mobility.  It is known that mobility limits both the electrical and optical properties of Drude

materials.
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Fig. 1.  Photolithographically etched thin-film sample on electrically insulating substrate placed film-side down
across copper heater blocks.  Lengths are in mm.  Wires A and C provide electrical contact to the sample, and
differential thermocouple, B, and thermocouple, D, provide temperature information.
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Fig. 2.  Measurement configurations for collecting conductivity, Hall, Seebeck, and Nernst coefficients on a single,
thin-film sample.  Note the temperature gradient for the Seebeck and Nernst measurements and the applied magnetic
field for the Hall and Nernst measurements.
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Fig. 3.  Part a)  Hall, Seebeck, and Nernst transport phenomena for n-type, parabolic band materials exhibiting ionized impurity
scattering are shown in cartoon form.  The Seebeck effect is an electric field, at steady-state conditions, between the carrier
diffusion and drift velocities.  The Nernst effect is established by a net negative charge due to the slower moving, "cold"
electrons experiencing a greater Lorentz force.  Part b)  An electron in a crossed electric and magnetic field.  The longer
relaxation time between collision, scattering events, shown on the right, gives rise to a longer helical arc length and a larger Hall
angle, φ.  Part c)  The Hall angles for the Nernst effect, φ1 and φ2, determine the type of scattering in the material.  For ionized
impurity scattering, φ1 is larger than φ2.  This implies τ1 is greater than τ2 (Part b).  With the relaxation-time approximation,
equation [3], s' must be positive to give a positive relationship between energy of the carriers (hot) and the relaxation time.  For
acoustic phonon scattering, φ2 is larger than φ1, leading to τ1 being less than τ2.  This implies s' is less than zero for energy and
relaxation time to be inversely related.  For Neutral impurity scattering, there is no Nernst signal and τ does not depend on the
energy of the carriers, s' = 0.
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Fig. 4.  Density-of-states (DOS) effective mass, Fermi energy level with respect to the conduction band, and plasma
frequency - conductivity effective mass, mc, versus carrier concentration for ZnO and ZnO:Al.
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Fig. 5. Two different scattering mechanisms are exhibited in the ZnO films in this study.  The ZnO:Al films show ionized
impurity scattering, whereas the ZnO film shows neutral impurity scattering.  a) Scattering parameter, s vs. n.  Data points are
plotted, along with theoretical values of s', for three different scattering mechanisms.  b) Seebeck coefficient vs. n.  Data points
are plotted, along with theoretical curves, for three different scattering mechanisms.  c) Mobility, µ vs. n.
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Fig. 6. DOS m*2 vs. n2/3.  The linear fit of the data justifies our first-order non-parabolicity approximation.  The y-
intercept gives the square of the effective mass at the bottom of the conduction band.
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