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Surface waves on fluids with wavelengths in the millimeter range are known as capillary waves.
Surface tension determines the propagation and dispersion of capillary waves while gravity plays a
minor role. We describe a simple method for generating standing capillary waves of known
frequency on water and introduce a novel noncontact technique based on laser interferometry to
measure the wavelength of capillary waves with great precision. The data gives the dispersion
relation of capillary waves and provides an accurate method for determining the surface tension of
fluids. © 2006 American Association of Physics Teachers.
�DOI: 10.1119/1.2215617�
I. INTRODUCTION

Surface waves on water may be divided into two regimes.
The familiar waves on lakes and oceans, with wavelengths
ranging from hundreds of meters to a few centimeters, are
called gravity waves. As the name implies, the dominant
restoring force is gravity, which returns the disturbed surface
of the water to equilibrium. Waves with wavelengths of a
few millimeters and less are known as capillary waves. In
this regime the dominant restoring force is the surface ten-
sion, which tends to minimize the surface area by smoothing
out any wrinkles. Waves with intermediate wavelengths are
known as capillary-gravity waves where gravity and surface
tension play comparable roles.

It is difficult to obtain reliable experimental data for the
dispersion of capillary waves because of the difficulty of
measuring the wavelength and frequency of these miniature
waves with the required precision. The most common
method has been photon correlation spectroscopy,1–3 where
one analyzes line broadening of scattered light from ther-
mally excited capillary waves to extract dispersion and at-
tenuation data.4–9 The usefulness of light scattering is limited
because it is most suitable for studying capillary waves with
wavelengths in the submicrometer range. Furthermore, re-
cent studies show a significant reduction of surface energy of
liquid interfaces at submicrometer length scales.10 Because
surface tension governs the dispersion of capillary waves, the
dispersion data from light scattering is greatly affected by the
reduction of surface tension at the very short wavelengths
associated with thermally excited waves.

Because surface waves on fluids are very familiar to most
undergraduates and fascinating, the experimental study of
capillary waves is of interest and provides an excellent op-
portunity to study hydrodynamics. Unfortunately, apart from
the limitations of the technique, the equipment for surface
light scattering is complex and expensive.11–14 Several recent
attempts have been made to devise scaled down versions of
the research instrumentation for use by undergraduates,15,16

but the inherent limitations of the light scattering technique
have limited widespread adoption of the method.

In this paper we describe a relatively simple noncontact
method for the generation of standing capillary waves of
known frequency in the millimeter wavelength regime and
discuss a new technique for measuring their wavelength us-
ing a miniature laser interferometer with an uncertainty of

about 0.1%. The wavelength data provide a very reliable

957 Am. J. Phys. 74 �11�, November 2006 http://aapt.org/ajp
dispersion relation, which yields accurate values of the phase
and group velocities for capillary waves and the fluid surface
tension.

The general properties of surface waves and the special
characteristics of standing capillary waves are reviewed in
Sec. II. We also give a new derivation of the dispersion re-
lation, which exploits the conservation of energy as applied
to standing waves. In Sec. III we introduce the technique for
generating the standing capillary waves and discuss the in-
terferometric technique for measuring their wavelengths. The
results are discussed in Sec. IV.

II. THEORETICAL BACKGROUND

Low amplitude harmonic waves on deep water are
circular.17,18 Consider the case of capillary waves on the free
surface of a lake. For convenience we choose a coordinate
system in which the free equilibrium surface of the lake
forms the x-z plane and the y axis is along the vertical. A
right-circular wave traveling in the +x direction is repre-
sented by

�1 = aeky�− sin�kx − �t�i + cos�kx − �t�j� , �1�

where �1 represents the displacement of a fluid element
whose equilibrium position in the absence of the wave is at
point �x ,y�; a is the wave amplitude, � is the angular fre-
quency, k=2� /� is the wave number with � as the wave-
length, and i and j are the unit vectors along the x and y axes.
Note that �1 does not depend on z and the wave amplitude
diminishes exponentially with depth below the surface. At a
depth equal to one wavelength, the wave amplitude is less
than 0.2% of the amplitude at the surface. Consequently the
water is considered deep when its depth is greater than one
wavelength. The condition for a low amplitude wave is sat-
isfied when a��.

The velocity of a fluid element whose equilibrium position
is at �x ,y� is given by

v1 = ��1/�t = a�eky�cos�kx − �t�i + sin�kx − �t�j� . �2�

Figure 1 is a representation of a right-handed circular wave
traveling along the positive x direction with the phase speed
� /k. The amplitude of the wave has been exaggerated for
clarity. The dashed arrows show the displacement of several
fluid elements from their equilibrium positions; the solid ar-

rows represent the velocity of these same fluid elements.
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Each fluid element moves clockwise with speed a� along a
circular path of radius a, centered on its equilibrium position
�x ,y�, once every cycle. Similarly, a left-circular wave �2

traveling in the −x direction may be represented by

�2 = aeky�− sin�kx + �t�i + cos�kx + �t�j� . �3�

A. Standing waves

The superposition of �1 and �2 results in a standing wave
given by

� = �1 + �2 = 2aeky cos �t��cos kx�j − �sin kx�i� �4�

v = ��/�t = − 2a�eky sin �t��cos kx�j − �sin kx�i� . �5�

At the surface where y=0, Eq. �4� reduces to

� = 2a cos��t�j , �6�

for x=0, ±� /2, ±2� /2 , . . . ±n� /2, n=0,1 ,2 ,3 , . . . The dis-
placement � has only a vertical component at these values of
x, which mark the lines of antinodes. That is, on the surface
points along these lines, which run parallel to the z axis,
water moves up and down with amplitude 2a. For the corre-
sponding points below the surface, the amplitude is reduced
exponentially and is given by 2aeky.

For the surface points for which x= ±� /4,
±3� /4 , . . . ± �2n+1�� /4, n=0,1 ,2 ,3 , . . ., Eq. �4� reduces to

� = 2a cos��t�i , �7�

indicating that � is purely horizontal at these points, that is,
the fluid elements move back and forth parallel to the surface
with amplitude 2a. Again, directly below these points the
displacement amplitude is modulated by the eky factor.

At points other than the nodes and antinodes water ele-
ments moves at an angle to the vertical as is evident from Eq.
�4�. For example, at x= ±� /8, ±3� /8, the water elements
move at ±45 ° to the vertical.

B. Dispersion relation

Most texts on hydrodynamics obtain the dispersion rela-
tion of capillary-gravity waves by applying the boundary
condition at the free surface to the velocity potential.19–22 In
recent years several alternative approaches have appeared to
make the derivations more accessible to undergraduates.23–26

Here we present the outline of a new and more intuitive

Fig. 1. Schematic representation of a traveling water wave as described by
Eqs. �1� and �2�. The amplitude of the wave has been exaggerated for clarity.
The solid arrows represent the velocity of several water elements; the
dashed arrows show the displacement of the same water elements from their
equilibrium positions. Each water element moves with speed a�eky in a
clockwise direction around the circular path of radius aeky, centered on its
equilibrium position �x ,y�, once every cycle.
derivation of the dispersion relation, based on conservation
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of energy.27 Consider a region of deep water on which a
standing capillary wave has been established. Equations �4�
and �5� describe the resulting standing wave. Recall that
��x ,y , t� and v�x ,y , t� give at time t the displacement and
velocity of a water element whose equilibrium position is at
point �x ,y�. According to Eq. �5�, at time t=0 the standing
wave is stationary. Hence the displacement is a maximum
and thus the entire energy of the wave is in potential form,
partly gravitational and partly surface energy. A quarter pe-
riod later, when t=� /4=� /2�, the displacement is zero but
the velocity attains its maximum value. So at t=� /4 the en-
tire energy of the wave is kinetic. Conservation of energy
demands that the potential energy at t=0 should equal the
kinetic energy at t=� /2�. This observation yields the de-
sired expression for the dispersion of surface waves.

In particular, at t=0, when the entire energy is potential,
the gravitational potential energy part of the wave per unit
surface area is given by Ug=g�a2, where � is the fluid den-
sity and g is the gravitational acceleration. The potential en-
ergy per unit area residing in the excess surface generated by
the wave is given by Us=a2k2�, where � is the surface ten-
sion. So at t=0, the total energy of the wave per unit area is

Et = Ug + Us = g�a2 + a2k2� . �8�

At t=� /4=� /2�, the entire wave energy is kinetic. The en-
ergy per unit area is given by27

Et = �a2�2/k . �9�

If we equate Eqs. �8� and �9� for the total energy, �a2�2 /k
=g�a2+a2k2�, we obtain the well-known dispersion relation
for surface waves,

�2 = gk + k3�/� . �10�

In light of Eq. �8�, when the entire wave energy is in
potential form, the ratio of the surface energy to the gravita-
tional energy may be written as

Us/Ug = k2�/g� . �11�

Equation �11� implies that the gravitational and surface en-
ergies are equal at a special wave number k*, where

k* = �g�/��1/2. �12�

The corresponding wavelength �*=2� /k*=2��� /g��1/2 is
the wavelength at which both gravity and surface tension
play equal roles.

C. Phase and group velocities

Equation �10� may be used to obtain the phase and group
velocities of surface waves. Thus,

v� = �/k = �g/k + �k/��1/2, �13�

and

vG = d�/dk = �1/2���g + 3�k2/��/�gk + �k3/��1/2� . �14�

In Fig. 2 we plot the phase and group velocities as func-
tions of the wavelength. Note that the wavelength scale is
logarithmic to accommodate both capillary and gravity
waves. The two graphs cross when the phase and group ve-
locities become equal, that is, when v�=vG. Not surprisingly,

* 1/2
if we equate Eqs. �13� and �14� we obtain k = �g� /�� , or
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�* = 2���/�g�1/2. �15�

For pure water at 20 °C �*=1.7 cm. At this wavelength,
v�=vG= �4g� /��1/4=23 cm/s. A related parameter, the
capillarity length, is defined by the expression 	�1/k*

=�* /2�= �� /g��1/2. For pure water 	=0.27 cm.
Another feature of the graphs in Fig. 2 is that for capillary

waves, the group velocity exceeds the phase velocity. For
very short wavelength capillary waves with k2
�g /�, Eqs.
�13� and �14� may be approximated to give

v� � ��k/��1/2, �16a�

vG � 3/2��k/��1/2 = 3/2v�. �16b�

For capillary waves the group velocity is 3 /2 times that of
the phase velocity. As mentioned, in this wavelength regime
the surface tension is the dominant restoring force. In other
words, because k2
�g /�, we may neglect the gravity term
in the dispersion relation to obtain

�2 � �k3/� . �17�

Equation �17� can be recast into the Kelvin equation, which
relates the surface tension of a fluid to the frequency and
wavelength of the capillary waves,

� � ��2/k3. �18�

In the long wavelength regime we may neglect the surface
tension term because k2��g /�. In this case Eqs. �13� and
�14� give

v� � �g/k�1/2, �19a�

vG � 1/2�g/k�1/2 = 1/2v�. �19b�

For gravity waves the phase velocity is twice the group ve-
locity.

III. EXPERIMENTAL TECHNIQUE

The experimental technique has been described in detail in
Refs. 28–30. Here we present a summary. A Teflon trough
�6 cm�46 cm, with a depth of 1 cm� is used to contain the
fluid of interest. Thermoelectric cells underneath the trough

Fig. 2. Phase and group velocities of water waves as functions of the wave-
length. Note that at the special wavelength of 1.70 cm the two velocities
have the same value �23 cm/s�.
regulate the temperature. To minimize air currents and me-
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chanical disturbances, the experimental system is housed in
an enclosure and placed on an isolation table.

Capillary waves are generated electronically by placing a
metallic blade a few tenths of a millimeter above the fluid
surface. A dc-biased sinusoidal voltage of a few hundred
volts at a selected frequency is applied between the blade and
the fluid. For polar fluids such as water or water based binary
fluids, the alternating electric field under the blade generates
two capillary wave trains that recede from the blade on each
side. Typically the amplitude of these waves is of the order
of one micrometer.

The capillary waves are detected by using a fiber-optic
system which functions as a miniature laser interferometer.
The heart of the system consists of a single mode optical
fiber, one end of which is positioned a short distance above
the fluid surface �see Fig. 3�. Laser light traveling through
the optical fiber is partially reflected from the cleaved tip of
the fiber and again from the fluid surface. The two reflected
beams travel back through the same fiber and generate an
interference signal at the detector. As the fluid level under the
probe changes due to the wave motion, the gap between the
fiber tip and the fluid surface changes causing a periodic
change in the path difference. Thus, the number of fringes in
the periodic interference signal gives an accurate measure of
the wave amplitude.

Figure 3 is a schematic of one wave generating blade and
a fiber probe. The fiber-optic probe is mounted on an elec-
tronic micrometer that records the probe position on the sur-
face with an accuracy of about one �m. The distance from
the tip of the probe to the equilibrium surface is d0, and the
roundtrip distance between the tip of the probe and the fluid
surface, that is, the path difference between the two reflected
beams, is 
. A typical wavelength is about one millimeter,
and a typical wave amplitude is less than one micrometer.
The wave amplitude has been vastly exaggerated for clarity
in Fig. 3.

A schematic of the optoelectronic system is shown in Fig.
4. Part of the laser light is split by the cube splitter and used
as a reference signal at the detector to compensate for any
laser output fluctuations. The main beam passes through a
birefringent cube and is split into two equal beams for use in
the two fiber-optic probes. The Gould multiplexer is essential
in routing the interference signal to the detector and prevent-
ing the signal from returning back to the laser. The Faraday
rotator further isolates and protects the laser cavity from
“seeing” any reflected signal.

The interference signal is detected, amplified, and digi-
tized for later analysis. The raw interference signal for a half

Fig. 3. Schematic of a fiber-optic probe and a wave-generating blade above
the fluid surface.
period is shown at the top of Fig. 5. The solid curve repre-
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sents the fit, which replicates the trace faithfully. The dashed
curve gives the vertical displacement of the surface wave
under the probe as a function of time.

There is a one to one correspondence between the surface
wave amplitude and the resulting interference pattern. As
discussed in Ref. 31, the number of fringes in the interfer-
ence pattern for a half period is proportional to the wave
amplitude under the probe. In a half period, the fluid surface
under the probe suffers a displacement of 2a as the wave
trough follows the wave crest. The corresponding change in
the path difference between the two reflecting beams is 4a.
Thus the number of fringes for a half-period in the interfer-
ence pattern is 4a /�l, where �l is the wavelength of the laser
light. For the pattern shown in Fig. 5 the number of fringes is
6.78. Because the wavelength of the He-Ne laser used here is
�l=633 nm, the amplitude of the wave is 1.07 �m.

A standing wave is generated when two waves of the same
frequency and amplitude move in the same space but in op-
posite directions. Two generating blades are used to establish
a standing capillary wave on the surface between the two
blades. Each blade sends a wave train toward the other with
the same amplitude and frequency. If the distance between
the two blades D is chosen to be a half odd-integer wave-
length, D= �2n+1�� /2, then the two wave trains interfere
destructively on the outer sides of the blades. This choice of

Fig. 4. Schematic of the optical and electronic detection system. The Gould
multiplexer is essential for routing the interference signal to the detector.
The Faraday rotator isolates and protects the laser cavity from any reflected
signal.

Fig. 5. The interference signal for one half wavelength. The raw interfer-
ence signal for the half period is shown at the top of the frame. The solid
curve is the fit, which replicates the trace faithfully. The dashed curve gives
the vertical displacement of the surface wave under the probe as a function
of time. The right scale is for the interference signal and the left scale is for

the wave amplitude.
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the blades’ separation produces a region of standing waves
between the blades while the surface outside the blades re-
mains calm. One of the two probes is used to monitor the
region outside the blades.

When a standing wave is established on the fluid surface
between the two blades, the accurate measurement of the
distance between several nodes determines the wavelength of
the wave very accurately. We move one of the two fiber-optic
probes over the surface, starting near one blade and moving
toward the other. As the probe moves over nodes and antin-
odes, the interference fringe count peaks at an antinode and
diminishes to zero over a node. Thus it is possible to count
the number of nodes as the probe scans the surface. Because
a digital micrometer monitors the probe’s position, we can
measure the wavelength of the standing capillary waves to
within one µm.

IV. RESULTS AND DISCUSSION

In Fig. 6 we plot the experimental phase velocity v�= f�
as a function of the wavelength � at a temperature of 20 °C.
Each data point is obtained by measuring the wavelength of
the capillary wave at a given frequency. The solid line is the
theoretical expression for the phase velocity given by

v� = �g/k + �k/��1/2. �20�

The parameters g, �, and k=2� /� are known; the surface
tension � is the only adjustable parameter. For the graph
shown in Fig. 6, the best fit to the data points is obtained for
�=72.8±0.1 dyne/cm.

Although this way of extracting the experimental value of
surface tension from the dispersion data is simple, there is a
more convenient alternative. The dispersion relation may be
recast in the form

�2/k = g + �k2/� . �21�

A plot of the experimental values of �2 /k as a function of k2

gives a linear graph with a slope of � /�. Figure 7 shows the
experimental data for pure water at 20 °C. The solid line is
generated by plotting �g+�k2 /�� versus k2 with � as the only
adjustable parameter. Not surprisingly, the best fit is obtained
for �=72.8±0.1 dyne/cm.

The dispersion data is temperature dependent because sur-

Fig. 6. Phase velocity of pure water vs wavelength at 20 °C. The solid line
is the theoretical phase velocity using the surface tension value of
72.8±0.1 dyne/cm.
face tension and density are functions of temperature. When
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the temperature dependence of the density is known, the
temperature dependence of surface tension is easily measur-
able with our system. Our data at 25 °C is very similar to the
data at 20 °C, except that the fit gives a value of �
=72.0 dyne/cm.

The measurement of surface tension has been of much
interest for more than a century, and many ingenious experi-
mental methods have been devised.32,33 The most intuitive
method is the pull method, which measures the force needed
to pull a suitable object out of the fluid surface and relates
the pull force to the surface tension. The most commonly
used versions of the pull method are the Wilhelmy plate and
the du Nouy ring methods. These versions are simple in prin-
ciple, but are prone to measurement errors due to the uncer-
tainty introduced by the difficulty of measuring the contact
angle at the solid liquid interface accurately. Often a plati-
num plate or a platinum-iridium ring is used to minimize the
effect of the contact angle variation. In practice the plate or
the ring must be fire cleansed just before taking a measure-
ment to allow one to assume a zero contact angle. Often it is
necessary to apply certain correction factors to obtain good
results.32

In contrast, our method introduces no correction factor or
unknown parameter and gives the surface tension without
any instrumental contact with the surface. Because surface
contamination is a major cause of error in determining the
surface tension of fluids and particularly fluids covered by
surfactant monolayers, the method described here provides a
distinct advantage in this regard. However, our method
works well only for polar fluids due to the fact that in our
system capillary waves are generated by the action of an
oscillating electric field between the blade and the fluid. Wa-
ter works very well because it is a polar fluid. We have
experienced no difficulty in obtaining dispersion data on bi-
nary mixtures of glycerin-water, acetone-water, and
ethylene-water mixtures containing as little as 10% water.
The method is also very suitable for measuring the surface
tension when a surfactant or monolayer covers the water sur-
face.

a�Present address: Department of Physics, Georgia Institute of Technology,
Atlanta, GA 30332.

Fig. 7. The data points give the experimental values of �2 /k vs k2. The solid
line is a plot of �g+�k2 /�� as a function of k2 with � as the adjustable
parameter. The best fit is obtained for �=72.8±0.1 dynes/cm.
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