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ARTICLE

Direct measurement of discrete valley and orbital
quantum numbers in bilayer graphene
B.M. Hunt1,2,3, J.I.A. Li 2, A.A. Zibrov4, L. Wang5, T. Taniguchi6, K. Watanabe 6, J. Hone5, C.R. Dean2,

M. Zaletel7, R.C. Ashoori1 & A.F. Young1,4

The high magnetic field electronic structure of bilayer graphene is enhanced by the spin,

valley isospin, and an accidental orbital degeneracy, leading to a complex phase diagram of

broken symmetry states. Here, we present a technique for measuring the layer-resolved

charge density, from which we directly determine the valley and orbital polarization within

the zero energy Landau level. Layer polarization evolves in discrete steps across 32 electric

field-tuned phase transitions between states of different valley, spin, and orbital order,

including previously unobserved orbitally polarized states stabilized by skew interlayer

hopping. We fit our data to a model that captures both single-particle and interaction-induced

anisotropies, providing a complete picture of this correlated electron system. The resulting

roadmap to symmetry breaking paves the way for deterministic engineering of fractional

quantum Hall states, while our layer-resolved technique is readily extendable to other

two-dimensional materials where layer polarization maps to the valley or spin quantum

numbers.
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T
he single-particle energy spectrum of a two-dimensional
electron system (2DES) in a large magnetic field collapses
into Landau levels (LLs) containing NΦ degenerate states,

with NΦ the number of magnetic flux quanta penetrating the
sample. The width in energy of the LL bands is limited only
by disorder, making electronic interactions effectively strong in
a clean system even when their absolute scale is weak. The
simplicity of the starting LL wavefunctions, combined with the
high degree of control available in 2DES, make LLs a promising
venue for engineering electronic ground states based on electron
correlations. However, the difficulty of simulating interacting
electron problems necessitates experimental input to constrain
the possible ground states, particularly in the presence of internal
degeneracy. The Bernal bilayer graphene (B-BLG) zero energy
Landau level (ZLL) provides an extreme example of such
degeneracy. In B-BLG, LLs ξNσj i are labeled by their electron
spin σ= ↑, ↓, valley ξ= +, −, and orbital index N 2 Z. Electrons
in valley +/− are localized near points K/K′ of the hexagonal
Brillouin zone, while the index N is closely analogous to the
LL-index of conventional LL systems. The energies of the LLs are
approximately ϵσξN � �hωcsign Nð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N N � 1ð Þ
p

, where ħωc is the

cyclotron energy, leading to an eight-fold nearly degenerate ZLL
comprising the N= 0 and N= 1 orbitals and all possible spin and
valley isospin combinations.

While direct probes of spin in 2DESs were demonstrated
two decades ago1, the valley quantum number has only been
probed indirectly in semiconductor quantum wells2, graphene
monolayer3, 4 and bilayers5–13, and transition metal
dichalcogenides14. In bilayer graphene, resolving the order in
which the eight components fill as electrons are added is one of
the key open questions, and is essential to efforts to use bilayer
graphene to engineer exotic phases of matter based on electronic
correlations15, 16. Due to an approximate SU(4) symmetry
relating spin and valley, determining which of the components
are filled is non-trivial. Past experiments5–13, 17 have observed
numerous phase transitions between gapped ground states at
both integer6–9, 12, 13, 17 and fractional10, 11, 13 filling. However,
these experiments are insufficient to constrain realistic theoretical
models, in which the preferred ordering is determined by a
combination of the Zeeman energy, which splits the spins;
Coulomb interactions and band structure effects, both of
which distinguish between the N= 0, 1 orbitals; and several
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Fig. 1 Layer polarization of bilayer graphene at zero magnetic field. aMeasurement schematic showing geometric gate capacitances ct and cb and interlayer

capacitance c0. Capacitance is measured using a cryogenic bridge circuit by comparison with a standard capacitor Cstd, measured to be 404± 20 fF (see

“Methods”). b Device image. Top gate (TG), back gate (BG), and contacts to bilayer graphene (G) are shown. Scale bar is 10 μm; device area is

approximately 87 μm2. c CS measured at B= 0 and T= 1.6 K as a function of n0/c= vt + vb and p0/c= vt − vb. A p0-dependent band gap is visible as the dark

region near n0= 0. d Line traces taken at different values of p0, corresponding to dashed lines in c. Band edge van Hove singularities28 and electron-hole

asymmetry27 are both evident. e CA measured under the same conditions. A common, constant background has been subtracted to account for fixed

parasitic capacitances. f Line traces at different values of p0 corresponding to dashed lines in e. g Integrated change in polarization, c0
c

R

CA d
n0
c

� �

¼ Δp, with

the constant of integration fixed to be zero at high n0j j. In accordance with single-particle band structure28, wavefunctions are layer unpolarized for p0= 0,

while for large p0j j the polarization peaks at n0= 0, where band wavefunctions are strongly layer polarized
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small valley anisotropies which weakly break the valley-SU(2)
symmetry18–24. Indeed, two recent experimental papers explain
their data using mutually contradictory single-particle12 and
purely interacting pictures10. Constructing a more complete
theory of symmetry breaking in bilayer graphene requires
experimental determination of the partial filling of each spin,
valley, and orbital level, νξNσ ¼ hN̂e

ξNσi=NΦ as it evolves with
total LL filling.

In this work, we introduce a direct measurement of two out of
three of these components, by exploiting the fact that the four
valley and orbital components indexed by ξN have different
weights on the two layers of the bilayer. We detect this
difference in layer polarization capacitively, and use it to infer the
fillings νξN as a function of both the total electron density and
applied perpendicular electric field.

Results
Layer polarization measurements. Our devices consist of
hexagonal boron nitride encapsulated B-BLG flakes25 fitted with
metal top and bottom gates (Fig. 1a, b). The layer polarization
and total charge density are tuned by a combination of applied
top and bottom gate voltages (vt and vb), expressed through their
symmetric and antisymmetric combinations n0(p0)≡ ctvt± cbvb
with ct(b) the geometric capacitances between the respective gates
and the B-BLG. −n0 and −p0 correspond to the induced charge
density and layer polarization in the limit of a perfectly metallic,
infinitesimally spaced bilayer. Generically, the physically realized
total density (n) and layer density imbalance (p) deviate from this
limit, particularly at high magnetic fields. A simple electrostatic
model (Supplementary Note 1) shows that these deviations
manifest as corrections to the measured gate capacitances (CT and
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Fig. 2 Valley and orbital polarization of the ZLL. a Layer-symmetric capacitance CS / ∂n
∂n0

at T= 300mK and B= 31 T. Incompressible states manifest as

drops in CS (black) at all integer fillings ν. Phase transitions between different valley and orbital fillings at fixed ν manifest as compressible spikes, as shown

in the side panel for ν= 0 (green, solid) and ν= 2 (light blue, dashed). A total of 16 phase transitions are observed at integer ν, with one each at ν=±3, two

at ν=±2, three at ν=±1, and four at ν= 0. No experimental contrast is visible at non-integer filling (purple, dashed). b Layer-antisymmetric capacitance

CA / ∂p
∂n0

at T= 300mK and B= 31 T. Black regions mask portions of the parameter space with large dissipation in CS, which arises when a large gap leads to

a low in-plane conductivity and failure to charge regions of the sample during a ~13 μs measurement cycle (see “Methods”). The color scheme highlights

the 4-tone contrast, interpreted as filling of ξNσj i= þ0σj i (red), þ1σj i (orange), �0σj i (blue), and �1σj i (cyan) LLs. c Schematic depiction of the four

single-particle wavefunctions |ξNσ〉, showing their relative support on the four atomic sites A, B, A′, and B′ of the bilayer graphene unit cell. While the þ0σj i
levels are fully polarized (α0= 1), we calculate α1= 0.63 for the þ1σj i. d Phase diagram of gapped states at ν= 0. Points are experimentally determined by

measuring peaks in CS, as in a (green dashed line), for 0< B< 31 T. At high B≳ 15 T an intermediate phase III emerges between the layer-unpolarized canted

antiferromagnetic phase II and the layer-polarized phase I6, 8. e Schematics of the layer, orbital, and spin polarizations of phases I, II, and III and the ten

distinct filling sequences that determine the three valley and orbital polarizations of phases I, II, and III. These sequences are extracted from Fig. 2b, filling

from ν= −4 to ν= 0 over the full range −4V< p0/c< 4V
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CB) as

CS � CT þ CB ¼ 2c
∂n

∂n0
ð1Þ

CA � CT � CB ¼ 2c
∂n

∂p0
¼ c2

c0

∂p

∂n0
; ð2Þ

where c= (ct + cb)/2≈ 1.36 fF/μm2 and c0 is the interlayer
capacitance of the bilayer. The antisymmetric combination CA is
unique to bilayer systems, vanishing identically in a monolayer
system, allowing us to measure the layer polarization p.
Measuring CA is technically challenging, as it arises from
series combination of the large interlayer capacitance and the
comparatively small gate capacitance. It is imperative that
the dielectric layers be highly uniform across the device, that the
areal mismatch between top and bottom gate be kept � 1%, and
the geometric capacitance of the two gates be nearly the
same; these requirements are difficult to satisfy in conventional
two-dimensional electron bilayers but are readily achieved using
single-crystal hBN gate dielectrics and atomically thin bilayers.

Figure 1c and e show CS and CA measured at zero magnetic
field as a function of n0 and p0. The CS data are dominated by
quantum capacitance features of the B-BLG band structure,
which features a quadratic band touching at low energies and
hyperbolic bands at high energies26. An electric field (p0) opens a

band gap with
ffiffiffi

ϵ
p

van Hove singularities at the band edges, as can
be readily seen in the experimental data (Fig. 1d). Although CS is
approximately particle-hole symmetric, significant symmetry
breaking contributions are evident. We attribute this to the skew
interlayer hopping parameter γ4 in the Slonczewski-Weiss-
McClure model for graphite, which breaks particle-hole
symmetry by making the lattice non-bipartite (Supplementary
Fig. 4)27. CA data, in contrast, reflect the layer-resolved properties
of the band wavefunctions (Fig. 1e, f). For p0≠ 0, wavefunctions
are layer-polarized near the band extrema, so that the first
electrons or holes added to the neutral system are added to the
corresponding low-energy layer. Reversing p0 inverts the role of
the top and bottom layers, inverting the sign of the measured
signal with respect to n0. At high overall electron density, the
applied p0 is fully screened, so that charge is added symmetrically
to the two layers28. The relative layer polarization at different
values of n0 can then be extracted by integrating Eq. (2) with
respect to n0 (Fig. 1g).

Layer polarization at high magnetic field. Figure 2a shows
CS measured in the same device at B= 31 T in the ZLL. We
observe insulating states at all integer LL filling factors ν, which
are characterized by low capacitance CS and high dissipation
(see Supplementary Figs. 1, 2 for dissipation data). Adjusting p0/c
at fixed integer ν drives transitions characterized by a spike in
CS indicating increased conductivity11 and compressibility,
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Fig. 3 Theoretical model of spin, valley, and orbital anisotropies in the ZLL. a Single-particle energy spectrum of the ZLL at B= 31 T derived from a four-

band tight binding model29 (see also Eq. (3)). The interlayer potential u couples to the layer polarization of each state as ξαNu, differing in sign for the two

valleys and magnitude for the two orbitals; the spin degeneracy is lifted by the Zeeman energy EZ≈ 3.6 meV; and the N= 0 and 1 orbitals are split by the

band structure parameter Δ10≈ 9.7 meV. b–d Level filling schematic for p0
c
¼ �100mV. Within the Hartree-Fock approximation, we calculate the energy to

add an additional electron to level σξN given the current filling {νσξN}, generating eight curves εσξN(ν) which change with the total filling ν. Colors indicate

the ξN index of the level, while solid vs. dashed indicates the spin. The bold portion indicates the range of ν over which the level is coincident with the Fermi

energy. As isospin σξ fills, both of its N= 0 and 1 orbitals decrease in energy due to favorable Coulomb correlations, while the components of the opposite

valley (i.e., layer) decrease slightly in energy due to the capacitance of the bilayer. The relative magnitude of these effects, combined with the single-

particle splittings, determines the filling order, shown here for three interactions strengths parameterized by the boron nitride dielectric constant, ϵ
jj
BN. Large

ϵ
jj
BN ¼ 18 (e) corresponds to negligible Coulomb interactions, ϵ

jj
BN ¼ 6:6 (f) corresponds to intermediate Coulomb interactions, and ϵ

jj
BN ¼ 1 (g)

corresponds to maximally strong Coulomb interactoins. e–g Hartree-Fock phase diagram in the three interaction strength regimes. Colors blue, cyan, red,

and orange indicate whether levels of type ξN= −0, −1, +0, +1 are filling, so that the result should mimic the observed CA. The intermediate interaction

regime shows good agreement with the experimental CA data, while interactions which are too weak (e) or strong (g) do not reproduce the observed filling

sequences. The black dashed line indicates a cut at p0/c= −100meV corresponding to the particular filling sequence shown in b–d
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consistent with a closing of the charge gap. Sixteen such phase
transitions are evident in the CS data. Similar transitions have
been reported in the literature: ref. 6 reported phase transitions at
ν=±2 and p0= 0, as well as a single phase transition at ν= 0 and
finite p0. More recently, the p0= 0 transitions at ν=±1, ±3 are
evident in ref. 11, while the splitting of the p0= 0 phase transition
at ν=±2 suggests the formation of a stable, gapped, layer
unpolarized state in the region p0 ~0, as was reported in refs. 9, 11.
Only in ref. 12 was a potential gapped phase observed at
intermediate p0 and ν= 0. However, a unified framework for
understanding the diverse competing phases has not yet emerged.

In contrast to layer-insensitive capacitance5, 10, 12 and
transport6–9, 11 measurements, CA provides high experimental
contrast throughout the n0 − p0 plane (Fig. 2b). Strikingly, the
measured CA falls into discrete levels, corresponding to blue, cyan,
orange, and red on the color scale of Fig. 2b. The transitions
observed in CS at integer filling fall on lines in the n0−p0 plane
along which the sign of CA changes abruptly. To understand
the color scale quantitatively, we compute the layer polarization
of the ZLL single-particle eigenstates. B-BLG has a 4-site unit
cell, with sites A,B in the top layer and A′, B′ in the
bottom (see Fig. 2c), and hence the ZLL wavefunctions
decompose into their components on the four sublattices, Ψ(x)
= (ϕA(x), ϕB′(x), ϕB(x), ϕA′(x)). The layer polarization αξNσ �
R

d2x ϕAðxÞ2
�

�

�

�þ ϕBðxÞ2
�

�

�

�� ϕA0ðxÞ2
�

�

�

�� ϕB0ðxÞ2
�

�

�

� is constant
across all states in a LL, and independent of spin. It has opposite
sign in the two valleys26, so that positive and negative CA

correspond to filling valley K and K′, and its magnitude depends
on the orbital quantum number, so that αξNσ= ξαN. At B= 31 T,
band structure calculations29 show that α0= 1 and α1= 0.63.

As electrons enter LL ξNσj i they contribute a polarization
whose magnitude and sign depend on the level being filled. Since
CA / ∂p

∂n0
, where n0 is very nearly the electron density, we thus

interpret red, orange, blue, and cyan as indicating regions where
electrons are filling ξNj i= þ0j i, þ1j i, �0j i, and �1j i type LLs,

respectively. This supports a scenario in which, away from phase
boundaries, only one of these LLs is filling at each particular
(n0, p0). Indeed, numerical calculations (see Supplementary Fig. 5)
show that as isospin ξσ fills, around 90% of the electrons enter
into either the N= 0 or N= 1 orbital; e.g., either

∂νξ0σ

∂ν
≳ 0.9

or
∂νξ1σ

∂ν
≳ 0.9, according to whether the region is red/blue or

orange/cyan, respectively.
The polarization of all gapped integer states can now be

obtained by summing the level filling sequence starting from the
ν= −4 vacuum. Consider ν= 0, where five incompressible states
are visible in CS (Fig. 2d). The order in phase I, at large p0> 0,
can be inferred from the observed CA sequence of red, orange,
red, orange, implying two N= 0 and two N= 1 states are filled
in valley ξ= +. Its layer-inverse occurs in valley ξ= − for large
p0< 0. The phase I states are fully valley polarized, and hence spin
and orbitally unpolarized due to Pauli exclusion. Phase II, at
p0 near zero, fills levels þ0j i; þ1j i; �0j i; �1j i. A state which
fills both orbitals of opposite valleys is consistent with the canted
anti-ferromagnetic state8, 22; however, from CA alone we cannot
infer whether the spins are polarized or canted. Finally, phase III
at intermediate p0j j fills levels ±0, ±1, ±0, ∓0.

Discussion
The orbital and valley filling sequences derived from Fig. 2b
provide a more stringent set of constraints on theoretical models
than the integer phase transitions alone. For example, a single
particle, four-band tight-binding model accounts for the correct
number of integer ν transitions12 but fails when compared to the
CA filling sequence. The single-particle energies of the ZLL,

E
ð1Þ
ξNσ ¼ �EZσ þ NΔ10 �

u

2
ξαN ð3Þ

are shown in Fig. 3a for B= 31 T. Here, EZ is the Zeeman energy,
u is the potential across the bilayer, and Δ10 ∝ γ4B is the splitting
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competing phases to depend on ν. b Phase diagram from multicomponent infinite DMRG calculations31 for a four-band model of bilayer graphene with

Coulomb interactions. In contrast to the Hartree-Fock prediction shown in Fig. 3c, experiments show that the magnitude of the slope of the phase boundary

between (i) and (iii) differs from the boundary betweem (ii) and (iv). This implies that strong scattering between the N= 0, 1 orbitals breaks the particle-

hole symmetry ν ↔ −(ν + 2), an effect which is correctly accounted for in our DMRG simulations. c Schematic representation of the four phases appearing

in a. Each of the four orbital types ξN depicted in Fig. 2c can either be filled (solid, shown in bottom unit cell), or in the process of filling (partially solid, shown

in top unit cell). Phase (ii), for example, consists of fully filled þ0j i and þ1j i levels, while level �0j i is filling
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between the N= 0, 1 orbitals, which arises because particle-hole
symmetry no longer pins the ZLL energies to zero. The interlayer
bias u ∝ p0 couples to the differing layer polarization of each state,
ξαN, leading to u-tuned crossings at integer fillings; however, the
single-particle picture predicts that N= 0 levels fill first for all but
the very highest u (Fig. 3b, e), and the transitions would have zero
slope in the n0 − p0 plane. This disagrees with the experimental
CA data where N= 0 and N= 1 states of the same valley often fill
in sequence, and several transition lines have a significant slope.

The departure from the single-particle picture arises from the
failure to account for the Coulomb interaction, which both favors
sequential filling of N= 0, 1 levels of the same isospin due to
exchange18, 19 and penalizes valley polarization due to the
interlayer capacitance of the bilayer. However, if Coulomb
correlations are made too strong, the first effect dominates and
N= 0, 1 orbitals of an isospin always fill sequentially, as shown
in Fig. 3d and g. Apparently, competition between the splitting
Δ10 and Coulomb correlations is essential.

To determine whether a single model can account for all the
observed phase boundaries, we analyze a model that accounts
for the single-particle splittings, the SU(4)-invariant screened
Coulomb interaction, and several subleading valley anisotropies
(Supplementary Note 2). Evaluating the model within a
Hartree-Fock approximation allows us to compute the energies of
the competing filling sequences, and thereby determine their
phase boundaries in the n0 − p0 plane. The model depends on
three phenomenological constants (a screening strength,
the perpendicular dielectric constant of the BLG, and a valley
anisotropy), which we can now estimate by matching the location
of the integer transitions and their dependence on an in-plane
B-field. The resulting phase diagram is shown in Fig. 3c, and
shows good agreement with the CA data of Fig. 2b, including the
location of the transitions in absolute units of p0/c and several
of their slopes. In our model, each integer state is obtained by
fulfilling some number of ξNσ levels; in particular it does not
require interlayer coherent phases that spontaneously break the
valley U(1) × U(1) symmetry, in contrast to theories that predict
such phases at ν=±1, p0= 0. We also predict that the ν= 0 phase
III observed at ν= 0 likely hosts helical edge states similar to
those recently described in twisted bilayer graphene30. This state
is stabilized by the single-particle anisotropy Δ10 and antagonized
by the Coulomb interactions, suggesting it could be further sta-
bilized in devices with stronger screening due to proximal metal
gates.

Despite good overall agreement, there is an interesting
qualitative discrepancy between the Hartree-Fock analysis and
the data. In the experiment, the slope of the phase transition line
between −2< ν< −1 (see Fig. 4a, boundary (ii)–(iv)) is
significantly larger than the slope of the adjoining transition
across −3< ν< −2 (boundary (i)–(iii) of Fig. 4a). Within the
Hartree-Fock approximation, the slopes are identical, and in fact
any model which neglects scattering (e.g., “Landau-level mixing”)
between the N= 0, 1 orbitals has a particle-hole symmetry
ν + 2 → −(ν + 2), u − u*(ν= −2) → −(u − u*(−2)), forcing the two
boundaries to mirror each other. To account for the asymmetry,
we instead find the ground state of the model’s Hamiltonian
using the multicomponent infinite-density matrix renormaliza-
tion group, which takes full account of correlations31. Allowing
LL mixing produces a kink in the slope at ν= −2, as
experimentally observed (Fig. 4b). LL mixing is known to
generate effective three-body interactions, which stabilize frac-
tional non-Abelian phases32, 33; our results suggest that these
interactions may be stronger in BLG than in conventional
semiconductor quantum wells.

In conclusion, we have described a new experimental technique
to determine the layer polarization of van der Waals bilayers and

used it to constrain a detailed model of symmetry breaking in the
bilayer graphene ZLL. Our technique is readily applicable to
quantitatively probe layer, valley, and spin polarization in other
atomic layered materials, including twisted bilayer graphene and
both homobilayer and heterobilayer of transition metal
dichalcogenides.

Methods
Sample preparation. Bilayer graphene samples encapsulated in hexagonal boron
nitride were fabricated using a dry transfer method25. Particular care is taken to
ensure that the top and bottom hBN flakes are of the same thickness, measured by
atomic force microscopy to be 19 and 20 nm, respectively. During fabrication, care
is also taken to minimize the area of graphene bilayer gated by only one of the two
gates, as single-gated areas contribute a systematic error to the measured CA signal
proportional to the area and to CS. Anticipating

CA

CS
� c

2c0
≲ 3:35A

39 nm
¼ :0086, we ensure

that the areal mismatch between bottom-gated and top-gated areas is less than .5%.

Capacitance measurement electrical schematic. Capacitance measurements
were made using a cryogenic impedance transformer based on an FHX35X high
electron mobility transistor34 in a bridge configuration connected to the bilayer
graphene ohmic contacts (see Fig. 5). vg sets the transistor bias point and vd
adjusted to be sufficiently low that no sample heating is observed. To measure
CS(A), two synchronized and nearly equal-magnitude AC signals (δVEX) are applied
to the top and bottom gates, whose relative magnitude is chosen to match the ratio
of geometric capacitances ct/cb extracted from the DC characteristics of the device.
The signals are applied in phase for CS and out of phase for CA. A third AC signal is
applied to a standard capacitor Cstd with amplitude and phase that null the signal at
the input of the cryogenic amplifier, and the capacitance and dissipation deter-
mined from the relation of the AC signals. Cstd was measured to be 404 fF during
the cooldown in which the data of Fig. 1 were measured. We used this value to
determine CS and CA shown in subsequent figures, although in our experience
Cstd can vary by up to 20 fF from cooldown to cooldown, thus introducing a
systematic uncertainty of approximately 5% in the capacitance shown in Figs. 2–4.
All data shown are acquired off-balance, by monitoring the voltage at the balance
point as DC values of the gate voltages are changed. Data in Fig. 2a and b are
measured at 67.778 kHz using a 10 mV variation of n0/c and of p0/c, respectively.

Interpretation of CA as a thermodynamic derivative requires that the sample is
sufficiently conductive to fully charge over a time scale comparable to the inverse
measurement frequency35. At low temperature and high magnetic fields, our
sample becomes strongly insulating at integer filling factors, precluding this
condition being satisfied. Failure to charge manifests as an increase in the out of
phase, dissipative signal in the capacitance, allowing us to monitor charging across
the parameter range. In Figs. 2b and 4a, regions in which the sample does not
charge are masked in black, and dissipation data for all data sets is shown in
Supplementary Figs. 1 and 2.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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Fig. 5 Electrical schematic of the capacitance measurement. DC voltages vt,

vb and vg together control n0 and p0, with fixed vg≈ −300mV such that the

transistor amplifier is at its optimal working point. For CS measurements, an

AC excitation δVEX is applied to both top and bottom gate. δVS is then

chosen to balance the bridge for a single set of DC voltages, i.e., such that

δvout= 0, in which case CS/Cstd= δVS/δVEX. n0 and p0 are then swept and

δvout monitored, from which CS(n0, p0) is extracted. For CA, the

measurement proceeds identically but with opposite phase signals applied

to the two gates
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