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Direct measurements of growing amorphous
order and non-monotonic dynamic correlations
in a colloidal glass-former
K. Hima Nagamanasa1*, Shreyas Gokhale2, A. K. Sood2,3 and Rajesh Ganapathy3*

The transformation of flowing liquids into rigid glasses
is thought to involve increasingly cooperative relaxation
dynamics as the temperature approaches that of the glass
transition. However, the precise nature of this motion is
unclear, and a complete understanding of vitrification thus
remains elusive. Of the numerous theoretical perspectives1–4

devised to explain the process, random first-order theory
(RFOT; refs 2,5) is a well-developed thermodynamic approach,
which predicts a change in the shape of relaxing regions as
the temperature is lowered. However, the existence of an
underlying ‘ideal’ glass transition predicted by RFOT remains
debatable, largely because the key microscopic predictions
concerning the growth of amorphous order and the nature
of dynamic correlations lack experimental verification. Here,
usingholographic optical tweezers,we freezeawall of particles
in a two-dimensional colloidal glass-forming liquid and provide
direct evidence for growing amorphous order in the form of
a static point-to-set length. We uncover the non-monotonic
dependence of dynamic correlations on area fraction and
show that this non-monotonicity follows directly from the
change in morphology and internal structure of cooperatively
rearranging regions6,7. Our findings support RFOT and thereby
constitute a crucial step in distinguishing between competing
theories of glass formation.

In a seminal paper dated nearly fifty years ago, Adam and Gibbs8

associated the rapid growth of a supercooled liquid’s relaxation time
with a decrease in its configurational entropy Sc. Within RFOT, Sc
is related to the number of metastable minima in the free energy
landscape of the liquid that can be explored by the system at a given
temperature. This theory further claims that the supercooled liquid
freezes into a mosaic whose domains correspond to configurations
in these metastable minima1. The typical domain size is expected to
diverge at the ‘ideal’ glass transition temperature, where Sc vanishes.
The existence of a growing static ‘mosaic’ length scale that serves
as a clear indicator of the glass transition is therefore intrinsic to
RFOT (ref. 2), although a systematic procedure for measuring it
frompoint-to-set correlations was establishedmuch later9. Since the
findings of ref. 9, a variety of growing static length scales have been
identified and computed in numerical simulations10–13. Of these, the
point-to-set correlation length ξPTS (ref. 10) is of central importance,
as it follows directly from the mosaic picture. ξPTS is measured by
freezing a subset of particles in the liquid’s equilibrium configura-
tion, and examining their influence on the configuration of the re-
maining free particles. As such, when evaluated for appropriate pin-
ning geometries, ξPTS can provide an estimate of the typical domain

size of the mosaic10. In addition, it has been shown analytically
that a divergence in the relaxation time is indeed associated with
a diverging ξPTS (ref. 14). ξPTS was first extracted in simulations by
pinning all particles outside a spherical cavity and examining the
configurations of free particles inside the cavity10. Subsequently, the
growth of ξPTS has been studied for various pinning geometries15

as well as in various simulated glass-formers16. Of particular im-
portance is the case in which the pinned particles form a single
amorphous wall. Using this geometry, in addition to ξPTS, recent
simulations17 have computed a dynamic correlation length ξdyn that
evolves non-monotonically with temperature across the mode cou-
pling crossover. It was surmised that this non-monotonicity reflects
a change in the morphology of cooperatively rearranging regions
(CRRs), which are string-like at high temperatures and compact
close to the glass transition6. However, the crucial and long-standing
microscopic predictions of RFOT pertaining to growing point-to-
set correlations and the morphology of CRRs remain untested in
experiments. Point-to-set correlations cannot be investigated in
atomic and molecular glass-formers, because the dynamics of their
constituent particles cannot be traced, and it is not possible to freeze
a subset of particles in an equilibrium configuration. These prob-
lems can be alleviated in colloidal glass-formers; in fact, the random
pinning geometry was realized in a very recent experiment18. Given
this advance in colloid experiments, testing the key predictions of
RFOT directly in colloidal glass-formers would constitute a major
step in unravelling the nature of the glass transition.

We performed optical videomicroscopy experiments on a binary
mixture of small and large polystyrene colloids of diameters σS

and σL, respectively (see Methods for experimental details). As
mentioned before, measuring point-to-set correlations requires
pinning particles in an equilibrium configuration of the liquid,
which is experimentally challenging. In colloidal systems, this can
be realized by manipulating light fields using holographic optical
tweezers18,19. Here, we demonstrate the power of this technique
by pinning an amorphous wall of particles in a two-dimensional
colloidal glass-forming liquid.We first captured a bright-field image
of the sample and extracted particle coordinates within a strip of
width ∼2σL along the longer dimension of the field of view. We
then calculated the hologram and fed it to a spatial light modulator
(SLM), which in turn created traps at the desired positions. Further,
the use of a SLM ensured that all the particles constituting the
wall were frozen simultaneously (see Supplementary Movie 1). To
ensure that the particles thus pinned are indeed a part of the liquid’s
equilibrium configuration, we superimposed the coordinates of
these particles on time-averaged images of the sample in the
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Figure 1 | Visualization of the amorphous wall. The underlying grey scale

images have been generated by time-averaging snapshots over 30τα for

φ=0.68 (a) and φ=0.76 (b) for a pinned wall. τα = 12 s and 274 s for a and

b, respectively. The red circles correspond to the coordinates of the trapped

particles that form the amorphous wall. The spheres at the top of the

images in a and b constitute the pattern whose fast Fourier transform was

fed into the spatial light modulator. Spheres are colour coded according to

the distance between the input coordinates for creating traps and

time-averaged particle positions in units of σL.

presence of the amorphous wall, for two different area fractions
φ (Fig. 1). Particles forming the wall appear bright in the time-
averaged images owing to their negligible mobility, and can be easily
identified. We observe that, by and large, the initial set of particle
coordinates and the centres of pinned particles acquired from the
time-averaged images are separated by a distance smaller than the
cage size, which shows that particles forming the amorphous wall
are pinned in an equilibrium configuration of the colloidal liquid.
Interestingly, from the time-averaged images in Fig. 1, we see that
clusters of immobile particles extend further away from the wall for
φ =0.76 than for φ =0.68, suggesting that the influence of the wall
is felt over longer distances with increasing area fraction.

We first extracted ξPTS by calculating the total overlap function,
qc(t , z), at various distances z from the pinned wall17. Although
this analysis was initially developed for three-dimensional systems,
we have used its two-dimensional analogue for our colloidal glass-
former. We divided the field of view into boxes of size 0.25σS, and
computed qc(t ,z) for all boxes that lie at a fixed distance away from
the wall, using the equation

qc(t ,z)=

∑
i(z)〈ni(t)ni(0)〉
∑

i(z)〈ni(0)〉
(1)

where 〈〉 correspond to time averaging, i is the box index, ni(t)=1
if the box contains a particle at time t and ni(t) = 0 otherwise.

Figure 2a shows qc(t , z) at various z for φ = 0.74. The box size
0.25σS was chosen to be larger than the cage size, ∼0.14σS, to
avoid spurious overlap fluctuations due to cage rattling. Moreover,
the chosen size is small enough to provide sufficient spatial
resolution for the computation of ξPTS and ξdyn. By definition, qc(t ,z)
(equation (1)) measures the overlap between configurations at two
different times at a given distance from the wall. As qc(t , z) is
insensitive to particle exchanges, in the limit of long times and
large distances from the wall, it attains a finite asymptotic bulk
value qrand = qc(t → ∞, z → ∞) corresponding to the probability
of occupation of a box. Consistent with simulations17, we observe
that the presence of the wall influences the asymptotic value of
qc(t→∞,z)=q∞(z), such that q∞(z) > qrand (Fig. 2a). In our
experiments, q∞(z) is estimated by averaging the saturation value of
the overlap function over a 5–10min time window20. We note that
qc(t ,z) does not saturate for all z within the experimental duration
and hence, to extract ξPTS, we consider only those values of z for
which qc(t ,z) attains saturation. As expected, we observe that q∞(z)
decreases with z in the vicinity of the wall. This is also evident
from Fig. 2a, where the qc(t , z) profiles for large z overlap almost
completely. We observe that q∞(z)−qrand decays exponentially with
z (Fig. 2b and Supplementary Fig. 1), which allowed us to extract
ξPTS from the relation

q∞(z)−qrand =Bexp(−z/ξPTS) (2)

Having computed ξPTS, we computed ξdyn from the self part of the
overlap function, qs(t ,z):

qs(t ,z)=

∑
i(z)〈n

s
i(t)n

s
i(0)〉∑

i(z)〈n
s
i(0)〉

(3)

where, once again, 〈〉 correspond to time averaging, i is the box
index, and ns

i(t) = 1 if the box is occupied by the same particle
at time t and ns

i = 0 otherwise17. qs(t , z) is similar to the self-
intermediate scattering function calculated for the wavevector
corresponding to the box size. Unlike qc(t ,z), qs(t ,z) (equation (3))
is sensitive to particle exchanges and reaches zero at long times,
when all the particles undergo a displacement larger than the box
size. Owing to its similarity with the self-intermediate scattering
function, qs(t , z) yields relaxation times τs(z) at different distances
z from the wall17. Owing to the limited temporal resolution in our
experiments, we defined τs(z) as the time taken for qs(t ,z) to decay
to 0.2 (ref. 21). Figure 2c shows qs(t , z) at various z for φ = 0.74.
As expected, τs(z) approaches its bulk value τ bulk

s for large z . In
accordance with simulations17,22, we find that the dynamic length
scale ξdyn (Fig. 2d) can be extracted from the equation

ln(τs(z))= ln(τ bulk
s )+Bsexp(−z/ξdyn) (4)

Having extracted ξPTS and ξdyn from overlap functions, we
studied the variation of these length scales with the area fraction
φ on approaching the glass transition (Fig. 2b,d). We find that,
in concord with simulations17, ξPTS grows monotonically with φ

(Fig. 3a and Supplementary Fig. 1). This finding constitutes the
first experimental evidence of growing point-to-set correlations
in glass-forming liquids. We note that, as in simulations, the
prefactor B changes with φ (Fig. 2b). To ensure that the trend of
growing amorphous order is not influenced by the variation in B,
we defined a second static length scale ξPTS−Int = BξPTS, which is
also observed to increase with φ (ref. 17; Supplementary Fig. 1).
Turning towards the dynamic length scale, ξdyn, we observe that
it grows faster than ξPTS, as expected

17. Most strikingly, however,
ξdyn exhibits a non-monotonic dependence on φ (Fig. 3a). This
result is remarkable, as it is the first experimental observation of
non-monotonicity in dynamic correlations. With the exception of
the numerical results of Kob et al.17, all dynamic length scales
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Figure 2 | Overlap functions and relaxation times. a, The total overlap qc(t,z) for φ=0.74. Different colours represent different z. The horizontal grey solid

lines indicate q∞(z), the value at which qc(t,z) saturates. b, q∞(z)−qrand versus z for φ=0.68 (black open circles), φ=0.71 (blue left triangles), φ=0.74

(brown down triangles), φ=0.75 (olive green diamonds), φ=0.76 (red squares) and φ=0.79 (green triangles). c, The self overlap qs(t,z) for φ=0.74.

Different colours correspond to different z. The horizontal black dashed line corresponds to qs(t,z)=0.2. d, In (τs(z)/τ
bulk
s ) as a function of z. The colours

and symbols in d are identical to those in b. In b and d, the solid lines are exponential fits of the forms given in equations (2) and (4), respectively. In d, for

φ=0.76 (red squares), ξdyn was extracted from the asymptotic slope17. The red dashed line is a guide to the eye.

reported in the literature were seen to grow monotonically on
approaching the glass transition23–26. The paucity in observations
of the aforementioned non-monotonicity is due to the fact that not
all dynamic length scales are expected to show non-monotonicity
and the presence of a pinned wall seems to be crucial to this
observation. Even in the presence of a pinned wall, it has been
shown that the existence of non-monotonicity is dependent on the
interaction potential27. An important point to note is that in the
simulations of Kob and coworkers17, as well as our experiments,
the maximum in ξdyn occurs in the vicinity of the mode coupling
crossover (Fig. 3a and Supplementary Fig. 2), strongly suggesting
that our observations correspond to the same dynamic crossover
seen in refs 27,28. In ref. 17, it has been speculated that the observed
non-monotonicity is a consequence of a change in the morphology
of CRRs across the mode coupling crossover, and is therefore
consistent with RFOT. In particular, the authors of ref. 17 claim
that the spatial inhomogeneity introduced by the wall makes ξdyn
sensitive not only to the number of particles in a CRR, but also to
their arrangement into string-like or compact structures. A closer
look at the relaxation profiles τs(z) gives a preliminary indication
in support of this claim. Whereas the profiles for φ < 0.76 as well
as for φ = 0.79 are described well by a single exponential decay,
τs(z) exhibits two slopes for φ=0.76 (Fig. 2d), which indicates
the presence of multiple relaxation mechanisms associated with the
morphology and internal structure of CRRs (ref. 17).

To test whether the non-monotonicity indeed stems from a
change in the shapes of CRRs, we examined the nature of dynamical

heterogeneities in our system. To ensure that the analysis is not
influenced by the presence of a wall, we examined the shapes of
CRRs in the corresponding unpinned system (see Methods for
details). To define CRRs, we first identified the top 10%mostmobile
particles over various time intervals 1t and clustered them based
on nearest neighbour distances. As expected, the mean cluster size
is maximal at a characteristic time t∗. On observing the shapes of
these clusters defined over 1t = t∗, we find that, remarkably, the
clusters are predominantly string-like at low φ and compact at high
φ (Fig. 3b,d). To quantify this change in morphology, we computed
the distribution P(NN ) of the number of mobile nearest neighbours
of a mobile particle, following the protocol used in refs 23,29
(Fig. 3e). Interestingly, we observe that for φ<0.76, P(NN ) exhibits
a peak atNN =2, indicating string-like morphology30. For φ≥0.76,
the distribution becomes increasingly broader and the maximum
shifts to NN =3, consistent with Fig. 3b–d. To illustrate this point
better, we have plotted the percentage of mobile particles that have
greater than twomobile neighbours, given by

∫ ∞

3
P(NN )dNN (inset

to Fig. 3e). We observe that the trend in this quantity indeed
reflects the change in morphology of CRRs near φMCT anticipated
in the Fuzzy Sphere Model. We repeated the above analysis in
the presence of a pinned wall, for regions located sufficiently far
away from the wall, and observed a similar behaviour in P(NN )

(see Supplementary Fig. 3). These findings are consistent with
RFOT, which predicts that string-like CRRs occur with greater
frequency on decreasing φ and eventually become dominant below
φMCT (ref. 7).
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Figure 3 | Static and dynamic length scales and morphology of CRRs. a, Point-to-set length scale, ξPTS, (red circles) and dynamic length scale, ξdyn, (blue

triangles). The error bars have been obtained from the exponential fits. The dotted black line indicates the mode coupling crossover φMCT.

b–d, Representative cluster morphologies for 25-particle clusters for φ=0.74, φ=0.76 and φ=0.79 respectively. Core-like particles are shown in red and

string-like particles are shown in light blue. e, Distribution of the number of mobile nearest neighbours, P(NN), for φ=0.68 (black open circles), φ=0.71

(blue left triangles), φ=0.74 (brown down triangles), φ=0.75 (olive green diamonds), φ=0.76 (red squares) and φ=0.79 (green triangles). f, Fraction of

string-like, ns, (open green circles) and core-like, nc, (red circles) particles as a function of φ for 25-particle clusters. The grey shaded areas correspond to

50% confidence bands. g, Maximum of the mobility transfer functionM(1t),Mmax, for small (blue circles) and large (red triangles) particles computed by

considering the top 10%most mobile particles.

According to refs 6,7, the morphological changes in CRRs can be
described by the ‘Fuzzy Sphere Model’. This model assumes CRRs
to be composite objects that contain a compact core surrounded by
a ramified string-like shell. Further, the string-like shell dominates

at low φ and the compact core dominates at large φ, with a
smooth crossover between the activation barrier distributions for
the two morphological types near φMCT. Interestingly, we observe
that CRRs of a fixed size indeed contain a large fraction of string-like
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particles at low φ and a large fraction of core-like particles at
high φ (Fig. 3b–d, also see Supplementary Movies 2–4). For further
analysis, we quantitatively extracted the fractions ns and nc of string-
like and core-like particles respectively, within CRRs of various sizes
(see Methods for a definition of string-like and core-like particles).
Figure 3f shows the dependence of ns and nc on φ for CRRs
containing N = 25 particles (also see Supplementary Movies 2–4).
We see that ns and nc indeed cross over near φ =0.76, even for the
bulk unpinned system (see Supplementary Fig. 4 for similar analysis
for different values of N ). Although we could sample only a limited
number of φ values owing to experimental difficulties, it is evident
from the data that the maximum in ξdyn (Fig. 3a) coincides with
the crossover in the morphology of CRRs (Fig. 3e,f). These findings
therefore provide direct confirmation that the non-monotonicity in
ξdyn results from a change in the shape as well as internal structure
of CRRs. Further, we observe that the average number of particles
per cluster increases monotonically (Supplementary Fig. 5). This is
consistent with previous studies on colloidal glass-formers23,24 and
strongly suggests that length scales that grow monotonically on
approaching the glass transition are sensitive only to the number
of particles in a CRR and not to their arrangement within it. In a
broader context, our results provide the first direct verification for
the change inmorphology and internal structure of CRRs across the
mode coupling crossover6,7.

As a final point, we discuss our findings in the light of the
dynamical facilitation (DF) approach3, a purely kinetic theory of
glass transition that has recently garnered experimental support18,31.
The DF theory states that structural relaxation takes place via the
coordinated motion of localized mobile defects, whose concentra-
tion decreases on approaching the glass transition. Within the DF
approach, string-like cooperative motion over t∗ arises hierarchi-
cally from the dynamics of these defects32. However, in its current
form, the DF theory for atomistic glass-formers does not anticipate
a crossover in themorphology of CRRs. Amajor difference between
the RFOT and DF approaches is that the former emphasizes the
importance of activated events that grow in size, whereas in the lat-
ter, relaxation is dominated by the facilitated dynamics of localized
defects. The importance of facilitated dynamics can be quantified
by evaluating the mobility transfer function M(1t) (ref. 33; see
Supplementary Information for a definition ofM(1t) and Supple-
mentary Fig. 6 for the evolution of M(1t) with φ). The maximum
Mmax of M(1t) is expected to increase monotonically with φ if
facilitation dominates structural relaxation. In the presence of non-
facilitated activated processes that become dominant close to the
glass transition,Mmax is expected to exhibit a maximum at the φ cor-
responding to the crossover from the facilitation-dominated regime
to the activated-hopping regime34. Remarkably, we observe that, in
our system, Mmax shows a maximum at φ =0.76 (Fig. 3g and Sup-
plementary Fig. 6), the very same φ at which ξdyn shows a maximum
(Fig. 3a) and the morphology of CRRs changes from string-like to
compact (Fig. 3e,f). We note that a similar dependence of Mmax on
φ has been observed in a completely different colloidal system as
well18. The observedφ dependence ofMmax is qualitatively consistent
with RFOT, where facilitation is a secondary relaxation process that
diminishes in importance on approaching the glass transition35, but
is in stark contrast with predictions of the DF theory.

Our observation of a growing point-to-set correlation length,
ξPTS (Fig. 3a), is consistent with the prediction of RFOT, although
it does not rule out competing theoretical scenarios36,37. However,
at present, the non-monotonic density dependence of ξdyn (Fig. 3a)
and the concomitant change in the morphology and internal
structure of CRRs (Fig. 3e,f) can be rationalized only within the
framework of RFOT. Crucially, the morphological crossover in
CRRs as well as the maximum in the φ dependence ofMmax find no
natural explanation within the prominent competing framework of
the DF theory. The non-monotonicity in Mmax (Fig. 3g) observed

here as well as in ref. 18 may be associated with the diminishing
role of facilitated dynamics in governing structural relaxation,
rather than finite size effects34. Indeed, reconciling these findings
within the facilitation paradigm poses an exciting challenge for
future theory, experiments and simulations. A promising course
in this direction would be to examine the influence of a pinned
wall on facilitated dynamics of localized defects. Given that we see
signatures of increasing cluster size of immobile particles with φ in
the time-averaged images shown in Fig. 1a, it would be fascinating
to explore connections between the regions of slow dynamics and
the static and dynamic length scales extracted here. It would also
be instructive to investigate whether our results are consistent with
other thermodynamic frameworks, such as geometric frustration-
based models4. We expect our findings to engender future research
aimed at addressing these unresolved issues on the theoretical,
numerical as well as experimental fronts.

Methods
Experimental details. Our system consisted of a binary mixture of NS small and
NL large polystyrene particles of diameters σS =1.05 µm and σL =1.4 µm,
respectively. The particle size ratio σL/σS =1.3 and number ratio NS/NL =1.23
provided sufficient geometric frustration to prevent crystallization. The samples
were loaded into a wedge-shaped cell18 and the desired area fractions φ were
attained by sedimentation of the sample to the monolayer-thick region of the
wedge. The typical waiting time before data collection was ∼8–10 h, which is
several times larger than τα for all φ<0.79. Samples were imaged using a Leica
DMI 6000B optical microscope with a ×100 objective (Plan apochromat, NA 1.4,
oil immersion) and images were captured at frame rates ranging from 3.3 fps to
5 fps for 1–1.5 h, depending on the value of φ. The size of the viewing region is
44σ ×33σ , with σ =(σS +σL)/2. The holographic optical tweezers set-up
consisted of a linearly polarized constant power (800mW) CW laser
(Spectra-Physics, λ=1,064 nm) and the optical traps were created using a SLM
(512 × 512, 100 fps refresh rate, Boulder Nonlinear Systems). Standard Matlab
algorithms38 were used to generate particle trajectories and subsequent analysis
was performed using codes developed in-house. The particle tracking resolution
is 0.08 µm and the mean squared displacement curves for all φ lie above the
tracking resolution (Supplementary Fig. 7). For all φ≤0.76, the duration of the
experiment corresponds to several times τα , where τα is the time at which the
self-intermediate scattering function Fs(q, t) drops to 1/e for q=2π/σ . For
φ=0.79, the available experimental data are not sufficient to extract τα , although
the waiting time is six times longer than the duration of the experiment. The
presence of a pinned wall does not allow for sample drift corrections. To
overcome this issue, we have ensured that the cell was left undisturbed for 8–10 h
before recording each data set. The typical drift in our data over the entire
duration of the experiment (1–1.5 h) is small—∼0.5σL in the x-direction and
∼0.1σL in the z-direction. Further, for every φ, we have also recorded data in the
absence of pinning, immediately after capturing the data in the presence of a
pinned wall. We find that the estimate for φMCT for the data in the absence of
pinning, after appropriately subtracting the drift, is almost identical to that for
data captured far away from the wall in the presence of pinning (see
Supplementary Fig. 2).

Reference for measuring z. To set the reference for measuring z , we first
calculated overlap functions for all the boxes lying within strips of width 0.5σS,
parallel to the wall—that is, along the x-axis—for the entire image. From these
overlap functions, we estimated the z-coordinate for which the overlaps exhibit
no decay and labelled that as the centre of the wall. Given that the wall is
approximately two particle diameters wide, the overlap does not decay with time
only for a few strips of 0.5σS away from the centre of the wall. We have chosen
the centre of the last strip for which the overlap function does not exhibit a
decaying profile with time as the reference from which to measure z . The error in
estimating the z=0 line is thus 0.5σS.

Procedure for identifying string-like and core-like particles in a CRR. We
labelled particles in a given cluster as string-like or core-like based on the number
of nearest and next-nearest neighbours using the procedure described below.
First, we identified all the particles that have more than two nearest neighbours,
iNN>2, where i is the particle index. This set contains particles that form the core
of the CRR as well as the particles that connect the compact core to the strings
emerging from it. A particle ‘j’ is labelled core-like, only if it has at least two iNN>2

neighbours. The remaining particles are considered to be string-like.
Supplementary Fig. 4 shows the fraction of core-like particles, nc, and string-like
particles, ns, for different cluster sizes. Remarkably, we find that for all cluster
sizes nc increases, whereas ns decreases with increasing φ. For the range of cluster
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sizes studied here, we see that the crossover in nc and ns systematically shifts to
lower φ with increasing N , although it continues to remain in the vicinity
of φ=0.76.
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