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Direct Method for Rapid Prototyping
of Near-Optimal Aircraft Trajectories

Oleg A. Yakimenko¤

Aviation and Aeronautics Academy of Sciences, Moscow, 125190, Russia

A direct method for a real-time generation of near-optimal spatial trajectories of short-term maneuvers onboard

a �ying vehicle with predetermined thrust history is introduced. The paper starts with a survey about the founders

of the direct methods of calculus of variations and their followers in �ight mechanics, both in Russia and in

the United States. It then describes a new direct method based on three cues: high-order polynomials from the

virtual arc as a reference function for aircraft’s coordinates, a preset history of one of the controls (thrust), and a

few optimization parameters. The trajectory optimization problem is transformed into a nonlinear programming

problem and then solved numerically using an appropriate algorithm in accelerated scale of time. A series of

examples is presented. Calculated near-optimal trajectory is compared with real �ight data, and with the solution

obtainedbyPontryagin’s maximumprinciple.Fast convergenceof the numerical algorithm,which hasbeen already

implemented and tested onboard a real aircraft, is illustrated.

Nomenclature

aik = polynomial coef�cients
g = acceleration due to gravity
J = cost function
j = quantity pertaining to the j th time node
m = aircraft mass
N = number of nodes
n = polynomial order
n̄ = relative revolutions of engine’s rotor
nx , nz = tangential and normal projections of load factor,

respectively
Sh = penalty function
T , T̄ = total thrust and relative thrust (fraction of maximum

thrust), respectively
t = time
t¤
T (s ¤

T ) = thrust-off instant (arc)

t¤¤
T

(s ¤¤
T

) = thrust-on instant (arc)

V = airspeed
xi = aircraft mass center coordinates in the Earth

north-east-downinertial frame, i = 1, 2, 3

a = angle of attack
c , v = �ightpath and azimuth angles, respectively
Ds , D t j = sampling period
dT = throttle position

´, », ¼ = sets of restrictionson state variables, controls, and their
time derivatives

k = virtual velocity along the virtual arc
N = vector of optimization parameters
s = virtual arc
u = bank angle in wind frame
X f = vector of “free” (not preset) terminal states and controls
0 , 00 , 000 = arc derivatives
¢,¢¢,¢¢¢ = time derivatives

¯
= relative parameter

I. Background

A CONCEPT of the onboard pilot’s support system (PSS; elec-

troniccopilotor pilot associate) assumes the presenceof a sub-
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system for pilot’s control actions during maneuvering support.1 For
some standard maneuvers, this subsystem is built on the databases

of near-optimal trajectoriescalculated beforehand.2 These trajecto-
ries banks (TBs) as banks of good initial guesses make it possible

to reconstruct the spatial near-optimalPSS-suggested trajectory for
the real tactical situation (in other words, to make a �nal onboard

optimization), and to visualize this trajectory for a pilot at head-
up/head-down display (HUD/HDD). The main control mode, at the

request of pilots, must become “the director with sight” control
mode.3

Modern indirect methods of mathematical theory of optimal
processes4¡6 reduce the problemof cost function (CF) optimization

to solutionof the two-point boundary-valueproblem. However, this

approach is not always effective,especially in the task under consid-
eration, and this approach is greatly complicated because we need

to solve a given variational problem not in a small neighborhood
of some point (as is usually the case in the theory of differential

equations), but rather a solution in some �xed region. Moreover,
it is well known that differential equations of variational problems

can be integrated easily only in exceptional cases, e.g., the two-
point boundary value problem is very dif�cult to solve for all but

the simplest problems (only in a vertical or horizontal plane with
simpli�cation of state equations and with a rather simple CF).

Dif�culties inherent in this approachhave led to a search for vari-
ational methods of a differentkind, known as direct methods,which

do not entail the reduction of variational problems to problems in-
volving differentialequations.According to Ewing7 the term direct

methods was applied to the approach for the existence theory ini-
tiated by Hilbert (as it was written by Bolza8 in the beginning of

the century) and was developedby Tonelli,9 and others. The funda-
mental idea of direct methods is to consider a variational problem

as a limit problem of the extreme of a function of a �nite number of
variables to be solved by usual methods. Because of their conver-

gence robustness,direct methods give the safest approach for rapid
prototyping of spatial trajectories for a �ying vehicle (FV).10

II. Introduction

The main idea of the direct methods is to consider a function as a
�nite set of variables. This is fairly evident if it is assumed that the

admissible functioncan be representedby an in�nitive power series

y(x ) =

1

k = 0

ak x k

or by a Fourier series

y(x) =
a0

2
+

1

k = 1

(ak coskx + bk sin kx )
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or by any series of the form

y(x ) =

1

k = 0

ak}k (x )

where }k (x ) are given functions. Then a CF will be the function
of a set of unknown coef�cients, allowing us to reduce the task by

considering a �nite series instead of in�nite.11

It was Euler12 who applied for �rst time, a method, which is now

called the directmethodof �nite differences(after Euler appliedit, it
wasn’t in use for a long time, but in the last decades, beginningwith

Lusternik,Petrovskiyandothers, it hasbeenusedwidely).11 Another
direct method is a method by Ritz,13 which after the methods of

Krylov14 and Bogolubov, is of wide use in the theory of elasticity.14

The Ritz procedure requires a �eld problem to be set up as an

integral minimization.Thus it can be applied to problems for which
a variationalprinciple exists. There are, however, other methods of

determining the unknown coef�cients in the approximating func-
tion that operate directly on the governing differential equation.

This more simple but more universal procedure was introduced
by Galerkin15 as a means of obtaining approximate solutions to

boundary-value problems. When combined with the interpolation
equations of the method of �nite elements, which is a variation of

the Rayleigh–Ritz procedure, Galerkin’s method becomes a very
useful procedure for solving both initial and boundary-valueprob-

lems. Galerkin used a direct method for the solution of parabolic
and elliptic partial differential equations.

The �nite element method was �rst conceived and used by
aerospace engineers in the early 1950s. Because of the improve-

ment of computers during the following years, this method became
more popular for numerical simulation for a large range of physi-

cal problems written in terms of partial differential equations, e.g.,
stress analysis, structural and solid mechanics, heat transfer, �uid

mechanics, and others. The method of Kantorovich16 applies to CFs
that depend on functions of several independent variables.

As mentioned in Ref. 11, the question of convergence of Euler,
Ritz, and others’ approximations to the desired solution of a varia-

tional problem, as well as the problem of estimationof the degreeof
approximation,is very complicated.The discussionof this matter is

outside the scopeof this paper;however, some proof of convergence
of Euler or Ritz approximationscan be found, for instance, in Refs.

7, 16, 17. Nevertheless, at least, we can state that direct methods
yield approximation of the minima from above (or maxima from

below). Therefore, we can regard them as rapid prototyping of op-
timal solutions (or near-optimal solution). These methods, which

use direct presetting of extremal trajectories and/or controls, give a
huge calculationadvantage and can provide a near-optimalsolution

with any desired accuracy.
It was Taranenko,18 who developed and applied a method like

Ritz–Galerkin to the problems of �ight mechanics with constraints

on state variables and controls. Following the main idea of the
direct methods, Taranenko suggested de�ning the reference func-

tions for both FVs Cartesian coordinates (xi , i = 1, 2, 3) and its air-
speed (x4 ´ V ) as xi = xi0 + (xi f ¡ xi0)(s ¡ s0 )/ (s f ¡ s0 ) + Ui (s )
(i = 1, 2, 3, 4).18 Here s is an argument, and Ui (s ) are continu-
ous, unequivocal,and differentiablefunctions satisfying to obvious

boundary conditions Ui (s0) = Ui (s f ) ´ 0. Taranenko proposed to
use one of the following functions:

U
1
i (s ) =

n

k = 1

Ak sin kp
s ¡ s0

s f ¡ s0

or

U
2
i (s ) =

n

k = 1

Ak (s ¡ s0 )k (s ¡ s f )k

or U
3
i (s ) = (s ¡ s0 )m1 (s ¡ s f )m2 , or their linear combination.How-

ever, in principle, there are no limitations, and one can use any con-

venient functions for the particular task under consideration (see
example in Ref. 19). Other state parameters and controls are then

determined through the solution of the inverse problem of �ight
dynamics. (The inverse problem means that we have to de�ne the

controls time histories that provide a desired reference trajectory,
whereas a direct problem deals with calculation of FVs trajectory

at known initial state variablesand controls time histories, meaning
the Cauchy task.)

An explicit mean to increase �exibility is to increase a num-
ber of elements n in a series U

1
t (s ), U

2
i
(s ), or to increase powers

m1 and m2 in U
3
i
(s ). However, Taranenko proceeded with another

approach—he subdivided an interval [s0; s f ] on several pieces and

employed low-order polynomials to describe a behavior of state
variables xi (i = 1, 2, 3, 4) along each of them [the parameters of

pieces’ collocation can then be considered as an additional opti-
mization parameter (OP)]. The higher number n (or m1 and m2),

and the higher the number of pieces in piecewise case, the closer a

near-optimal solution is to the optimal one.11

The choice of an argument s also depends on a particular task.

Generally speaking, one can use any continuousmonotonic param-
eter: time, path, sometimes total mechanical energy, and others.

However, it is obvious that in case of de�ning both FV’s coordi-
nates and airspeed, as Taranenko did, we should use any abstract

parameter; otherwise we will be unable to vary trajectory and speed
history independently.Taranenko called s a virtual arc.18

Taranenko and Momdzhi20 and their followers �nally preferred
the sum of three cubic polynomials as reference functions:

xi (s ) =

3

k = 0

aik s k +

5

k = 4

ai k(s ¡ sk ¡ 3,i )
3@ j ¡ 3,i

@k ¡ 3,i =
0 if s · sk ¡ 3,i

1 if s > sk ¡ 3,i

, i = 1, 2, . . . , 4

where coef�cients ai k are automatically de�ned by preset bound-
ary conditions at the origin and the end of the trajectory.Taranenko

chose the cubic splines to be able to satisfy boundary conditions
imposed on state variables, their �rst and second derivatives (third

derivative in this case is discontinuous). In the case of control’s
constraint violation, they switch on direct integration of the state

equations with the marginal value of this (violated) control. Since
the 1960s, with the use of this method, a lot of optimization prob-

lems have been solved for differentFV, includinghelicopters,strike
aircraft,civil aircraft,airspacevehicle,e.g., such problemsas climb-

to-dash, orbit maneuvering, descent from the orbit, surface-based
target attack (SBTA) approach, curved landing approach (CLA).

Blagodarniy21 used these functions to optimize a series of ma-
neuvers with preset intermediate points. Akulov and Schisljonok22

added trigonometric functions U
1
i (s ) to be able to optimize helix-

type maneuvers.

Neljubov23 used 5–7 order time-polynomials for Cartesian co-
ordinates only and implemented them as basic trajectories during

the following tracking with real automatics. With the use of this
approach, a number of practical optimization problems was also

solved for different stages of �ight and for different FV.
However, the analysisof thesemethods shows that they cannotbe

used directly to create and handleTBs for onboardon-lineoptimiza-
tion. The method by Taranenkoand Momdzhi20 has relativelymany

OPs (in general, 10 of them) that cause insuf�cient performance in
the calculation of the optimal trajectory, even with a good initial

guess. At the end of the trajectory, the third derivatives of the state
variables cannot be speci�ed; as a result, the obtained trajectory is

oftendif�cult to trackin a manual (directorwith sight) controlmode.
A trajectorypartiallypassingalong the normal load factor constraint

is also hard to realize; in addition, this part of the trajectoryassumes
direct integration of state equations that not only slows down the

iteration process, but also makes it impossible to have an analytical
presentationof the entire trajectory.The approachof Neljubov23 as-

sumes the trackingof the basic trajectoriesby means of automation.

As a result, the obtained near-optimal trajectory is no longer ana-
lytical at all, and may substantiallydiffer from the basic trajectory.

Consequently, these basic trajectoriescannot be proposed to a pilot
as the reference ones for their tracking.

Another branch of direct methods deal with discretization of
a continuous problem reducing the initial variational problem to
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the problem of optimization of parameters, de�ning state variables
and/or controls in this sampling point, which means without global

analytical approximation of states’ (controls’) histories.
Hargraves and Paris,24 von Stryk and Bulirsch,25 Convay and

colleagues,26,27 Betts,28 Calise and Leung,29 Hull,30 and others
used the so-called collocation-based or direct transcription meth-

ods, which are similar in many respects to Galerkin’s procedure.
They reduce the initial problem by segmenting the time interval

into the 5–20 pieces and representing the solution both for state
variables and controls by piecewise polynomials (constants). The

tens of unknown coef�cients are then determined by enforcingcon-
tinuity at the nodes and by satisfying the differential equations

at some speci�ed points in each segment (along with Ritz’s and

Galerkin’s methods, this is the third known way of obtaining un-
known coef�cients). Seywald and Kumar31¡33 and others used the

so-called differential inclusion approach. They eliminated controls
from the state equations by employing a description of the dynam-

ical system in terms of its attainable set. The previously mentioned
procedure can permit the reduction of the size of the parameter

optimization problem.33,34 Smaller problems can then be solved
more quickly. Lu35,36 used, for each piece, an approach similar to

Taranenko’s method. Following Refs. 37 and 38, he called it the
inverse dynamics approach. For optimization of planar trajectory

for an aerospace vehicle at each of the 20 pieces he preset one of
the state variables’ time history and one of the controls’ time his-

tory by cubic splines, and then he solved the inverse task of �ight
dynamics.

These approaches imply relatively dif�cult numerical calcula-
tions with numerous OPs with the help of gradient methods, which

require a good initial guess. Their accuracy directly depends on the
number of segments used in the approximation.Nevertheless, these

methods are effectively used for off-line optimization of long-term
planar maneuversof aerospaceFVs, such as launch trajectories,or-

bit rendezvous and transfer problems, and climb-to-dash. Actually,
these methodswere developednamely for these applications,so that

the small changesintroducedearly in the trajectorydo notpropagate
to the end of the trajectory.

Although all of the cited direct approaches intuitively applying
the same fundamental ideas havebeen successfullyused for off-line

trajectoriesoptimization,33 nobodyhas developedand implemented
the direct method for on-line (real-time) optimizationof short-term

spatial trajectoriesfor a highmaneuverableaircraft.Becauseit is im-
possible to use alreadydesignednumericalschemes for the problem

at hand, the present paper deals with a new, in some sense, simpli-
�ed method that provides rapid prototyping of near-optimal spatial

trajectoriesbeing presented analyticallyand completely de�ned by
several OPs. Besides, for further improvement of convergence ro-

bustness, it is possible and easy to implement an idea of TBs.2,4

This method combines a number of advantages over methods

by Taranenko and Momdzhi20 and Neljubov,23 and consequently a
close position to Lu’s approach.35 Though having less possibilities

of varying the trajectory itself (with the goal of �nding an optimal
one), this algorithm assures the following: the boundary conditions

are satis�ed a priori; an aircraft control is physical and realizable
(smooth), meaning a pilot can easily perform it; the iterative pro-

cess converges well, making it possible to proceed with on-line
optimization; the near-optimal solution is close enough to the opti-

mal one. These features allowed this method to be employed on an

IBM486-type computer and to be �ight tested onboard of the �y-
ing laboratory Antonov-72 in the Gromov’s State Flight-Research

Institute,Zhukovkiy,Russia, in the spring of 1997 in real time. Ref-
erence CLA-type trajectorieshad been computed not slower than in

one-two seconds, visualizedon the HUD in the view of the Tunnel-
in-Sky image,2 and successfully tracked by pilots.

The present paper deals with the mathematical foundation of di-
rect method for rapid prototyping (DMRP) and is organized as fol-

lows. The trajectory optimization problem as well as the model
of an aircraft is described in Sec. III. Section IV introduces the

computational algorithm, and Sec. V deals with simulation results.
Section V also containsa comparisonof obtained solutionswith the

Pontryagin’s maximum principle (PMP) and �ight test data. Some
near-optimal solutions for different tasks are also discussed here.

Justi�cation of method convergence robustness and the implemen-
tation of TB ideas are illustrated as well.

III. Problem De�nition and General Relations
A. Trajectory Optimization Problem

The most general statement of the optimal control problem, de-

terminingFV trajectoryfrom the current point to a given point, may
be speci�ed as follows.

There is a set of admissible trajectories:

z(t ) = {z1(t ), z2(t ), . . . , zr (t )}
T 2 S

S = { z(t ) 2 Z r ½ E r }, t 2 b t0 , t f c

satisfying:

1) the system of ordinary differential equations:

Çzi = fi (t, z, u, c), i = 1, 2, . . . , r (1)

where u(t ) ={u1(t ), u2(t ), . . . , ul (t )}
T , l < r , u 2 U l ½ E l is the

vector of controls, and c = (c1 , c2, . . . , cp ), c 2 C p ½ E p is the vec-

tor of FV technical characteristics;

2) initial conditions:

z(t0) ´ z0 2 S0, S0 z0 2 Z r ½ E r (2)

u(t0) ´ u0 2 R0, R0 = u0 2 U l ½ E l (3)

and �nal (terminal) conditions:

z(t f ) ´ z f 2 S f , S f z f 2 Z r ½ Er (4)

u(t f ) ´ u f 2 R f , R f = u f 2 U l ½ E l (5)

3) restrictions on the state space:

´(t, z) = {g1(t, z), g2(t, z), . . . , gw (t , z)}T ¸0 (6)

on controls:

»(t, z, u) = {n1(t, z, u), n2(t , z, u), . . . , nv (t, z, u)}T ¸0 (7)

and on their derivatives:

¼(t, u, Çu) = {p1(t, u, Çu), p2(t , u, Çu), . . . , pr (t, u, Çu)}T ¸0 (8)

The problemis to �nd an optimal trajectoryzopt(t ) that minimizes

some CF J and an optimal control uopt(t ) corresponding to this
trajectory.

Although in the preceding de�nition of the problem a terminal
point is considered as completely de�ned [see Eqs. (4) and (5)]; in

general, some state variables and/or controls at the �nal point may
not be preset. In this case, as all direct methods do, the set of these

“free” variablesX f is assumed as additional OPs. Moreover, for a
combat aircraft, the CF can be represented not only as integrated

function

J =

t f

t0

f0(t, z, u) dt

(the simplest examples are maneuver time or fuel consumption),

but also as the function of current coordinates and controls in
the terminal point or at some event-conditioned instant of time
t¤(q(t¤, z, u) = 0) J = F (z, u)jt¤, e.g., terminal load factor or bank
angle at aiming point.
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B. Aircraft Model

As a system (1), considerthe three-dimensionalpoint-massequa-

tions over a �at Earth with zero sideslip angle:

Çx1 = V cos c cos v , ÇV = g(nx ¡ sin c )

Çx2 = V cos c sinv , Çc = (g / V )(nz cos u ¡ cosc )

Çx3 = ¡V sin c , Çv = (g / V cos c )nz sin u, Çm = ¡Cs (9)

where

nx = [T̄ (dT , n̄)Tmax(M , x3, c) cos(a + eT ) ¡ D(a, M , x3 , c)]/ mg

(10)

nz = [T̄ (dT , n̄)Tmax(M , x3 , c) sin(a + eT ) + L(a, M , x3 , c)]/ mg

(11)

and

Ç̄n =
kTdT ¡ n̄

td(n̄)
(12)

In Eqs. (9) Cs(M , x3, c) denotes a fuel �ow rate; in Eqs. (10) and
(11) eT denotes a thrust vector incidence angle, terms L and D are
the aerodynamic lift and drag, and M denotes the Mach number.

Terms kT and td in Eq. (12) correspond to engine characteristics
(gain and delay).

Consider the vector z ={x1 , x2, x3, V , c , v }T as a vector of state
variables with corresponding Eqs. (5)-type constraints on altitude
(¡x3) and speed (V ), and the vector u ={dT , nz(a), u}T as a vector
of controls. The constraints on controls of the Eq. (7)-type are as

follows:

dT 2 [dT min; dT max] nz 2 [nz min; nz max(M , x3 )] juj · umax

where a normal load-factor projection accounts for both aerody-

namic (n
CL
z ) and structural(nstr

z
) constraints.The constraintson their

derivatives[Eq. (8)-type] take into account thrust built-upand trust-

decay times [through Eq. (12)] and the characteristicsof an aircraft
control system (constraints on Çnz and Çu).

The aircraft models used in this study were representatives of
strike aircraft like A-10 “Thunderbolt” (Su-25 “Frogfoot”) and

high-performance multirole �ghters like F-16 “Falcon” (Su-27
“Flanker”). Their nonlinear aerodynamic characteristics were pre-

sented by corresponding coef�cients de�ned by multidimensional
tabulated data. Propulsion performance was also given by two-

dimensional tables from x3 and M for different n̄. Linear interpo-
lation was used for look-up. The atmospheric density was assumed

to be a power function of altitude (for x3 ¸¡11 km).

IV. Computational Algorithm
A. Reference Functions for Aircraft Coordinates

We take the reference functions for aircraft coordinates xi (i =

1, 2, 3) as algebraic polynomials of degree n with the virtual arc s

as an argument, thus making it possible to optimize independently
the velocity history along the trajectory:

xi (s ) =

n

k = 0

ai k

(max(1, k ¡ 2))!s k

k!

x 0
i (s ) =

n

k = 1

aik

(max(1, k ¡ 2))!s k ¡ 1

(k ¡ 1)!

x 00
i (s ) =

n

k = 2

aik s k ¡ 2, x 000
i (s ) =

n

k = 3

(k ¡ 2)aik s k ¡ 3 (13)

The degree n of these polynomials is determined by the number

of boundaryconditionsto be met, so that all coef�cientsai k were de-
termined algebraically,rather than varied.The higher the maximum

degree of time derivative of an aircraft coordinate at initial and ter-
minal points, whose values (the derivatives) are known, the higher

the degree of the polynomial. The minimum degree of the polyno-
mial is n = d0 + d f + 1, which is greater by one than the sum of the

maximum orders of the time derivativeof the aircraft coordinatesat
the initial and terminal points (d0 and d f , respectively).23

For example, if we consider the task without presetting the initial
and terminalvaluesof secondtime derivativesof aircraftcoordinates
(proportional to controls), which means d0 = d f = 1, the minimum
polynomials’ order is n = 3. Substituting the corresponding values

of xi0, x 0
i0

(i = 1, 2, 3) for s = 0, and xi f , x 0
i f

(i = 1, 2, 3) for s = s f

into Eqs. (13) (where s f , the length of a virtual arc, is considered

as the �rst OP), we obtain a set of 12 linear algebraic equations
for 12 unknown coef�cients ai k (i = 1, 2, 3, k = 0, 1, . . . , 3) being

resolved as

ai0 = xi0 , ai1 = x 0
i0 , ai2 = ¡

2x 0
i f

+ 4x 0
i0

s f

+ 6
xi f ¡ xi0

s 2
f

ai3 = 6
x 0

i f
+ x 0

i0

s 2
f

¡ 12
xi f ¡ xi0

s 3
f

Of course, we can compound the reference functions as super-

position of several cubic polynomials, as it is done in Refs. 18 and
20, and then satisfy the boundary conditions for controls. Other-

wise, we should employ the higher-orderpolynomials.For instance,
�fth-order polynomials satisfy the boundary values for the aircraft

coordinates, their �rst and second time derivatives at both ends of
the trajectory(d0 = d f = 2). Eighteen unknown coef�cients are then

being de�ned from Eqs. (13) in the same manner.
Usually, the �nal part of the trajectoryis of great importance from

a precision point of view, meaning a pilot is supposed to follow
prescribed controls more accurately, e.g., at landing, rendezvous

with a fuel carrier, aiming. Therefore, it is essential that the �nal
part of the trajectories be more smooth, meaning that in practice it

is better to exploit a case when d f = 3 with x 000
i f ´ 0 (i = 1, 2, 3).

The only OP so far was a length of a virtual arc s f . However,

there is no problem to add some more OPs to make a reference tra-
jectory more �exible. For instance,we can add one �ctive boundary

condition x 000
i0

(i = 1, 2, 3) to the case d0 = 2, d f = 3, and for n = 7
obtain relations for 24 coef�cients aik (i = 1, 2, 3, k = 0, 1, . . . , 7):

ai0 = xi0 , ai1 = x 0
i0, ai2 = x 00

i0, ai3 = x 000
i0

ai4 = ¡
2x 000

i f
+ 8x 000

i0

s f

+
30x 00

i f
¡ 60x 00

i0

s 2
f

¡
180x 0

i f
+ 240x 0

i0

s 3
f

+ 420
xi f ¡ xi0

s 4
f

ai5 =
10x 000

i f
+ 20x 000

i0

s 2
f

¡
140x 00

i f
¡ 200x 00

i0

s 3
f

+
780x 0

i f
+ 900x 0

i0

s 4
f

¡ 1680
xi f ¡ xi0

s 5
f

ai6 = ¡
15x 000

i f
+ 20x 000

i0

s 3
f

+
195x 00

i f ¡ 225x 00
i0

s 4
f

¡
1020x 0

i f
+ 1080x 0

i0

s 5
f

+ 2100
xi f ¡ xi0

s 6
f

ai7 = 7
x 000

i f
+ x 000

i0

s 4
f

¡ 84
x 00

i f ¡ x 00
i0

s 5
f

+ 420
x 0

i f
+ x 0

i0

s 6
f

¡ 840
xi f ¡ xi0

s 7
f

(14)

Now we can use these �ctive boundaryvalues as additionalOPs. (In

examples shown in Sec. V, instead of varying all three components
of the third derivative independently,we varied only its norm X 000

0
,

supposing that x 000
10 = X 000

0 sinv0 , x 000
20 = X 000

0 cos v0, and x 000
30 = 0.)

B. Speed History

Because the reference trajectory is de�ned not in the time frame,

it does not explicitlydetermine a history of speed.This gives a great
advantagebecause we can vary the velocity independentlyfrom the
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reference trajectory. In other words, an aircraft can �y along the
same trajectory with different speed histories.

In general, the dependence V (s ) may be determined either by
presetting a separate reference function V (s ), as in Taranenko’s

method,20 or by integrating the corresponding equation of set (9)

with predetermined thrust history:

V 0(s ) = g(n x ¡ sinc )
dt

ds
=

g(nx ¡ sin c )

k(s )
(15)

where

k(s ) =
ds

dt
(16)

is a virtual speed. It means that we can explicitlyemploy the results

of synthesis of controls obtained with the help of indirect methods.
We will further deal speci�cally with the last approach, assuming

that throttle vs time (arc) history is known qualitativelybeforehand.
Without loss of generality, let us consider the algorithm as applied

to the problems with on/off thrust control.
A representativeexample of these problems is the time-optimum

problem, which means J ´ t f . From the optimal control theory
for this type of problems, we know that if the Hamiltonian of

the system is linear in any control, that is the case for a thrust,
the optimum is the on/off control.6 In addition, the actual solu-

tion of a relatively large class of two-point boundary-value prob-

lems of �ight dynamics testify that in the optimization of tra-
ditional short-term maneuvers, we obtain, as a rule, no more

than one or two switches. Hence, when solving an optimiza-
tion problem, we can set two switching points: from dT max to
dT min at the moment s¤

T (t¤
T ), and back from dT min to dT max at the

moment s ¤¤
T

(t¤¤
T

)(0 ·s ¤
T

< s ¤¤
T

·s f ). Therefore, the search of the

near-optimal thrust’s control will be made among three admissi-
ble thrust histories:dT max ¡ dT min (s ¤

T
> 0, s¤¤

T
= s f ),dT min ¡ dT max

(s ¤
T = 0, s¤¤

T < s f ), and dT max ¡ dT min ¡ dT max(s¤
T > 0, s ¤¤

T < s f ).
In this way, from an analytical solution of some other problems,

e.g., minimum fuel consumption problem (J » 1 ¡ m f m
¡1
0

), we
know that the optimal control for the relative thrust is keeping it

constant. In solving this class of problems, it is natural to take this
initially unknown value of the relative thrust T̄ ¤ as the second (next

to s f ) OP. Of course, for other types of CF we can try other reason-
able thrust time histories.

C. Recalculation of the Boundary Values

According to Eqs. (14), to calculate the coef�cients of the ref-

erence functions [Eqs. (13)], it is necessary to know the initial
xi0 (i = 1, 2, 3) and terminal xi f (i = 1, 2, 3) aircraft coordinates,

as well as the initial and terminal values of their �rst x 0
i0, x 0

i f

(i = 1, 2, 3), and second x 00
i0

, x 00
i f

(i = 1, 2, 3) derivatives with re-

spect to the argument s . However, usually in practice we only have
the boundary values of state variables and controls, and so we need

to recalculate boundary conditions.
First, note that the correspondingtime derivativesare determined

from kinematic equations of set (9)

Çx10, f = V0, f cos c0, f cosv0, f

Çx20, f = V0, f cosc0, f sinv0, f , Çx30, f = ¡V0, f sin c0, f

and

ẍ10, f = ÇV0, f cos c0, f cosv0, f ¡ V0, f Çc0, f sin c0, f cos v0, f

¡ V0, f Çv0, f cos c0, f sin v0, f

u =

tan¡1
V kv 0 cos c

V kc 0 + g cos c
if V kc 0 ¸ ¡g cosc

sign(v 0 cos c ) p ¡ tan¡1
V kv 0 cosc

V kc 0 + g cos c
if V kc 0 < ¡g cosc

nz =
1

g
(V kc 0 + g cos c )2 + (V kv 0 cos c )2 (21)

ẍ20, f = ÇV0, f cos c0, f sin v0, f ¡ V0, f Çc0, f sin c0, f sin v0, f

+ V0, f Çv0, f cos c0, f cosv0, f

ẍ30, f = ¡ ÇV0, f sin c0, f ¡ V0, f Çc0, f cosc0, f

where the values of derivatives ÇV , Çc , and Çv at the boundary points
are determined with the help of dynamic equations of the set (9).

Let us turn now to the argument s . Using obvious relations,20

Çxi (s ) =
dxi

ds

ds

dt
= x 0

i (s )k(s )

ẍi (s ) =
d(x 0

i
(s )k(s ))

ds

ds

dt
= x 00

i
k2 + Çxi k

0, i = 1, 2, 3

the �rst and the second derivative of aircraft coordinates with re-

spect to this argument are de�ned with the help of the following
expressions:

x 0
i = k¡1

Çxi , x 00
i = k¡2[ẍi ¡ Çxi k

0] i = 1, 2, 3 (17)

Correspondingvalues of k and k0 at the boundary points are deter-
mined as

k0 = V0, k0
0 = ÇV0V ¡1

0 , k f = V f , k0
f = ÇV f V ¡1

f

(18)

D. Inverse Aircraft’s Dynamics

During a numerical solution, the parameters of the reference tra-

jectory are calculated in N points equidistantly placed over the
virtual arc, so that Ds = s f (N ¡ 1)¡1. This sampling period cor-

responds to the time intervals

D t j = 2

3

i = 1
(xi j ¡ xi j ¡ 1 )2

1
2

V j + V j ¡ 1

, j = 1, 2, . . . , N ¡ 1 (19)

where according to Eq. (15)

V j = V j ¡ 1 +
g(nx j ¡ 1 ¡ sin c j ¡ 1 )

k j ¡ 1

(20)

With these values of Ds and D t j , the speed k [see Eq. (16)] is

calculated at each step according to k j = DsD t ¡1
j .

The explicitlaws for aircraftcoordinates[Eqs. (13)], with account

of values V j [Eq. (20)], uniquely determine the aircraft attitude—
angles c j and v j —and remaining controls u j and nz j .

Indeed, from kinematic equations of the set (9), with account of
Eqs. (17), it follows that

c = ¡sin¡1
x 0

3

3

i = 1
x 02

i

1
2

v =

tan¡1
x 0

2

x 0
1

if x 0
1 ¸0

sign x 0
2

p ¡ tan¡1
x 0

2

x 0
1

if x 0
1 < 0

The required values of controls we get from dynamic equations
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where the correspondent time derivatives are determined as

c 0
= ¡

x 00
3

x 02
1

+ x 02
2 ¡ x 0

3(x 0
1
x 00

1
+ x 0

2
x 00

2 )

3

i = 1
x 02

i

3
2 cos c

v 0
=

x 00
2
x 0

1
¡ x 0

2
x 00

1

x
0 2
1

cos2v

E. Minimization of Multivariable Scalar Function

Finally, the calculation algorithm may be presented as follows.
With some arbitraryX f (if some terminal conditionsare not preset)

according to Eqs. (17), we recompute boundary values. Then, also
using some arbitrary value of the virtual arc length s f

(1 + 0.3jv f ¡ v0j)

3

i = 1

(xi f ¡ xi0)2

1
2

as an initial guess

and derivative X 000
0

(0 as initial guess), if appropriate, we calculate
the coef�cients of the reference polynomials (13) [with the help

of appropriate coef�cients’ set, e.g., Eq. (14)]. After this, taking

arbitrary initial guesses of OPs, de�ning a thrust history (arc s ¤
T

and s ¤¤
T

, if appropriate), we calculate all state variablesand controls

accordingto Eqs. (13), and (19–21) over the intervals 2 [0; s f ] with
the step Ds . Therefore, for each set of OPs

N = s f ^ s¤
T ; s¤¤

T _ s¤
T ; X 000

0 _ (T̄ ¤) _ (. . .) . . . ^ (X f )

we calculatethe valueof a CF J (N) alongwith the valueof a penalty
function Sh(N)

Sh(N) = k0 V f ¡ V
preset

f

2
+

w

i = 1

ki max(0; ¡gi min)2

+

m

i = 1

ki + w max(0; ¡ ni min)2 +

r

i = 1

ki + m + w max(0; ¡p i min)2

1
2

where the values of gi min, ni min, and pi min [see Eqs. (6–8)] are de-
�ned as the minimum ones over the entire trajectory. The weight

coef�cients ki , i = 0, 1, . . . , r + m + w are chosen heuristically to
ensure the speci�ed accuracy of matching the terminal value of

aircraft velocity and the accuracy of observing constraints.As a re-
sult, we reduced the original problem to a nonlinear programming

problem, meaning we obtained a problem of minimization for the
scalar function of several (but not tens as in Refs. 24–36) variables:
N

opt
= arg minSh(N) = 0 J (N).

Because of erroneous gradient information36 (because of tabu-

lated character of aerodynamic and thrust data, because of event-
conditioned step-changing mass or aerodynamic con�guration),

zero-order algorithms like the Hooke–Jeeves pattern direct-search
algorithm39 or Nelder–Mead downhill simplex algorithm40 were

preferred to quadratic programming. (For more complicated tasks
with a polymodal CF to �nd an area of global extremum attrac-

tion, Strongin’s information-statistical method41 was employed.)

Another and possibly the most important reason for the use of these

simple algorithms is that, because we are going to implement them
onboard of an aircraft, we need a probability of solution equal-

ing to one,36 meaning an absolute reliability. Luckily, it turned out
that even these nongradient algorithms solved the problem very

ef�ciently. In fact, to increase the convergencerobustness, these al-
gorithms were modi�ed a little bit to search for an extreme of J

only when Sh becomes less than speci�ed value e . Therefore, the
�rst steps minimized only Sh de�ning the reasonable subspace of

the OPs. Then a minimization of J itself with account of relation
Sh ·e was performed. (Section V contains a graphical illustration
of this procedure.)

The number of major-loop iterations required by any of the men-
tioned nongradient algorithms to converge the task was only near

25–30 iterations with an arbitrary initial guess. With account of
searching iterations, the total number of CF evaluations was an av-

erage of 100–120. The run time for the different types of processors
is discussed later, but in any case even for an IBM386-type proces-

sor it took not more than 6% of trajectory duration itself. Probably,
some further analysis of convergence robustness improvement in

favor of using other algorithmsof nonlinearprogrammingwould be
helpful; however, the mentioned �gures speak for themselves.

V. Simulation Results and Discussion
A. Validation of the Trajectories

To validate the DMRP’s near-optimal solutions, they were com-

pared with the optimal trajectories, obtained by PMP, and the real

�ight data. Some of these results are shown in Figs. 1 and 2.
Figure 1 shows the result of comparison between time-optimum

solutions obtained by PMP for the set (9) and DMRP (considered
before and suggested for implementation onboard computers). All

three presented trajectories were calculated for the strike aircraft

Fig. 1 Comparison between the trajectories obtained by the PMP and
proposed DMRP.

Fig. 2 Comparison between the real �ight data and DMRP’s solution
for a particular SBTA-type maneuver.
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using the same model given by Eqs. (9–12). The initial and �nal
state variables were de�ned as

z0 = {2000 m, 8000 m, ¡1500 m, 222 m/s, 0 deg, ¡28.6 deg}T

z f = {3810 m, 2200 m, ¡956 m, 222 m/s, ¡11 deg, ¡150 deg}T

Initial and �nal controls were preset as u0 ={0.3, 1, 0 deg}T (level

�ight) and nz f = cosc f , u f = 0 deg, respectively. The constraints
dT 2 [0.05; 1.0] and nstr

z max = 3 were imposed.

Note that the solution, obtained by PMP employed to the sys-
tem (9), generates controls that cannot be implemented in actual

control practice. Boundary conditions for controls cannot be speci-
�ed without incorporating them into the category of state variables

and introducing additional equations for them, which means with-
out augmentation of system (9). Thus, the obtained values of the

controls’ boundary conditions, as seen from Fig. 1, do not match
the values of u0 and u f . The constraints (8) on the controls’ deriva-

tives cannot be accounted for either. (Account of the constraints (5)

imposed on the state variables is also of signi�cant complexity.)

Consequently,the“equivalent”trajectoryin Fig. 1, employingsixth-
order polynomials, was obtained with free (not �xed) values of

controls in the boundary points as with the help of PMP (in this
case X f ={dT 0 , nz0 , u0, nz f , u f }). It is obvious, that near-optimal

approximation closely matches PMP’s solution. The difference in
time for this particular case is less than 0.5 s (»1.3%). Inability to

use the maximum load factor for some period of time to decrease
the airspeed, as PMP does, is compensated by switching a thrust

off at the end of the trajectory: s ¤
T

= 0.88s f , s f = 6256 (real path
equals to 7334 m). Optimized boundary values of the normal load

factor and bank angle are very close to those of PMP. It’s clear
that equalizing the higher derivatives of aircraft coordinates at the

boundary points with PMP (by employing the higher-orderpolyno-

mials) would result in more of a coincidence of near-optimal and
optimal solutions.

Figure 1 shows also another (recommended) trajectory that was
computed by means of proposed DMRP with the use of seventh-

order polynomials. This trajectory satis�es all of the constraints,
given by Eqs. (6–8), including thrust-delay characteristics and

boundary conditions on controls. Because of this reason this tra-
jectory, speci�cally, can be suggested to a pilot for its tracking.

The result of comparison between the real �ight data for the
multirole �ghter and correspondentDMRP’s solution for the same

boundary conditions and controls’ constraints (whenever it is pos-
sible because not all of them were recorded in �ight test) is shown

at Fig. 2. In real �ight, a pilot performed many unnecessary move-
ments striving to satisfy predetermined �nal conditions. Post�ight

optimizationof this maneuverprovided7-sgain in time (»18%), not
complicatingbut the reverse—simplifying the histories of controls.

B. Examples of Solutions of Particular Problems

By now within the frame of PSS paradigm with the help of pro-

posed DMRP tens of thousand trajectorieshave been calculatedand
tested for different types of aircraft for such stages of �ight as take-

off/climb, SBTA and CLA. Figures3–6 demonstratesome examples
of such trajectories,calculated for the multirole �ghter with the use

of seventh-orderpolynomials.
Figure 3 illustrates the possibilityof applyingDMRP to calculate

SBTA and CLA trajectories.This �gure shows an isometric projec-
tion of two trajectories as well as the time histories of speed and

controls. Boundary conditions were preset as

z0 = {0 m, 10,000 m, ¡200 m, 200 m/s, 0 deg, 15 deg}T

z f = {1774 m, 645 m, ¡687 m, 200 m/s, ¡20 deg, ¡160 deg}T

z0 = {0 m, 14,140 m, ¡5000 m, 200 m/s, 0 deg, ¡15 deg}T

z f = {71 m, 196 m, ¡7.3 m, 80 m/s, 0 deg, ¡160 deg}T

respectively.The initial controls representedlevel �ight conditions;

at the end of the trajectorynz f = cosc f , u f = 0 deg. The constraints
dT 2 [0.05; 1.0] and nstr

z max = 3 (nstr
z max = 1.5 for CLA) were imposed.

CLA trajectory, in this case, was calculated with the landing gears
and the wing’s landing mechanization on. (Other simulations in-

Fig. 3 Examples of a) near-optimal SBTA and b) near-optimal CLA.

Fig. 4 Illustration of reference polynomials�exibility.

volved an optimization of the instant of the aircraft’s con�guration

change.)

Figures 4 and 5 demonstrate a �exibility of DMRP resulting
from variation of the third derivative of the aircraft coordinates

in initial point. This variation provides acceleration of an opti-
mization procedure and helps to avoid “wild” trajectories.Figure 4

shows an example when the �nal states’ manifold is determined
by terminal speed V f = 222 m/s, by terminal range to the origin
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Fig. 5 Illustration of ability of DMRP to satisfy a constraint on load
factor’s time derivative.

Fig. 6 Illustration of connected maneuvers calculation.

of the inertial frame R f = 2200 m and by �nal �ightpath angle
c f = ¡30 deg, but the �nal azimuthangle is not preset (X f ={v f }).
That means x1 f = R f cosc f cos v f , x2 f = R f cos c f sin v f , and
x3 f = ¡ R f j sin c f j. Level �ight is taken as an initial state; at the
end of the trajectorynz = cos c f and u f = 0 deg are applicable.For

this particular case, it turned out that from the standpoint of time-

optimum, thebest trajectoryis theonewith v f = ¡180 deg.Figure 5
shows how a variation of X 000

0
satis�es a constraint on Çnz (only the

value of this constraint differs for three presented trajectories).
Because DMRP takes into account the prescribedvalues of high-

order derivativesat the boundary points, there is no problem to cal-
culate (optimize) a seriesof maneuversensuringa smooth changeof

controls. Figure 6 gives an example of such SBTA trajectory com-
poundedof two maneuversoptimizedone afteranother(the terminal

state of the �rst maneuverservesas an initial state for the second). It
should be emphasized that this feature allows implementationof the

same approach for “dynamical” optimization,when the constraints
on the state variablesor desired�nal conditionchanges in time. The

lattermeans that a trajectoryshouldbe recalculatedfrom the current
(prognosis) condition every three to �ve seconds, as it takes place

during a collision avoidance in free �ight or evasion-pursuing in a
dog�ght,42 for example.

C. Convergence Robustness

As was mentioned earlier, DMRP has a very important advan-
tage from the standpoint of employing it in PSS—the rapidness

of two-point boundary-value problem solution even by means of
nongradient (zero-order) methods. In Refs. 20–36 it was already

shown that the direct methods based on nonlinearprogramming are
the most promising for accurateoff-line trajectoryoptimization,but

with the use of proposed DMRP we are able to talk even about
on-line optimization.

First, Fig. 7 gives some ideas about topography of optimization
space (s̄ ¤

T
and s̄ ¤¤

T
denote the values divided by s f ). Each concrete

problem de�nes some subset of OPs K, restricted by a physical
sense of the problem and the corresponding constraints, ensuring

inequality Sh ·e (see example on Fig. 7a). It means that being
on this hypersurface provides a satisfaction of all constraints and

terminal condition for an aircraft velocity. Note that for each s f

we have a series of pairs s ¤
T

¡ s ¤¤
T

, which means that we are able

to optimize a speed history (de�ned by s¤
T

and s¤¤
T

) independently
from the trajectory (de�ned by s f ). However, different points of

this subset de�ne the different reasonablehistories of controls, and

consequently different trajectories with different J . Thus the task

a)

b)

Fig. 7 Optimization space topography: a) subspace Kand b) CF com-

puted on this subspace.

Fig. 8 Algorithm’s convergence characteristics for different type of

processors: a) t
1
CPU

vs D ¿ and b) relative CPU time for complete opti-
mization.



YAKIMENKO 873

is to optimize a CF within the frame of this subset, that is to �nd
minN 2 K J . Figure 7b represents an example of CF (time of maneu-

ver) surface in s f ¡ f coordinates. It is obvious that because we
are on K, it is very simple to �nd an optimum of J . That is why

even the employed modi�cation of any zero-order method is so
ef�cient.

Figure 8 demonstratesthe time-characteristicsof convergencero-
bustness. To start with, Fig. 8a shows a time t1

CPU
necessary for one

estimateof theCF (trajectorycalculation) for typical60-s maneuver.
This time obviously depends on the sampling period Ds (a num-

ber of calculation nodes N ) as well as on processor type. (By the
way, 40% of calculationtime takes a procedureof multiparametrical

approximation of aerodynamic characteristics and propulsion per-

formance in the sampling points.) For an average speed of 222 m/s,
this sampling period in Ds corresponds to the averaged time step

as D tav » Ds222¡1 . It is clearly seen how the increase of the com-
puters’ power decreases the required CPU time.

Because the optimizationof the trajectorywith an arbitraryinitial
guess with the set of three OPs requires an average of hundred

Fig. 9 Illustration of a) an idea of TB and b) an ef�ciency of employing

a good initial guess for convergence robustness.

Fig. 10 Illustration of DMRP’s sensitivity to the change of boundaryconditionsand constraints (required ÅtCPU to converge the task to a new extreme).

evaluationsof J , the data from Fig. 8a provide a direct estimate of a
total CPU time aswell. Figure 8b shows an exampleof such estimate

for Ds = 50 (D t » 0.25 s). As one can see, a relative computational
time t̄CPU that is a ratio of tCPU and t f » 60 s is really small, and

gives a real opportunity for on-line optimization.
Although there are no data to compare DMRP with other di-

rect methods in use, we can refer to the following indirect esti-
mates. Kumar and Seywald reported that the computation of the

257-s planar minimal time-to-climb maneuver for dynamic sys-
tem described by three state variables and two controls for N = 11

with the help of sequential quadratic programming algorithms on
SunSparcI+computer by means of the simplest collocation ap-

proach (with 54 OPs) requires 360 s, by means of differential inclu-

sions with implicit and explicitcontrol elimination (with 34 OPs)—
180 s, and 55 s, respectively,33 i.e., t̄CPU is equal to 144%, 72%,

and 22%, respectively.They also tell about 40 major-loop iterations
from the trivial initial guess to converge this task by this gradi-

ent method. It means that a total number of CF computations (to
compute a Jacobian at each step) is over 100,000 for the collo-

cation method and over 40,000 for the differential inclusions ap-
proach. Considering his approach, which is similar to Taranenko’s

method,20 Lu reported that optimizationof approximately the same
planar climb-to-dashmaneuver with the use of the best nongradient

method of global minimum search with 31 OPs takes the order of
30,000 calculationsof the CF.36 Approximately the same estimates

of the convergence robustness of these methods can also be found
in other papers. At the same time, to converge the optimization

problem for the spatial (not planar) maneuver for the point-mass
model of an aircraft with three controls with satisfaction of bound-

ary conditions both for state variables and controls for N » 100
with the use of nongradient method, the proposed DMRP requires

the same amount of major-loop iterations, but because of a smaller
amountof OPs (in general,only threeof them) it usuallyneedsabout

100 computations of the CF, so that t̄CPU for an IBM486 processor
(which seems to be compatible to SunSparcI+computer) does not

exceed 3%. Obviously, DMRP gains robustness because of the size
of the optimizationproblem(CPU time requiredto solvea nonlinear

programming problem increases with the number of OPs geometri-
cally). Thus one of the obvious advantages of the proposed DMRP

with others is a small number of OP. Moreover, they have an explicit
physical sense.

To summarize, as shown, the proposed DMRP can be used for
on-line onboard optimization of spatial short-term maneuvers for

PSS. To account correctly for the required CPU time, we simply
should use, as the initial point, the predicted on tCPU aircraft’s state.

For example, for PentiumII-classprocessors it means no more than
a 1-s prognosis.However, unfortunatelytoday’s onboardcomputers
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are much slower than Pentium-type ones. Should we wait until the
last one will be available onboard, or it is possible to employ the

proposedDMRP right away? The answer is yes, we can use it on to-
day’s aircraft, but we have to employ a known idea of initial guesses

database.

D. Employment of Trajectories Databases

The idea of convergence robustness improvement through the

database of initial guesses employment is fairly clear.4 If some kind
of TB, containing the values of OPs for a certain number of node

trajectories, would be available on the onboard computer, then we
could use it to obtain an initial guess of OPs for the current two-

point boundary-valueproblem (see Fig. 9a). The developed DMRP
allows creating these TBs due to two main reasons. First, the en-

tire trajectory is de�ned only by a few parameters. Second, these
parameters have a clear physical sense, and they change smoothly

with a change of boundary conditions and constraints’ rigidity.
Figure 9b demonstrates an example of TB ef�ciency. Suppose

we have two-node trajectories T1 and T2, de�ned by N1 and N2,
and different from each other only by x20 . Then as an initial guess

for an arbitrary trajectory with x¤
20 2 b x

T1

20 ; x
T2

20 c , we can use the vec-
tor N

¤
= (1 ¡ q)N

opt

1
+ qN

opt

2
, where q = (x¤

20
¡ x

T1

20
)(x

T2

20
¡ x

T1

20
)¡1.

As it turns out, a trajectory calculated with the use of N
¤ and a

trajectory �nally optimized with the use of this initial guess prac-

tically coincide, meaning that the interpolated vector N
¤ is fairly

close to the optimized one N
opt (this means that N¤ is a good guess

for N
opt).

In a general case, there is more then one input parameter, there-

fore a multiparametrical(multientry) interpolationshould be used.3

The only question is what set of variables should be used as an entry

parameter, and how many nodes for each of them should be estab-

lished. Figure 10 gives some ideas how to �gure it out. It shows an
estimate of t̄CPU required for an IBM486-typeprocessor to converge

an optimization problem to the new optimal values changing the
magnitude of some boundary conditions or constraints and using

the old N
opt as an initial guess. From this example, it becomes clear

that if we want to converge a task assuring t̄CPU ·1%, we need to

establish the nodes of TB for shown particular parameters (V0 , V f ,
nstr

z max
) corresponding to 10% of their change. Obviously, the more

nodes for each entry parameter TB has, the better the convergence
robustness is. However, in general, there are too many entry param-

eters: initial and �nal values of state variables, controls constraints,
aircraft and its engine characteristics, and atmospheric conditions.

Whether we need all of them as TB’s entries, and whether all of
them should have the same number of nodes, is questionable.

As performed research shows, the DMRP is more sensitive to
changes of only 13 of those parameters3 and it is enough to have

from two to six nodes to improve the convergence of algorithm by
the factor of three, e.g., for an IBM486-type processor it means
t̄CPU ·1%. It was found that the values of the initial and terminal
azimuth angles are the most in�uential.For this reason, TBs had the

largestmesh point frequencyfor theseparameters,whereas for most
of other parameters, e.g., for initial and �nal velocity, it was suf�-

cient to have only two nodes: for minimum and maximum possible
(expected) values, respectively. Consequently, the required RAM

volume to keep the OPs for all varietiesof those entry parameters is
reasonable.For instance, the TB for onboardcomputationof SBTA-

type trajectories using an IBM486-type processor contains 47,040
trajectories and covers (with respect to the target) any initial and

�nal azimuth angles, initial and �nal velocity in the range of [170;
250] m/s, initial range up to 15,000 m, �nal range within [1800;

3600] m, initial altitude within [200; 1000] m, �nal diving angle
within [10; 30] deg, any operative constraints on thrust and load

factor (see a fragment of this TB on Fig. 11). To store the values
of three OPs and the value of CF, it requires less then 1-Mb RAM.

For other stages of �ight like CLA or takeoff/climb, because of air-
craft restriction to a runway, the number of TB’s node trajectories

is approximately eight times less.
Anothergood thingaboutTB is that it ensuresa unit probabilityof

the near-optimal trajectory computation for a certain time because
of its construction. Moreover, before implementation onboard, it

can and has to be crosschecked in a series of intermediate points.

Fig. 11 A family of SBTA-type trajectories differing by initial and
terminal azimuth angles only.

VI. Conclusions

The designed method is characterized by the following advan-

tages: 1) a priori satisfaction of the boundary conditions, imposed
on state variables and controls; 2) an absence of “wild” trajectories

during optimization; 3) an analytical (parametrical) representation
of the reference trajectory; and 4) a rather small number of OPs.

These features resulted in an excellent convergence robustness of
the method, making it possible to employ DMRP onboard of mod-

ern aircraft for on-line prototyping of short-term spatial maneuvers
for their following tracking by a pilot. In addition, the resulting

algorithm of near-optimal trajectory generation can be easily inte-
grated with existing navigation/control algorithms. Another feature

of DMRP is that it is not subject to “curse of dimensionality”; thus,
it is unnecessary to simplify a set of state equations, or to make

any restrictive consumption, or to introduce new control variables.
On the contrary, for better physical matching one can use any com-

plex model of an aircraft. Any complex CF de�ned explicitly by
the boundary or event condition can be used either. Because sen-

sitivity of solutions to small changes in the boundary conditions is
insigni�cant, an idea of onboard TB for robustness improvement

can be employed. Of course, DMRP also keeps the main disadvan-
tage of all direct methods—it gives near-optimal instead of optimal

solution, but as proved by correspondentcomparison, the degree of
misalignment is not too big.
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