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The ‘‘textbook’’ phonon mean free path of heat carrying phonons in silicon at room temperature is

�40 nm. However, a large contribution to the thermal conductivity comes from low-frequency phonons

with much longer mean free paths. We present a simple experiment demonstrating that room-temperature

thermal transport in Si significantly deviates from the diffusion model already at micron distances.

Absorption of crossed laser pulses in a freestanding silicon membrane sets up a sinusoidal temperature

profile that is monitored via diffraction of a probe laser beam. By changing the period of the thermal

grating we vary the heat transport distance within the range �1–10 �m. At small distances, we observe a

reduction in the effective thermal conductivity indicating a transition from the diffusive to the ballistic

transport regime for the low-frequency part of the phonon spectrum.
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The study of thermal transport at microscopic dis-

tances [1–8] is largely stimulated by practical needs

such as thermal management of microelectronic devices

[2], but it also poses a number of fundamental physics

problems. In dielectrics and semiconductors heat is car-

ried predominantly by phonons, and the relationship

between the phonon mean free path (MFP) and a char-

acteristic length scale determines whether the thermal

transport is diffusive or ballistic. At cryogenic tempera-

tures phonon MFPs are relatively long and ballistic

phonon propagation over macroscopic distances has

been studied extensively [9]. At room temperature, on

the other hand, the majority of phonons have MFPs in

the nanometer range. The often cited ‘‘textbook value’’

of the phonon MFP in Si at 273 K based on a simple

kinetic theory [10] is 43 nm, with even shorter MFPs

listed for most other materials. According to this sim-

plistic view one would not expect deviations from the

classical thermal diffusion model at distances signifi-

cantly exceeding 40 nm.

However, a growing body of experimental and theoreti-

cal studies has been indicating a large role of low-

frequency phonons with MFPs much longer than tens of

nanometers. Revising the ‘‘effective’’ room-temperature

phonon MFP in Si upwards to 260–300 nm has been

suggested for the analysis of thermal transport in thin films

[11] and superlattices [12]. Recent measurements in Si

have indicated nondiffusive transport on the tens of

microns distance scale at temperatures 20–100 K [7].

Still, it has been widely held that at room-temperature

heat transport in Si on the �1 �m scale is consistent

with diffusion theory [1].

On the theoretical side, first-principles calculations of

lattice thermal conductivity and phonon MFPs have

emerged in recent years [8,13–16]. Although quantitative

discrepancies between different models still persist, they

invariably point to a large contribution of low-frequency

phonons to heat transport. For example, simulations by

Henry and Chen [13] have indicated that phonons with

MFP exceeding 1 �m contribute almost 40% to room-

temperature thermal conductivity of Si.

Measuring nondiffusive thermal transport at small dis-

tances in a configuration that can be quantitatively com-

pared to theoretical models has been a challenge for

experimentalists. Theoreticians favor the model of heat

transport through a slab of material between two black-

body walls [8,17], which is all but impossible to realize in

experiment. Just to mention one difficulty, any real inter-

face between two materials involves thermal boundary

resistance, which by itself presents a longstanding problem

in nanoscale thermal transport [1,18]. For a persuasive

demonstration and to enable theoretical analysis beyond

the diffusion model, an experiment should preferably

(i) avoid interfaces, (ii) ensure one-dimensional thermal

transport, and (iii) clearly define the distance of the heat

transfer and provide a way to vary this distance in a

controllable manner. Experiments revealing nondiffusive

transport on submicron length scales [3–5] were done with

more complicated configurations involving heat transport

from an irradiated film into a substrate, with the effective
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heat transfer distance in the substrate only indirectly

inferred.

A method satisfying the above requirements has in fact

been well known under the name laser-induced transient

thermal gratings [19,20]. In this method, two short laser

pulses are crossed in a sample resulting in an interference

pattern with period L defined by the angle between the

beams. Absorption of laser light leads to a spatially peri-

odic temperature profile, and the decay of this temperature

grating by thermal transport is monitored via diffraction of

a probe laser beam. The heat transport from grating peaks

to nulls does not involve heat transfer across any interfaces

and the distance scale is controlled by the period of the

optical interference pattern. An additional advantage of

the method is a spatially sinusoidal temperature profile

facilitating theoretical treatment.

In this Letter, we present transient thermal grating mea-

surements of in-plane heat transport in freestanding silicon

membranes. By varying the grating period we are able

to directly measure the effect of the heat transfer distance

on thermal transport [21].

The freestanding silicon membranes were fabricated by

backside etching of a silicon on insulator (SOI) wafer. In

this process, the underlying Si substrate and buried oxide

layer are removed through a combination of dry and wet

etching techniques to leave a top layer of suspended silicon

as shown in Fig. 1(a) (also see [24]). Measurements were

conducted on two 400 nm thick membranes (membranes

1 and 2) with 400� 400 �m2 freestanding area fabricated

on the same SOI wafer.

Excitation laser pulses (wavelength �e ¼ 515 nm, pulse

duration 60 ps) were crossed in the Si membrane with

external angle �e as depicted in Fig. 1(b). Interference

between the two beams created a spatially periodic intensity

and absorption pattern with interference fringe period

L ¼ �e=2 sinð�e=2Þ. Above-band-gap photon absorption in

the silicon membrane led to excitation of hot carriers, which

promptly transferred energy to the lattice and relaxed to the

bottom of the conduction band [25]. Energy was deposited

with a sinusoidal intensity profile resulting in a transient

thermal ‘‘grating’’ with periodL, i.e., with carrier population
and induced temperature rise modulated as (1þ cosqx)
where q ¼ 2�=L is the grating ‘‘wave-vector’’ magnitude;

excited carriers and heat subsequently diffused from grating

peaks to nulls. The membrane thickness was selected to be

smaller than the �1 �m absorption depth at the excitation

wavelength to ensure one-dimensional in-plane heat trans-

port, with the temperature gradient and heat flux only in the

transient gratingdirection, parallel to themembrane surfaces.

Themeasurementswere performed in ambient air. The effect

of the thermal conductivity of air on the thermal grating

decay in themembranewas negligible as shownbymodeling

heat transport in a membrane in ambient medium [24].

Increased temperature and excited carriers induced

changes in the complex transmittance, giving rise to

time-dependent diffraction of a continuous wave probe

beam (wavelength �p ¼ 532 nm). We used optical hetero-

dyne detection whereby the diffracted signal was super-

posed with the local oscillator, or reference beam.

Heterodyne detection not only increases the signal level

but also yields a signal linear with respect to the material

response that simplifies the interpretation and analysis of

the data [24]. A simple setup using a diffraction grating

to produce both excitation and probe-reference beam pairs

ensures the precise overlap of the probe and reference

beams as well as the stability of the heterodyne phase

[24,26]. The signal and reference beams were directed to

a fast detector, whose output was recorded on an

oscilloscope.

Data were collected at �15 transient grating periods

ranging from 2.4 to 25 �m in the two silicon membranes.

Figure 2(a) shows traces collected from membrane 1 with

transient grating periods from 3.2 to 18 �m. A complete

wave form shown in the inset reveals a sharp negative peak

due to electronic excitation. Fortunately, the ambipolar

carrier diffusion coefficient in Si is about an order of magni-

tude greater than the thermal diffusivity [27]; therefore,

electronic and thermal relaxations are well separated in the

time domain: after the carrier population grating is washed

out due to carrier diffusion we are left with a purely thermal

grating which decays more slowly. For example, the elec-

tronic decay time seen in the inset in Fig. 2(a) is 1.7 ns while

the thermal decay time is 26 ns, as determined by a biexpo-

nential fit [24]. From the traces in Fig. 2(a), we can see that

the thermal decay becomes slower as the grating period

increases; it takes longer for heat to move from grating

peaks to nulls. According to the thermal diffusion equation,

the temperature perturbation decays exponentially [19],

Tðx; tÞ / cosqx expð��tÞ, with the decay rate � given by

� ¼ �q2 ¼ kq2=C; (1)

where � is the thermal diffusivity, equal to the ratio of the

thermal conductivityk to the heat capacity per unit volumeC.

FIG. 1 (color online). Schematics of the sample and the ex-

periment. (a) Freestanding Si membranes are fabricated from

SOI wafers by backside etching. (b) Pump pulses are crossed in

the silicon membrane, generating the transient thermal grating

monitored via diffraction of the probe beam. Diffracted probe

light is combined with a reference beam and directed to a fast

detector.
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We found that the thermal decay remains exponential

within the whole range of grating periods [24]. However,

the decay rate deviates from the expected q2 dependence as
can be seen in Fig. 2(b). This departure from diffusive

behavior is even more apparent in Fig. 3(a) where we

have plotted the effective thermal conductivity, obtained

from the measured decay rate using Eq. (1), scaled by the

bulk Si value, as a function of the grating period for the two

membranes. At large grating periods, the thermal conduc-

tivity approaches a constant level, which is still signifi-

cantly smaller than the bulk conductivity. It is well known

that in-plane thermal conductivity of thin membranes is

reduced due to scattering of phonons at the boundaries

[11,17]. However, as long as the diffusion model is valid,

the thermal grating decay rate should vary as q2, and the

measured thermal conductivity value should remain inde-

pendent of the grating period. We observed a significant

further reduction in the measured thermal conductivity as

the grating period was reduced below about 10 �m, clearly

indicating a departure from diffusive thermal transport.

The decrease in the effective thermal conductivity is

explained by the transition from a diffusive to a ballistic

transport regime for the low-frequency part of the phonon

spectrum. There is no contradiction with the intuitive

expectation that ballistic transport should be faster than

diffusive transport; indeed, the grating decay is always

faster at shorter periods as seen directly in Fig. 2(a).

However, the increase in decay rate with wave vector is

slower than quadratic at short length scales since the

traversal time of heat carried by ballistic phonons

decreases linearly with distance, not quadratically as in

the diffusive limit.

In the relaxation time approximation that works well

for Si above �100 K [14], thermal conductivity is given

by the integral over the phonon spectrum,

k ¼
1

3

Z !max

0
C!v�d!; (2)

where C! is the differential frequency-dependent specific

heat per unit volume, v is the phonon group velocity, � is

the frequency-dependent MFP, and the summation over all

phonon branches is implied. According to the Fourier law

of heat conduction, the contribution of phonons at a given

frequency to the heat flux is given by Q! ¼ C!v��T=3l,
where l is the distance between the heat source and the

heat sink and �T is the temperature difference. In this

model the heat flux is supposed to increase indefinitely

with increasing MFP, which cannot be true; obviously, it

cannot exceed the purely ballistic blackbody radiation

limit [12], Q!bb ¼ C!�T=4. Thus the contribution of

FIG. 3 (color online). (a) The normalized effective thermal conductivity versus transient grating period compared with theory.

(b) The calculated effective thermal conductivity as a function of the grating period and the membrane thickness.

FIG. 2 (color online). Experimental data from membrane 1. (a) Thermal decay traces for transient grating periods ranging from 3.2 to

18 �m. The decay time increases with the grating period. The inset shows the complete trace for the 7:5 �m period. (b) Thermal

grating decay rate versus the grating wave vector squared showing the departure from diffusive behavior. The dashed line representing

the diffusion model was obtained by fitting the low-wave-vector data in the range L ¼ 15–25 �m.
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ballistic phonons with � � l to thermal transport will be

suppressed at least by a factor of ð3=4Þðl=�Þ compared to

the predictions of the diffusion model. In the simplest

approach, the contribution of all phonons with �> l is
simply disregarded, while for all phonons with �< l the
diffusion model is assumed to hold [5,7]. In this case the

effective thermal conductivity is found by simply cutting

off the low-frequency part of the integral in Eq. (2).

The simplicity of the transient grating geometry allowed

us to develop a more rigorous theory of the thermal grating

relaxation in a bulk material based on the Boltzmann

transport equation for phonons with MFP on the order of

or larger than l ¼ L=2 in combination with the diffusion

equation for the ‘‘thermal reservoir’’ of high-frequency

phonons with � � l [28]. We found that the grating decay

remains exponential with the decay rate obtained by

replacing the thermal conductivity in Eq. (1) by the effec-

tive conductivity,

keff ¼
1

3

Z !max

0
AC!v�d!

Aðq�Þ ¼
3

q2�2

�

1�
arctanðq�Þ

q�

�

;

(3)

where the ‘‘correction factor’’ A becomes unity in the

diffusive limit q� � 1 and falls off as ðq�Þ�2 in the

ballistic limit q� � 1. Unlike the simple ‘‘cutoff’’ model,

Eq. (3) describes a smooth transition between diffusive and

ballistic limits. The contribution of ballistic phonons to

thermal transport is suppressed even more than according

to the estimate based on the blackbody radiation limit

because in the transient grating experiment the heat trans-

port does not occur between blackbodies. To the contrary,

our heat ‘‘sources’’ and ‘‘sinks,’’ i.e., maxima and minima

of the thermal grating, become almost transparent for

ballistic phonons in the limit q� � 1, which accounts

for an additional factor of�ðq�Þ�1 in the ballistic phonon

contribution to the heat flux.

In order to calculate the effective thermal conductivity

according to Eq. (3), one needs to know the phonon density

of states, group velocities, and relaxation times for all

phonon branches. For Si at room temperature, these quan-

tities have been computed from first principles [8,13–16].

We used the results of Ref. [13] presented in the form of

thermal conductivity accumulation vs MFP, which is par-

ticularly convenient for our purposes [24]. The calculated

effective thermal conductivity for thermal grating relaxa-

tion in bulk Si is shown by the solid curve in Fig. 3(b). The

effective conductivity approaches the bulk value at large

grating periods and decreases at small periods. The calcu-

lation is valid under the assumption [26] that diffuse

phonons with � � L=2 account for most of the specific

heat, which holds well at L > 1 �m.

In a thin membrane, the effective thermal conductivity is

additionally reduced by boundary scattering. The classic

formula for the effective MFP in a thin film was obtained

(originally for electrons) by Fuchs [29]. The rigorous

analysis of the thermal grating relaxation in the presence

of boundary scattering is outside the scope of this report.

We estimate the combined effect of the finite heat transfer

distance in the transient grating measurement and the

boundary scattering in the membrane by using the reduced

MFP from the Fuchs-Sondheimer theory [30] instead of the

bulk MFP in our Eq. (3) [24]. While admittedly lacking

mathematical rigor, this approach yields correct results in

the limiting cases when boundary scattering either domi-

nates or is negligible. In Fig. 3(b), alongside the curve for

bulk Si, we show the calculated results for three membrane

thicknesses. In the large L limit the effective thermal

conductivity approaches a constant value determined by

the membrane surface scattering. For thinner membranes,

the onset of the nondiffusive effect is shifted towards

shorter grating periods. As can be seen in Fig. 3(a), the

calculations for d ¼ 400 nm agree reasonably with the

experiment given the uncertainties in the phonon MFP

values obtained by different authors [13,14].

The fact that the deviations from the Fourier law in

phonon mediated-thermal conductivity occur at much

larger distances than previously thought should change

the way we think of microscale thermal transport. One

immediate implication is that accurate measurements of

bulk thermal conductivity may be impossible on micron-

sized samples. We have seen that the commonly cited

textbook values of an ‘‘average’’ phonon MFP are of little

relevance in analyzing the onset of size effects in thermal

conductivity. Perhaps a more useful parameter would be

the ‘‘median thermal conductivity MFP’’ �m, such that

phonons with �>�m contribute 50% to the bulk thermal

conductivity. For Si at room temperature, calculations

show this median MFP �m to be �0:5–1 �m [13,14,16].

The behavior of �m will be quite different from that of the

average MFP. For example, impurity scattering makes all

MFPs shorter; however, it affects primarily high-frequency

phonons. Therefore �m may be in fact made larger by

impurity scattering leading to larger size effects in semi-

conductor alloys compared to pure materials [5]. For the

same reason, we may expect larger size effects in thermal

transport in natural diamond than in isotopically pure dia-

mond contrary to what has been traditionally believed [17].
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