
elifesciences.org

Liu et al. eLife 2014;3:e03406. DOI: 10.7554/eLife.03406 1 of 12

Direct measurement of the mechanical 
work during translocation by the 
ribosome
Tingting Liu1,2†‡, Ariel Kaplan1,2,3,4*†, Lisa Alexander5, Shannon Yan5, Jin-Der Wen5§, 
Laura Lancaster6,7, Charles E Wickersham1,2, Kurt Fredrick6,7¶, Harry Noller6,7, 
Ignacio Tinoco Jr5, Carlos J Bustamante1,2,5,8,9*

1Jason L Choy Laboratory of Single Molecule Biophysics, University of California, 
Berkeley, Berkeley, United States; 2Department of Physics, University of California, 
Berkeley, Berkeley, United States; 3Faculty of Biology, Technion-Israel Institute of 
Technology, Haifa, Israel; 4Lorry I Lokey Interdisciplinary Center, Technion-Israel 
Institute of Technology, Haifa, Israel; 5Department of Chemistry, University of 
California, Berkeley, Berkeley, United States; 6Department of Molecular, Cell, and 
Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States; 
7Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, 
United States; 8California Institute for Quantitative Biosciences, University of 
California, Berkeley, Berkeley, United States; 9Department of Molecular and Cell 
Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, 
United States

Abstract A detailed understanding of tRNA/mRNA translocation requires measurement of the 
forces generated by the ribosome during this movement. Such measurements have so far remained 
elusive and, thus, little is known about the relation between force and translocation and how this 
reflects on its mechanism and regulation. Here, we address these questions using optical tweezers 
to follow translation by individual ribosomes along single mRNA molecules, against an applied 
force. We find that translocation rates depend exponentially on the force, with a characteristic 
distance close to the one-codon step, ruling out the existence of sub-steps and showing that the 
ribosome likely functions as a Brownian ratchet. We show that the ribosome generates ∼13 pN of 
force, barely sufficient to unwind the most stable structures in mRNAs, thus providing a basis for 
their regulatory role. Our assay opens the way to characterizing the ribosome's full mechano–
chemical cycle.
DOI: 10.7554/eLife.03406.001

Introduction
Ribosomes possess three binding sites for tRNA: the aminoacyl (A), peptidyl (P), and exit (E) sites, each 
of which is shared between the 30S and 50S ribosomal subunits. Following codon recognition and 
peptide bond formation, the ribosome has a deacylated tRNA in the P site and a peptidyl-tRNA in the 
A site. In order to start a new elongation cycle, the A site must be emptied to allow binding of the next 
aminoacyl-tRNA. To this end, the tRNAs and mRNA must move relative to the ribosome. This movement 
occurs in two steps (Moazed and Noller, 1989b): first, the 3′ ends of the tRNAs in the A and P sites move, 
with respect to the 50S subunit, into hybrid A/P and P/E states, respectively. In vitro, formation of these 
states can occur spontaneously, reversibly, and independently of elongation factor G (EF-G) (Moazed 
and Noller, 1989b; Sharma et al., 2004; Cornish et al., 2008; Munro et al., 2010) and is coupled to 
rotation of the 30S body (Moazed and Noller, 1989b; Frank and Agrawal, 2000; Agirrezabala et al., 

*For correspondence: 
akaplanz@technion.ac.il (AK); 
carlos@alice.berkeley.edu (CJB)

†These authors contributed 
equally to this work

Present address: ‡Cell Biology 
and Biophysics Unit, Porter 
Neurosciences Research Center, 
National Institute of Neurological 
Disorders and Stroke, Bethesda, 
United States; §Institute of 
Molecular and Cellular Biology, 
National Taiwan University, 
Taipei, Taiwan; ¶Department of 
Microbiology, The Ohio State 
University, Columbus, United 
States

Competing interests: The 
authors declare that no 
competing interests exist.

Funding: See page 10

Received: 19 May 2014
Accepted: 14 July 2014
Published: 11 August 2014

Reviewing editor: Xiaowei 
Zhuang, Harvard University, 
United States

 Copyright Liu et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

RESEARCH ARTICLE

http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
http://dx.doi.org/10.7554/eLife.03406
http://dx.doi.org/10.7554/eLife.03406.001
mailto:akaplanz@technion.ac.il
mailto:carlos@alice.berkeley.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Biochemistry | Biophysics and structural biology

Liu et al. eLife 2014;3:e03406. DOI: 10.7554/eLife.03406 2 of 12

Research article

2008; Julian et al., 2008; Dunkle et al., 2011). In the second step, which is irreversible and EF-G-
dependent (Moazed and Noller, 1989b; Savelsbergh et al., 2003), the mRNA is translocated by one 
codon, along with movement of the associated anticodon ends of the tRNAs to the classical P and E 
sites, coupled to an orthogonal rotation of the 30S subunit head domain (Ratje et al., 2010; Dunkle 
et al., 2011; Ermolenko and Noller, 2011; Guo and Noller, 2012; Zhou et al., 2013). The transloca-
tion process also involves other large-scale conformational changes in the ribosome, including reverse 
rotational movements of the 30S subunit body and head (Ermolenko and Noller, 2011; Guo and 
Noller, 2012), and movement of the large subunit L1 stalk into the intersubunit space (Fei et al., 2008; 
Cornish et al., 2009). Translocation is therefore a highly coordinated and complex process composed 
of inter- and intra-molecular, force-generating mechanical movements.

During translation, the ribosome must also overcome significant mechanical barriers posed by 
structured portions of the mRNA. These structures are exploited by the cell to create diverse strate-
gies for translation regulation; for example, pseudoknots and hairpins are used to induce programmed 
frameshifting (Tsuchihashi, 1991; Namy et al., 2006), whereas synonymous mutations that can alter 
the local structure of RNA and codon usage are employed to control protein expression levels (Duan 
et al., 2003; Nackley et al., 2006). Hence, force is not only a product of the chemical reactions during 
translation, but also an important player in the regulation of this process.

Results and discussion
We have designed an experiment to monitor the movement of individual ribosomes against an op-
posing force during translation (Figure 1A). A gene fusion encoding ribosomal protein S16 linked via 
its C-terminus to the biotinylation domain of the biotin carboxyl carrier protein (BCCP) was introduced 
(Link et al., 1997) into the chromosome of Escherichia coli, and biotinylated ribosomes were then purified. 
In the presence of initiation factors, initiator tRNA and GTP, a biotinylated ribosome is assembled at 

eLife digest Producing a protein first requires its gene to be transcribed into a long molecule 
called a messenger RNA (mRNA). A complex molecular machine called the ribosome then translates 
the mRNA code by reading it three letters at a time. Each triplet of letters—known as a codon—
tells the ribosome which amino acid to add next into the protein. After adding an amino acid, the 
ribosome moves along the mRNA molecule to read the next codon and add another amino acid into 
the protein chain.

While researchers understand how protein chains are formed, how the ribosome shifts along the 
mRNA strand—a process called translocation—is still unclear. It is known that this process involves 
many force-generating movements and changes to the shape of the ribosome. However, it is only 
recently that researchers have been able to measure these forces.

Using optical tweezers—an instrument that uses a highly focused laser beam to hold and 
manipulate microscopic objects—Liu, Kaplan et al. followed individual ribosomes as they translated 
an mRNA and measured the effect that applying an opposing force has on the rate of translation. 
The results shed new light on the mechanism of translocation. First, Liu, Kaplan et al. found that 
ribosomes jump directly from one triplet to the next in the mRNA sequence, rather than moving 
there in a series of smaller steps. Next, the results indicate that translocation occurs spontaneously, 
driven by thermal energy, while chemical reactions prevent the reverse movement, in a mechanism 
known as a ‘Brownian Ratchet’.

Measurements of the maximum force generated by the ribosome also give insights into how 
translation is regulated. Strands of mRNA can fold into certain structures that slow down 
translation, because the mRNA must first be unfolded before the ribosome can translate it. Liu, 
Kaplan et al. found that the maximum force generated by a ribosome is only just enough to unwind 
these mRNA structures, making the translation rate highly sensitive to the existence of such 
structures, and the structures themselves of high importance for regulating transcription.

Given its importance as the ultimate decoder of the genetic information, understanding the 
ribosome's function and regulation has broad implications. The work of Liu, Kaplan et al. opens the 
way for a full characterization of the role of mechanical forces in the translation process.
DOI: 10.7554/eLife.03406.002
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the AUG start site of an mRNA, whose 3′ end had been previously annealed to a complementary 
DNA handle harboring a 5′ digoxigenin. The complex is then tethered between a pair of 2.1 µm 
diameter polystyrene beads: a streptavidin-coated bead, which binds to the ribosome and is held by 
suction on the end of a micropipette, and an anti-digoxigenin antibody-coated bead, which binds to 
the DNA handle and is held in an optical trap. Next, a mixture containing elongation factors, aminoacyl-
tRNAs and GTP is introduced into the experimental chamber. The tension in the tether, stabilized by 
an automated feedback routine, produces a constant opposing force as translocation proceeds. 
Translation is followed in real time as a decrease in the tether length between the beads (Figure 1B–C, 
Figure 1—figure supplement 1). No translation signals were detected in the absence of GTP and 
EF-G. (Figure 1E,F).

Ribosomes do not translate the message in a continuous manner, but in bursts of translation sepa-
rated by long pauses (Figure 1B) that do not appear to be correlated with template position. As in all 
single-molecule experiments, there is a distribution of the noise level in the different single ribosome 
trajectories. As a result, some of the trajectories observed during translation bursts exhibit a particu-
larly low noise level, and clearly show that the ribosome moves in periods of stationary dwells that are 
followed by translocation events corresponding to single codon steps (three nucleotides) along the 
mRNA (Figure 1, Figure 1—figure supplement 1). However, in most trajectories the noise prevents 
us from unambiguously identifying the individual steps, and we therefore base our analysis on the 
average properties of the translation bursts. We separate these pauses from active translation bursts 
using a velocity threshold (see ‘Materials and methods’), and calculate the ‘pause-free’ velocity of the 
ribosome (Figure 1C).

Figure 1. Following translation by a single ribosome on a single mRNA. (A) Geometry for single-molecule translation experiments. A biotinylated ribosome 
is loaded onto a single-stranded mRNA and attached to a streptavidin-coated polystyrene bead fixed to a micropipette. The 3′ of the message is 
anchored to a second bead through a 1460 bp DNA/RNA hybrid handle. Calibrated forces can be applied to the ribosome by manipulating the second 
bead with an optical trap, while the translation progress of the ribosome is determined by the change in extension of the tether. (B–D) Typical translation 
events recorded under 4, 6 and 8 pN of constant tension. The upper panels show the codons translated as a function of time, and indicate that transla-
tion proceeds not in a continuous manner, but in a series of translational bursts separated by long pauses. The gray line shows the raw (1 kHz) data, while 
green (translocation) and red (pause) are filtered down to 1 Hz. The lower panels show the instantaneous velocities calculated from the traces above. 
(E and F) Control experiments, under 8 pN of tension, showing that in the absence of GTP or EF-G, no translation signals were detected.
DOI: 10.7554/eLife.03406.003
The following figure supplement is available for figure 1:

Figure supplement 1. A partial translation trace showing an unusually low noise level, and a sequence of presumptive single-codon translocation steps. 
DOI: 10.7554/eLife.03406.004
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We find that as the opposing force, F, is increased, the mean pause-free velocity, v, decreases mon-
otonically (Figure 2), indicating that mRNA translocation is rate limiting under the conditions of the 
experiment. Note that the applied force acts between the 3′ end of the mRNA and the small 30S 
subunit; there is no directly applied force between the mRNA and the large 50S subunit or between 
the 30S and the 50S subunits. In addition, the position of the attachment point (protein S16, in the 
‘back’ of the 30S subunit) was chosen because it is remote of any known functional site and is not 
known to exhibit conformational dynamics during translocation. As a result, force only affects directly 
the mechanical step in which the anticodon loops of the tRNAs move from the A and P sites to the 
canonical P and E sites of the 30S subunit, respectively, together with the concomitant movement of 
the mRNA with respect to the ribosome. Hence, the position of the ribosome relative to the mRNA 
provides a convenient reaction coordinate to follow the translocation reaction during translational 
elongation. We can, thus, fit our data to an Arrhenius expression

0( ) = exp ,
B

F x
v F v

k T

 ⋅  −   

ɶ
 (1)

where xɶ is the typical distance over which the force acts, v0 is the zero-force translocation velocity, kB 
is Boltzmann's constant and T = 296 K is the absolute temperature. The fit yields a zero-force velocity 
v0 = 2.9 codons/s (1.8, 4.0) and a distance xɶ = 1.4 nm (0.9, 1.8). The numbers in parenthesis indicate 
95% confidence bounds.

Notably, these results have implications for the intrinsic step size during translocation: crystal 
structures (Jenner et al., 2010) show that the distance between A- and P-site mRNA codons equals 
1.48 nm. Clearly, at the end of translocation the mRNA has moved by this distance from its pre-
translocation position; however, this value can either reflect a single, one-codon mechanical move-
ment (a single barrier crossing in the free energy surface landscape) or successive smaller substeps 
(multiple barrier crossings) that sum to one codon, for example, three one-nucleotide substeps. 
Directly observing these potential substeps requires a temporal and spatial resolution that is not 
possible in our present experiment because the flexible nature of the mRNA and the relatively low 
forces involved give rise to high levels of thermally-induced fluctuations. However, because the dis-
tance xɶ determined here is similar to the measured one-codon translocation step, we can rule out 
one- and two-nucleotide translocation substeps and conclude that codon translocation is performed 
by the ribosome in a single step.

In addition, our measurements shed light on the mechanism of translocation. Mechano-enzymes in 
general act by coupling a mechanical task (translocation, force generation, work) to a downhill 
chemical reaction (i.e., a reaction that lowers the total free energy of the system) (Bustamante et al., 

2004). Clearly, given the diversity of conformational 
changes and chemical events associated with 
translocation by the ribosome, a complete descrip-
tion of the process should involve diffusion on a 
free-energy hypersurface with high dimensionality. 
However, given that our attachment geometry 
ensures that we affect and probe a single and 
well-defined mechanical coordinate, we can reduce 
this description to a simplified two-dimensional 
picture. In this two-dimensional free energy land-
scape one axis represents the mechanical coordi-
nate that describes the movement of the mRNA 
relative to the 30S subunit, and the other axis the 
chemical coordinate that describes all binding, 
hydrolysis and dissociation processes (Figure 3) 
and, for the sake of simplicity, also conforma-
tional changes that have a reaction coordinate 
orthogonal to the reaction coordinate probed in 
our experiments. The most likely path for the 
reaction occurs along a minimum energy channel 
on this surface and the different events involved 
in translocation can now be described as diffusive 

Figure 2. Pause-free translational velocity as a function 
of opposing force. Data points are the mean velocities 
for all measured traces at each force (N = 54). Error bars 
represent the standard error of the mean. The solid line 

is an exponential fit of the form =

 ⋅  −   

ɶ
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transitions between minima of this (reduced) energy surface. Thus, for example, the classical-to-hybrid 
transitions and the associated ribosomal intersubunit rotations are assigned as movements along 
the chemical coordinate over a rather shallow activation energy that accounts for their reversible 
nature (Munro et al., 2007; Cornish et al., 2008; Fei et al., 2008). The three-dimensional energy 
surface depicted in Figure 3 naturally explains how transition rates are affected when a mechanical 
force is applied. The effect is equivalent to tilting the potential energy surface by rotating the dia-
gram around its chemical axis (Bustamante et al., 2004), hence affecting the rate and equilibrium 
constants of reactions along the mechanical coordinate, for example making translocation more 
(force applied in the aiding or ‘pushing’ direction) or less (force applied in the opposing or ‘pulling’ 
direction) favorable.

Translocation of mRNA and its two associated tRNA anticodon stem-loops from the A and P sites 
to the P and E sites of the 30S subunit (a movement along the ‘mechanical’ axis) must then be coupled 
to a downhill progress along the ‘chemical’ axis. Fundamentally, there are two ways in which this cou-
pling can occur: one possibility is that the energy released by the ‘chemical’ transition is directly har-
nessed to produce the change. In this case, usually called a ‘Power Stroke (PS)’ mechanism, the system 
moves diagonally in the energy landscape. Alternatively, it is possible that the system moves back-and-
forth spontaneously, driven by thermal energy, along the mechanical coordinate, until a chemical tran-
sition, that occurs when the system is in the post-translocated state, prevents the back-translocation 
and ‘rectifies’ this random motion into directed motion. This second mechanism, in which the system 
moves on the energy landscape in two orthogonal steps, is called a ‘Brownian Ratchet (BR)’. Importantly, 
although both these different molecular mechanisms will result in a velocity which depends exponen-
tially on the force, as in the Arrhenius equation above, they will differ in the identity of the distance xɶ 
(Wang et al., 1998): in the PS case, as the post-translocation state is achieved in a single (diagonal) 
transition, the force-dependence of the reaction rate will be given by an Arrhenius expression in which 

††
=x xɶ , that is, the distance along the mechanical coordinate to the transition state during transloca-

tion (Bustamante et al., 2004). Alternatively, in the BR case, the post-translocation state is achieved 

Figure 3. Reduced energy landscape for mRNA translocation. The mechanical coordinate describes the movement of the mRNA relative to the 30S 
subunit, while the chemical coordinate describes all binding, hydrolysis and dissociation processes, in addition to conformational changes with a 
reaction coordinate orthogonal to the translocation coordinate probed in our experiments. Translocation proceeds by diffusive transitions between 
minima of this reduced energy surface. A Power Stroke mechanism involves a diagonal transition, with simultaneous progress in the chemical and 
mechanical axis (dashed, purple line). Alternatively, a Brownian Ratchet (full, red lines) is composed of two orthogonal transitions: a fast equilibrium 
between pre- and post-translocated states along the mechanical coordinated, followed by a ‘rectifying’ chemical transition.
DOI: 10.7554/eLife.03406.006
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via two transitions, and the rate will be given by the product of the (force-dependent) probability of 
spontaneously populating the post-translocation state and the (force-independent) rate of the chem-
ical reaction. As a result, the force dependence of the velocity is dictated by the force-dependent 
equilibrium constant between the pre- and post-translocated states, and hence described by an 
Arrhenius expression in which =

step
x xɶ , that is, equal to the distance between these states, or the step 

size of the motor (Bustamante et al., 2004). While these are two idealized cases and a real system is 
likely to combine features of these two models, the distance determined here (1.4 nm) is very close to 
the full 1.48 nm step size and indicates that, while we cannot fully rule out a PS mechanism, the ribo-
some likely functions as a BR during translocation. Notably, recent crystallographic studies of the ribo-
some bound to EF-G in a translocation intermediate (Chen et al., 2013; Pulk and Cate, 2013; Tourigny 
et al., 2013; Zhou et al., 2013), and a previous structure of the ribosome bound to EF-G in the post-
translocation state (Gao et al., 2009) can lend support for this result and help clarify the identity of the 
reaction that rectifies translocation in this ratchet mechanism: the structures suggest that domain IV of 
EF-G could prevent back-translocation of the P-site tRNA by occupying the A-site, and that intercala-
tion of two highly conserved bases of 16S rRNA into mRNA could prevent its back-translocation. 
These conformational changes could thus act as ‘pawls’ in the BR mechanism. Interestingly, the fact 
that both tRNA and mRNA movements would be locked could contribute to prevent frame shifting.

The force at which the velocity approaches zero (the stall force) represents the maximum force 
that can be intrinsically generated by the motor in a cycle. Our results indicate that the ribosome can 
generate forces as high as 13 ± 2 pN. Remarkably, the ribosome stall force is very close to that 
required to unwind the strongest secondary structure motifs typically present in mRNA (Tinoco  
et al., 2004). The comparable magnitude between the mechanical strengths of RNAs and the stall 
force of the ribosome indicates that RNA secondary structures can have a strong effect on the rate 
of translation (and hence on phenomena such as frameshifting and cotranslational folding of the 
protein) and explains how these structures, while not being insurmountable barriers, can fulfill a 
regulatory role in the cell.

The work generated by the ribosome near stalling, that is, the product of the stall force and the 
step size, 21.2 pN · nm = 5.2 kBT or about 3.1 Kcal/mol, represents the maximal mechanical work 
generated by the motor during the translocation step. What is the energetic source for this mechanical 
work? The free-energy difference between peptide bond and ester bond hydrolysis is approximately 
−3.7 ± 1.2 kcal/mol, equivalent to 6.3 ± 2 kBT per bond exchange in our experimental conditions 
(‘Materials and methods’). Hence, the maximal mechanical work that can be generated by the ribo-
some is ∼80% of the total energy available from transpeptidation and, in principle, it is possible to 
power translocation from this energy without the need to invoke an energetic contribution from the 
hydrolysis of GTP. In fact, studies have shown that the ribosome can translocate in the absence of EF-G 
(Gavrilova et al., 1976) or in the absence of GTP (Pestka, 1969; Rodnina et al., 1997; Fredrick and 
Noller, 2003). However, spontaneous forward translocation is unfavorable in many contexts (Shoji et al., 
2006), and efficient and rapid translocation does require EF-G and GTP hydrolysis. Furthermore, 80% 
thermodynamic efficiency for conversion of chemical energy to mechanical motion is higher than 
occurs in most molecular motors (Bustamante et al., 2004), and, moreover, it is not clear how the 
energy available from peptide bond formation could be stored and transmitted from the 50S to the 
30S subunit. Instead, in view of our results, a mechanism in which EF-G binding and GTP hydrolysis 
account for the energy of translocation and resetting (including EF-G–GDP dissociation) appears to be 
more likely.

Not surprisingly, the mechanism of action of the ribosome as a mechano-enzyme during transloca-
tion is more complicated than that of a typical molecular motor. One possible scenario that emerges 
from this and previous studies is that translocation is achieved by two consecutive BRs: during the first 
step, the ribosomal subunits rotate back and forth relative to each other along an axis perpendicular 
to the subunits interface. This process, reversible and thermally activated, is accompanied by the repo-
sitioning of the 3′-acceptor ends of the tRNAs initially in the classical A and P states into the hybrid A/P 
and P/E states and movement of the L1 stalk. Binding of EF-G–GTP stabilizes the tRNAs in their hybrid 
states and the counter-clockwise rotation of the 30S subunit relative to the 50S subunit. Hence, binding 
of EF-G functions as a rectifying reaction for the first BR. The ribosome acts as a GTPase activator for EF-G, 
and rapid GTP hydrolysis catalyzes conformational changes in the ribosome (e.g., swiveling of the head, 
which opens the way for the passage of the P-site tRNA anti-codon stem-loop to the E site) that result in 
allowing spontaneous and thermally activated transitions between the pre- and post-translocation 
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state. This second BR is likely to be rectified by the movement of domain IV of EF-G into the A-site 
and the intercalation of two conserved bases of 16S rRNA into mRNA. Pi release then induces a relax-
ation of EF-G, destabilizing the contacts between domains III and V and the ribosome and resulting in 
EF-G dissociation.

Finally, we turn our attention now to the pauses observed during translation. The duration of the 
translation bursts (and hence the effective pause entry rate, kp) is independent of the force opposing 
translocation (Figure 4A). Moreover, the full distribution of burst durations is well described, at all 
forces, by a single exponential function with nearly identical parameters (Figure 4—figure supple-
ment 1). Likewise, Figure 4B shows that the duration of the pauses (and hence the pause exit rate, k-p) 
is independent of force. Since the pause duration is also well described by single exponential functions 
with the same parameters at all the tested forces (Figure 4—figure supplement 1), we conclude that 
entering into the paused state and exiting from it are both governed by single, force-independent 
steps. Hence, we can cluster all our measurements into one data set and calculate the entry and exit 
rates: kp = 0.16 s−1 (0.14, 0.18) and k−p = 0.14 s−1 (0.1, 0.18), where the numbers in parenthesis indicate 
95% confidence intervals.

What is the origin of the observed pauses? It is well known that translating ribosomes tend to pause 
at specific secondary structure motifs (such as hairpins and pseudoknots). However, if that were the 
case for the observed pauses, their occurrence would be correlated with the position on the template 
(which we do not observe) and their density would depend strongly on the applied force, as this force 
will destabilize the secondary structure ahead of the ribosome in the geometry used in these experi-
ments. Thus, the force independence of the entry and exit rates rules out this possibility. Hence, we 
favor a model in which these pauses represent events that are off-pathway from the main incorpora-
tion and translocation cycle. The rate limiting transitions into these off-pathway states are steps along 
a non-mechanical reaction coordinate, or alternatively a mechanical coordinate that is orthogonal to 
the translocation movement, and hence not affected by the externally applied force. Interestingly, the 
pause entry and exit rates are very similar, indicating that in the conditions of our experiments the time 
spent by the ribosome in the productive translation states and the unproductive paused state are 
nearly the same.

The geometry of our experiments defines a single reaction coordinate. A more complete  
description of the translation process will require a multidimensional energy space. Nonetheless, 
the assay presented here opens the way for additional experiments where, by choosing different 
attachment points on the ribosome—across the small and large subunits for example—it may be 
possible to mechanically probe the internal degrees of freedom associated with ribosome translo-
cation. Such experiments should reveal how this motor coordinates its internal dynamics with its 
translocation and helicase activities.

Figure 4. Pause entry and exit rates. (A) Pause entry rate, calculated as the inverse of the mean duration of the 
translation bursts in between the pauses. (B) Pause exit rate, equal to the inverse of the mean pause duration. Both 
rates are essentially independent of the applied opposing force.
DOI: 10.7554/eLife.03406.007
The following figure supplement is available for figure 4:

Figure supplement 1. Distribution of the translation bursts and pauses durations for all the measured opposing forces. 
DOI: 10.7554/eLife.03406.008
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Materials and methods
Construction of E. coli strains with biotinylated ribosomes
A gene fusion encoding S16 linked via its C-terminus to the biotinylation domain of the biotin carboxyl 
carrier protein (BCCP) was introduced into the chromosome of E. coli, using the allelic replacement 
method of Church et al. (Link et al., 1997). SDS-PAGE analysis of 30S subunits purified from these 
strains indicated the absence of native S16 and the presence of S16-BCCP in stoichiometric amounts. 
Addition of excess avidin prior to electrophoresis resulted in complete shift of the S16-BCCP band to 
that of a high molecular weight complex, indicating highly efficient biotinylation of the fusion protein 
in vivo. Cells expressing the BCCP-ribosome construct (E. coli strain KLF203) have no detectable 
phenotype.

Purification of ribosomes
Typically, 1 liter of cells grown to mid-log at 37°C in LB broth, was pelleted, resuspended in buffer A 
(20 mM Tris-Cl [pH 7.0], 100 mM NH4Cl, 10 mM MgCl2, and 5 mM βME), lysed, layered onto a 35 ml 
cushion containing 1.1 M sucrose, 20 mM Tris-Cl (pH 7.0), 500 mM NH4Cl, 10 mM MgCl2, and 5 mM 
βME, and centrifuged in a Beckman Ti45 rotor at 36,000 rpm for 21 hr at 4°C. The ribosome pellet was 
dissolved in 0.5 ml buffer A, layered onto two 38 ml 10–35% sucrose gradients containing buffer A, 
and centrifuged in a Beckman SW28 rotor at 19,000 rpm for 16 hr at 4°C. The ribosomes in the 70S 
peak were collected and centrifuged in a Beckman Ti60 rotor at 38,000 rpm for 20 hr at 4°C. The ribo-
some pellet was dissolved in 0.2 ml buffer A, aliquoted, quick-frozen in liquid N2, and stored at −80°C.

mRNA synthesis
A DNA oligomer called TTC17, CAACCATGGTCTCG(TTC)17 GTCTTCCTAGGAAC, was synthesized 
with 17 repeats of the TTC triplet in the center, a BsaI site on the 5′ end and dual BbsI-AvrII sites on 
the 3′ end. TTC17 was first converted to a double-stranded duplex. Half of TTC17 was cut by BbsI and 
half by BsaI to remove the sequences after and before the TTC repeats, respectively. Ligation of both 
restriction fragments (with complementary cohesive ends) resulted in TTC32, which contains 32 TTC 
repeats with the same flanking sequences as in TTC17: CAACCATGGTCTCG(TTC)32GTCTTCCTAGG
AAC. The procedure was repeated to generate a sequence (TTC62) with 62 TTC repeats. TTC62 was 
finally cut with BsaI and AvrII before being inserted into the vector pRC4a, a derivative of pRC4 (Wen 
et al., 2008). pRC4a was then cut with NcoI and AvrII and ligated to an adaptor (CATGCGCTAGCTTA 
CCATGGGTCTCG) to convert the cohesive end of NcoI to BsaI and thus to allow ligation to TTC62. The 
plasmid (with 62 TTC repeats) was cut at BspHI and transcribed (Megascript T7 kit, Ambion, Austin, TX) 
into RNA with a length of 1827 nt. A region (1453 nt) on the 3′ side of the RNA was annealed to a 
complementary DNA strand (as a ‘handle’) containing two digoxigenin tags at the end.

Formation of initiation ribosome-mRNA complexes
To make initiation complex (ICs) the following components were mixed in buffer TL (40 mM HEPES-
KOH [pH = 7.5], 60 mM NH4CL, 10 mM Mg [OAc]2, 1 mM DTT, 3.6 mM β-ME) and incubated at 37°C 
for 15 min: GTP (1.0 mM), mRNA (0.2 µM), initiation factors (IF1, 4.0 µM, IF2, 3.7 µM, IF3, 3.9 µM), 
fMet-tRNAfMet (3.9 µM) and biotinylated ribosomes (1.0 µM). Finally, 1 µl aliquots of the mixture were 
prepared, quick-frozen in liquid N2, and stored at −80°C.

Preparation of translation mixtures
Total tRNA mixtures (Sigma) were aminoacylated using S-100 enzymes (Moazed and Noller, 1989a) 
and extracted with phenol/chloroform. To make a large-scale preparation of EF-Tu·aa-tRNAaa·GTP 
ternary complex, the following components were mixed in a total of 1 ml buffer TL-DTT (buffer TL 
without DTT): 1 mM GTP, 5 mM PEP, 24 µM EF-Tu, and 0.04 mg/ml pyruvate kinase. The mixture was 
incubated at 37°C for 15 min. Then, 20 µl (1 U/µl) total aa-tRNAs were added, incubated at 37°C for 
5 min, and on ice for 10 min. Since free tRNAs, which are not productive in translation, tend to increase 
the noise in the translation traces (probably by binding to the single-stranded mRNA), we developed 
a procedure to purify the ternary complexes using the 6xHis-tag present in EF-Tu. Briefly: The above 
reaction was bound to a Ni-NTA resin (30 min incubation at 4°C), and the resin washed three times with 
TL, with the addition of 20 mM imidazole. Ternary complexes were eluted with 600 µl elution buffer 
(TL + 250 mM imidazole) and dialyzed into Buffer TL for a total of 4 hr. Next, 50 µl purified ternary 
complexes (containing 0.2 U total aa-tRNA) were diluted with 390 µl (total 440 µl) buffer TL containing 
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1 mM GTP, 1 mM ATP, 40 U RNAguard (GE Healthcare, Piscataway, NJ) and 1 µM EF-G (final concen-
trations). Finally, the mixture was filtered with a 0.22 µm low protein- binding MILLEX-GV Durapore 
membrane, (Millipore, Billerica, MA) and kept on ice.

Optical tweezers
1 µl of ICs were first diluted with 50 µl TL, and then 1–10 µl mixed with 2.1 µm diameter polystyrene 
beads coated with anti-digoxigenin antibodies, and incubated on ice for 10 min. During this step, initia-
tion complex attach to the beads through recognition between the complementary DNA handle (har-
boring a 5′ digoxigenin) that has been annealed to the mRNA and the anti-digoxigenin antibody coated 
on the beads. The initiation complex beads were then flowed into the chamber of the optical tweezers. 
After trapping one initiation complex bead in the optical trap, a streptavidin-coated bead, which binds 
to the ribosome and is held by suction on the end of a micropipette was moved to approach to the 
initiation complex bead. Binding of the biotinylated ribosome on the initiation complex to the strepta-
vidin bead, results in an initiation complex tethered between two beads. Next, the translation mixture is 
flown into the chamber, and translation is followed in real time as a decrease in the tether length between 
the beads. No translation signals were detected before the introduction of the mixture.

The experiments were conducted using force-measuring dual-beam optical tweezers, similar in 
concept to the instrument described by Smith et al. (2003), but with an improved design that allows 
for better spatial and temporal resolution. Briefly, the two counter-propagating, orthogonally polarized 
laser beams that form the trap are coupled into two single-mode optical fibers and focused by two 
high numerical aperture objectives at a common position. The location of the optical trap can be con-
trolled by tilting the tips of the optical fibers using two piezoelectric crystals, controlled by a feedback 
loop that maintains the respective focal points at a common position. The position of the trap is measured 
by a pair of position sensitive detectors (PSDs) that measure the tilting of the beams before entering 
the objectives, and the force is assessed from a second pair of PSDs to which the light distribution at 
the back focal planes of the objectives is imaged. All signals are sampled at 1 kHz.

Data analysis
The 1 kHz raw data of tether extension at constant force was first averaged using a moving Savitzky-
Golay filter with a span of 4000 data points. Then, instantaneous velocities were calculated using the 
averaged data. We further calculated the standard deviation of the instantaneous velocities for the 
part of the tether extension before elongation factors were injected into the chamber, and noted it as 
σpause. To distinguish between pausing and translocation, we use 2.5 σpause as a threshold. All the absolute 
instantaneous velocities that are smaller than the threshold are attributed to pauses. All the absolute 
instantaneous velocities that are greater than or equal to the threshold are attributed to ribosome 
translocation (Figure 1B–D). The mean pause-free translocation velocity and translocation distance 
were calculated for each ribosome that actively translated the mRNA at constant forces. The mean 
translocation velocity for all the ribosomes that translate at specific constant forces was weighted by 
the total distance translocated by each ribosome. The mean translation velocities in nm/s were then 
converted to codon/s using the worm-like chain (WLC) model with a rise-per-base for ssRNA of 0.59 nm 
and a persistence length of 1 nm (Liphardt et al., 2001).

The translation rate vs force data was fitted with an exponential function using a weighted nonlinear 
least squares algorithm. Taking into account the possibility of a residual drift in the instrument, the 
stall-force was calculated as the force required to slow down the translation to a rate of 0.1 nt/s. Using 
the fitted exponential dependence parameters, this results in Fstall = 13 ± 2 pN.

Thermodynamic efficiency calculation
The free energy of ester hydrolysis was obtained as an average from the published values (Fasman and 
Chemical Rubber Company, 1976) of glycine ethyl ester (−8.40 kcal/mol), valyl RNA (−8.40 kcal/mol), 
and ethyl acetate (−4.72 kcal/mol), yielding −7.2 ± 1.2 kcal/mol. Similarly, the free energy of hydrolysis 
of amides was obtained as the average of published values (Fasman and Chemical Rubber Company, 
1976) for asparagine (−3.60 kcal/mol), glutamine (−3.4 kcal/mol), to yield −3.5 ± 0.1 kcal/mol. Thus, the 
average energy available for mechanical work as a result of transpeptidation is ∼3.7 ± 1.2 kcal/mol.
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