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Abstract—We consider the optimization problems which may

be solved by the direct decomposition method. It is possible

when the performance index is a monotone function of other

performance indices, which depend on two subsets of decision

variables: an individual for every inner performance index

and a common one for all. Such problems may be treated as

a generalization of separable problems with the additive cost

and constraints functions. In the paper both the underlying

theory and the basic numerical techniques are presented and

compared. A special attention is paid to the guarantees of

convergence in different classes of problems and to the effec-

tiveness of calculations.
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1. Introduction

We consider the following optimization problem:

min
x1,x2,...,xp−1,v

ψ
(

f1(x1,v), f2(x2,v), . . .

. . . , fp−1(xp−1,v), fp(v)
)

, (1)

v ∈V ⊆ R
nv , xi ∈ Xi ⊆ R

ni , i = 1, . . . , p−1 , (2)

(xi,v) ∈ XVi =
{

(xi,v) : gi j(xi,v) ≤ 0,

j = 1, . . . ,mi} , i = 1, . . . , p−1 , (3)

where ψ : R
p → R is an order preserving (i.e., monotoni-

cally increasing with all its arguments), continuous function

and all functions fi,gi j are convex and differentiable. We

want to solve this problem applying hierarchical two-level

approach with the decomposition of (1)–(3) in the direct

way (so-called direct method). That is, we would like to

apply the following computational scheme:

coordination problem (CP):

min
v∈V∩V0

ψ
(

f1(x̂1(v),v), f2(x̂2(v),v), . . .

. . . , fp−1(x̂p−1(v),v), fp(v)
)

, (4)

V0 = {v|∀i ∈ {1, . . . , p−1} ∃xi ∈ Xi :

gi j(xi,v) ≤ 0 ∀ j = 1, . . . ,mi
}

, (5)

iiith local problem (LPi), i = 1, . . . , p−1:

x̂i(v) = arg min
xi∈Xi

fi(xi,v) , (6)

gi j(xi,v) ≤ 0, j = 1, . . . ,mi . (7)

We will call the variables forming vector v coordinating or

complicating variables (the last name stems from the obser-

vation, that when they are temporarily fixed the remaining

optimization problem is considerably more tractable). They

have to belong to a given explicitly set V and to an unknown

set V0, which is the set of admissible values of these vari-

ables from the point of view of the local problems. The

set V0 is called solvability set.

Such problems have been considered for more than

30 years in more [10, 17] or less [2] general statement.

Surprisingly, they are often treated in some isolation from

other problems, which are, in the autor’s opinion, very

close to them [1, 3, 5, 11]. The latter works were de-

voted to general problems with two (or more) sets of vari-

ables and the possibilities to iterate them in Gauss-Seidel

manner to obtain the global optimum. There were no as-

sumptions concerning specific structural properties of the

performance index and the constraints’ functions. Even ter-

minology is different in these two types of problems. In the

first case the variables forming the v vector are called the

coordinating variables, while in the second–complicating

variables.

The methods proposed depend on the presence of mixed

constraints defining sets XVi (3). If there are no such con-

straints, the theory considerably simplifies. It will be shown

later on, that in this case the coordinating variables v stop

to be complicating and there is no need to treat them in a

different way than the others. It leads to plane (one level)

decision structure, that is without the coordination level,

even with some possibilities of desynchronization of calcu-

lations between different local units. When such constraints

are present, the situation is more complicated and the co-

ordination level is necessary, where the unknown set V0
has to be taken into account when calculating new val-

ues of the coordinating vector v. In the article it will be

shown, that actually, it is not necessary to look for a gen-

eral method of determining the set V0, and an efficient

algorithm based on Kelley’s cutting plane method [14],

Benders decomposition [1] and ellipsoid method [15, 16]

will be proposed.
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2. The case of independent constraints

on local and coordinating variables

If there are no mixed constraints on local and coordinating

variables (7), that is in the definitions (3), (5) of sets XVi
and V0 mi = 0 ∀i we may take as these sets full domains,

and as the consequence

V ∩V0 = V ∩R
nv = V . (8)

In such circumstances the coordination problem takes

the form:

coordination problem for independent sets (CP− I):

min
v∈V

ψ
(

f1(x̂1(v),v), f2(x̂2(v),v), . . .

. . . , fp−1(x̂p−1(v),v), fp(v)
)

(9)

and the local problem

iiith local problem for independent sets (LPi − I),
i = 1, . . . , p−1:

x̂i(v) = arg min
xi∈Xi

fi(xi,v) . (10)

Such problem for additive cost function ψ was considered,

e.g., in [2, p. 270]. However it seems, that there are pos-

sibilities to solve this and a more general problem with (1)

performance index more effectively. First of all, let us take

that the coordinating vector does not differ qualitatively

from the other vectors xi and denote it by xp, and its set

by Xp that is:

xp = v, Xp = V, np = nv . (11)

Now denoting

n =
p

∑
i=1

ni (12)

we will define the performance index f : R
n 7→ R hiding

the structure of the function ψ , as:

f (x1,x2, . . . ,xp) = ψ
(

f1(x1,xp), f2(x2,xp), . . .

. . . , fp−1(xp−1,xp), fp(xp)
)

. (13)

For typographical convenience the partitioned column vec-

tors:












x1

x2
...

xp













will be written in the form (x1,x2, . . . ,xp).

In this notation we deal with the following optimization

problem:

min
x∈X

f (x) , (14)

where

X = X1 ×X2 × . . .×Xp , (15)

x = (x1,x2, . . . ,xp) (16)

and xi ∈ R
ni , i = 1, . . . , p.

For problems with such general structure it is possible to

propose two types of optimization algorithms:

• Jacobi algorithm:

xk+1
i = arg min

xi∈Xi
f
(

xk
1, . . . ,x

k
i−1,xi,xk

i+1,

. . . ,xk
p

)

, i = 1, . . . , p , (17)

• Gauss-Seidel algorithm:

xk+1
i = arg min

xi∈Xi
f
(

xk+1
1 , . . . ,xk+1

i−1 ,xi,xk
i+1,

. . . ,xk
p

)

, i = 1, . . . , p , (18)

where k denotes subsequent iterations.

So, in Jacobi algorithm the new values of subvector xi, that

is xk+1
i for every i are obtained on the basis of the same

information, that is they may be determined independently

of each other. In Gauss-Seidel algorithm to determine

new xi the previous values of subvectors xi+1, . . . ,xp are

used, but already new values of subvectors x1, . . . ,xi−1. We

may say, that although both these algorithms use decom-

position, Jacobi algorithm is parallel, while Gauss-Seidel

sequential from its nature.

The following theorems concerning the convergence of

these two algorithms have been formulated:

Proposition 1 [3, Prop. 3.9, p. 219]: Suppose that

f : R
n 7→R is a continuously differentiable and convex func-

tion on the set X . Furthermore, suppose that for each i f is

strictly convex function of xi, when the values of the

other components of x are held constant. Let {xk} be the

sequence generated by the nonlinear Gauss-Seidel algo-

rithm (18), assumed to be well defined. Then every limit

point of {xk} minimizes f over X .

Proposition 2 [7]: Let {xk} be the sequence generated by

the proximal Gauss-Seidel method:

xk+1
i = arg min

xi∈Xi

[

f
(

xk+1
1 , . . . ,xk+1

i−1 ,xi,xk
i+1, . . . ,x

k
p

)

+
1
2

τi||xi − xk
i ||

2
]

, i = 1, . . . , p , (19)

where τi > 0, i = 1, . . . , p. Then, if f is pseudoconvex

on X , every limit point of {xk} is a global minimizer of

problem (14).
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Proposition 3 [3, Prop. 3.10, p. 221]: Let f : R
n 7→ R be

a continuously differentiable function, let γ be a positive

scalar, and suppose that the mapping h : X 7→ R
n, defined

by

h(x) = x− γ ·∇ f (x) (20)

is a contraction with respect to the block-maximum norm

||x|| = ||(x1,x2, . . . ,xp)|| = maxi
||xi||i

wi
, where each ||.||i is

the Euclidean norm on R
ni and each wi is a positive

scalar. Then there exists a unique vector x̂ which mini-

mizes f over X . Furthermore, the nonlinear Jacobi and

Gauss-Seidel algorithms are well defined, that is, a min-

imizing xi in Eqs. (17) and (18) always exists. Finally, the

sequence {xk} generated by either of these algorithms con-

verges to x̂ geometrically.

The first two propositions concern Gauss-Seidel algorithm.

Although, as it was written earlier, it is sequential from its

nature, in the case of specific structural properties of the

optimized functions, like in our case (13), it may be used to

obtain the solution of the optimization problem. Owing to

monotonicity of the function ψ , when it is strictly convex,

the block coordinate problems (18) for i = 1, . . . , p−1 may

be simplified to:

xk+1
i = arg min

xi∈Xi
fi(xi,xk

p) (21)

and solved independently. Only the last coordinate xp has

to be modified according to formula (18), for new optimal

values of x1,x2, . . . ,xp−1. Strict convexity is necessary to

get from the local problems unique solutions. When this

function is not strictly convex, but convex or pseudoconvex,

according to Proposition 2, we may force the uniqueness of

local solutions by adding quadratic proximal terms. Unfor-

tunately, Grippo and Sciandrone theory [7] allows for in-

dependent, parallel solutions of block coordinate problems

for i = 1, . . . , p−1 only in the case of additive functions ψ .

The third proposition concerns a specific subclass of

convex problems. The contraction condition for the map-

ping h (20) is satisfied for example (for functions from

the C2(R
n) class) when the Hessian of the function f is

constrained, that is there exists such a constant K, that:

∂ 2 f
∂xi∂x j

≤ K ∀x ∈ R
n,∀i, j (22)

and the domination of the main diagonal condition is ful-

filled for a positive weights vector [w1,w2, . . . ,wn] (usually

we take wi = 1, ∀i):

wi ·
∂ 2 f
∂x2

i
> ∑

j 6=i
w j ·

∣

∣

∣

∣

∂ 2 f
∂xi∂x j

∣

∣

∣

∣

. (23)

In such conditions, if we take a sufficiently small coeffi-

cient γ , more precisely:

0 < γ <
1
K

(24)

then the mapping h is a contraction in the maksimum norm.

The functions whose Hessian is diagonally dominated are

a subclass of the set of all convex functions. It results from

the Gershgorin’s circle theorem (saying that all eigenvalues

of the matrix are contained within the union of n disks

K(aii,∑ j 6=i |ai j|), with each disk centered at a diagonal en-

try of the matrix and having radius equal to the sum of

absolute values of off-diagonal entries in that row) and the

equivalence of the positive signs of eigenvalues and positive

definiteness in the class of symmetric matrices [6].

Unfortunately, not all convex functions have diagonally

dominated Hessian. For example a quadratic form f (x) =
1
2 x′Ax with the matrix:

A =





3 2 2
2 3 2
2 2 3



 (25)

is convex, but the diagonal dominance condition will never

take place, i.e., there are no positive weights w1,w2,w3 for

which the condition (23) will be satisfied (it is easy to prove

it by a contradiction).

Let us return now to our hierarchical algorithm and state

the conclusions from the Proposition 3. We may say, that

in the case of functions of the class C2(X) whose Hes-

sian satisfies conditions (22), (23), and when there are no

mixed constraints on local and coordinating variables, it

is not necessary to realize the hybrid version of calcula-

tions: Gauss-Seidel iterations between coordination and lo-

cal level and Jacobi iteration between different units of the

local level. It is possible and should be useful to treat the

coordination problem in the same way as the local prob-

lems. Due to the structural properties of the function f –see

Eq. (13)–(that it grows monotonically with all functions fi)

the iterations (17) for i = 1, . . . , p−1 will be equivalent to

LPi (6), that is:

xk+1
i = arg min

xi∈Xi
f
(

xk
1, . . . ,x

k
i−1,xi,xk

i+1, . . . ,x
k
p
)

= arg min
xi∈Xi

ψ
(

f1(xk
1,x

k
p), . . . , fi(xi,xk

p), . . . ,

. . . , fp−1(xk
p−1,x

k
p), fp(xk

p)
)

= argmin
xi

fi(xi,xk
p), i = 1, . . . , p−1 (26)

while for i = p (earlier it was problem CP-I)

xk+1
p = arg min

xp∈Xp
f
(

xk
1, . . . ,x

k
p−1,xp

)

= arg min
xp∈Xp

ψ
(

f1(xk
1,xp), . . . , fp−1(xk

p−1,xp), fp(xp)
)

.

(27)

Until now nothing was said about the numerical optimiza-

tion algorithm solving local problems. Since all local de-

cision variables xi have to belong to given sets Xi, they

have to be constrained optimization procedures. The sim-

plest way is to apply directly the steepest descent algorithm

adding to it, to take into account the constraints, the orthog-

onal projection (with respect to Euclidean norm) of a vector
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onto the convex set Xi. Let us define the projection opera-

tor [y]+Z by:

[y]+Z = argmin
z∈Z

||z− y|| , (28)

where ||.|| is the Euclidean norm. The simplest con-

strained optimization algorithm implementing Jacobi itera-

tions (17) will be then:

xi := [hi(x)]+Xi
= [xi − γ∇i f (x)]+Xi

, i = 1, . . . , p . (29)

Since the projection does not change nonexpansive prop-

erty [3], this mapping will be a contraction when the map-

ping h is a contraction. Moreover, different xi may be cal-

culated totally asynchronously [3], that is without the need

to make a new calculation or communication in any finite

window.

But it was all about such convex problems with independent

admissible sets, where the mapping h defined in (20) was

contractive in the maximum block norm. What about these

situations, rather more common, where this feature does

not take place? Surprisingly, the last algorithm (29) is still

valid. The only differences are in the restriction on γ co-

efficient and in the time dependencies between subsequent

iterations of the ith local subvector xi and in the exchange

of information between different local units. If we denote

by B the window (measured in the number of iterations of

the whole algorithm) in which at least one iteration of each

local units and the communication updating their values in

the buffers of other units should take place, and by K1 the

Lipschitz constant for the gradient of a convex, nonnegative

function f :

||∇ f (x)−∇ f (y)|| ≤ K1 · ||x− y|| ∀x,y ∈ R
n (30)

the assessment on γ will be as follows [3]:

γ < γ0(B) =
1

K1(1+B+nB)
. (31)

In this case we deal with so-called partially asynchronous

implementation of the algorithm, where B is the measure

of asynchronism. For functions f belonging to class C2(X)
the constant K1 equals K from the assessment (22).

It means, that in the case when the admissible sets are

independent, it may be useful to abandon the hierarchical

manner of solving the problem (1). In the “peer-to-peer”

(Jacobi) version of the algorithm it might be possible to

find the solutions faster and even in an asynchronous im-

plementation.

3. The case of mixed constraints on

local and coordinating variables

In this case the biggest problem with the above two-level

algorithm (4)–(5), (6)–(7), which seems to be quite natu-

ral and promising, is that it is very difficult to calculate

two things: the set V0 and the functions x̂i(v). Because

of that the algorithm (4)–(7) is completely impractical–it

cannot be directly applied. First of all, solving CP involves

the reactivation of all local problems LPi, i = 1, . . . , p− 1
after every change of the v vector, that is after every move-

ment in its optimization. It is so, because only in this way

we may guarantee the proper first arguments of functions

fi(x̂i(v),v). It is fast only in these rare cases when we may

solve analytically local problems. Yet more difficult situ-

ation is with the solvability set V0. This set is not given

explicitly. The direct formula to calculate it was presented

by Geoffrion [5] and is the following:

V0 =

{

v∈R
nv : max

λ∈Λ
min

xi∈Xi i=1,...,p−1

p−1

∑
i=1

mi

∑
j=1

λi j ·gi j(xi,v)≤ 0
}

,

(32)

where

Λ =

{

λ ∈ R
m1+m2+...+mp−1 : λ ≥ 0

m1+m2+...+mp−1

∑
i=1

λi = 1
}

.

(33)

So, it is rather difficult to estimate it and the computa-

tional effort to assess whether a given v belongs to this

set is comparable with that of solving the whole optimiza-

tion problem. It would be better to estimate this set by

some additional constraints, possibly simple. In the book

[10, p. 87] it is written, that: “In general the problem of

defining inequalities and equations describing the set V0
is unsolved” and as the only remedy the penalty function

method is suggested:

coordination problem for penalty function method

(CP-PFM):

min
v∈V

ψ
(

f1(x̂1(v), v̂1(v))+ρ1k||v− v̂1(v)||2, . . .

. . . , fp−1(x̂p−1(v), v̂p−1(v))+ρ(p−1)k||v− v̂p−1(v)||2, fp(v)
)

(34)

iiith local problem for penalty function method

(LPi-PFM) i = 1, . . . , p−1:

[x̂i(v), v̂i(v)] = arg min
xi∈Xi,vi

[

fi(xi,vi)+ρik||v− vi||
2]

gi j(xi,vi) ≤ 0, j = 1, . . . ,mi . (35)

However there is a possibility to estimate both the set V0
and the function

ϕ(v) = ψ
(

f1(x̂1(v),v), f2(x̂2(v),v), . . .

. . . , fp−1(x̂p−1(v),v), fp(v)
)

(36)

by a set of inequalities, growing as the computation pro-

gresses. This is a decomposition method proposed by Ben-

ders in early sixties [1]. He considered problems (called by

him “mixed-variables programming” problems) where both

the performance index and the constraints were sums of two

components: one linear depending on one set of variables

4



Direct method of hierarchical nonlinear optimization–reassessment after 30 years

and one nonlinear (they were called complicating variables;

also because in many practical problems, e.g. [12], they are

discrete). He proposed an iterative procedure for solving

this problem by optimization with respect to either the first

or the second group of variables in some auxiliary prob-

lems, related to dual representation of the initial problem

and to optimality conditions. In the latter–the outer–the

number of constraints on the variables corresponding to

nonlinear part of the problem was gradually growing. They

were delivered by the other–the inner–problem in the way

dependent on the existence or not of the feasible solutions in

the space of variables corresponding to linear components.

Hence, in the decision space of nonlinear part variables

either an “optimality cut” or “feasibility cut” was made.

In seventies the procedure proposed by Benders was gen-

eralized by Geoffrion [5] to the case of continuous non-

linear problems with performance indices and constraint

functions being convex functions for fixed values of com-

plicating variables. In later works Floudas et al. [12, 13]

presented methods of transformation of many practical non-

convex and mixed continuous-discrete problems to apply

this theory. A good review of these methods and well pre-

sentation of the algorithms may be found in [11]. We will

present the basic procedure on the general problem:

min
x∈X ,v∈V

f (x,v) , (37)

g j(x,v) ≤ 0, j = 1, . . . ,m . (38)

The solution algorithm is an iterative procedure where ev-

ery iteration (let us say kth) consists of two parts:

1. Solving the primal problem for the current value of

coordinating/complicating variables:

min
x∈X

f (x,vk) , (39)

g j(x,vk) ≤ 0, j = 1, . . . ,m . (40)

If the problem is feasible (i.e., there exists at least

one point x ∈ X for which all constraints (40) are

satisfied) the optimal values of decision variables xk

and Lagrange multipliers λ k
o are memorized (to be

used in optimality cut later on). If not, the following

problem assessing the departure from feasibility is

solved:

min
x∈X ,α

m

∑
j=1

α j , (41)

g j(x,vk) ≤ α j, j = 1, . . . ,m , (42)

α j ≥ 0, j = 1, . . . ,m . (43)

The optimal values of decision variables x ∈ X and

the Lagrange multipliers in this problem λ k
f are also

memorized (to be used in feasibility cut in the next

phase).

2. Solving the relaxed master problem:

min
µ,v∈V

µ , (44)

Lo(xk,v,λ k
o ) ≤ µ , k ∈ Ko , (45)

L f (xk,v,λ k
f ) ≤ 0, k ∈ K f , (46)

where

Lo(xk,v,λ k
o ) = f (xk,v)+λ k

o
T

g(xk,v) , (47)

L f (xk,v,λ k
f ) = λ k

f
T

g(xk,v) . (48)

Symbols Ko and K f denote the sets of indices of itera-

tions in which, respectively, the optimal solution of the

primal problem existed or not. Functions Lo and L f are

Lagrange functions for primal (39)–(40) and feasibil-

ity (41)–(43) problems (the latter restricted to admissible

solutions that is for α̂ j = 0,∀ j). The assessments on ϕ(v)
then result directly from the duality theory.

In the terms of the direct method of hierarchical optimiza-

tion the first set of inequalities delivers the assessment of

the function (36), while the second–the assessment of the

set V0 (32).

The most important classes of problems where this algo-

rithm is proved to converge to the optimum are [5, 11] vari-

able factor programming problems and problems with f ,

g j, j = 1, . . . , m linearly separable and convex in x and y,

where X is a polyhedron.

The basic drawback of this method is the growing number

of constraints of nonlinear type. In the next section we will

show how to cope with it.

4. Combining Benders decomposition

and Kelley’s cutting plane method

Even in Benders’ article at the end [1, p. 250] there

is a remark on the solution of the relaxed master prob-

lem (44)–(46), that if the complicating variables (i.e., non-

linear) components are “convex and differentiable functions

(...) problem becomes a convex programming problem that

can be solved by-well known methods, e.g., by Kelley cut-

ting plane technique...”. It seemed attractive, because in

the case when the set V is a polyhedron, if this method is

used we actually deal with a linear programming problem.

Let us define:

ϕ(v) = Lo
(

x̂o(v),v, λ̂o(v)
)

, (49)

ξ (v) = L f
(

x̂ f (v),v, λ̂ f (v)
)

, (50)

where x̂o(v) is solution of the primal problem (39)–(40),

x̂ f (v) is the solution of the feasibility problem (41)–(43),

and λ̂o(v), λ̂ f (v) are Lagrange multipliers corresponding to
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them for given complicating vector. While linearizing the

constraints the following expressions may be used [9]:

∂ϕ(v)
∂v

=
∂ f
∂v

+λ T
o

∂g
∂v

, (51)

∂ξ (v)
∂v

= λ T
f

∂g
∂v

. (52)

When we apply Kelley’s cutting plane method together

with the Benders decomposition, the relaxed master prob-

lem (44)–(46) will be replaced by:

min
µ,v∈V

µ , (53)

ϕ(vk)+
∂ϕT

∂v
(vk)(v− vk) ≤ µ , k ∈ Ko , (54)

ξ (vk)+
∂ξ T

∂v
(vk)(v− vk) ≤ 0, k ∈ K f . (55)

The problem is, that at this point Benders was wrong.

This algorithm may fail and end in nonoptimal points even

in convex problems. The counterexample was shown in

Grothey et al. [8]. The convex NLP there was:

min
x1,x2,v

v2 − x2 , (56)

(x1 −1)2 + x2
2 ≤ lnv , (57)

(x1 +1)2 + x2
2 ≤ lnv , (58)

v ≥ 1 . (59)

The optimal solution of this problem is [x1,x2,v] '
[0,0.0337568,2.721381]. Starting with the feasible v = e2

we obtain in the first step x̂o(e2) = [0,1] and the optimality

cut:

(e4 −1)+
(

2e2 −
1

2e2

)

(v− e2) ≤ µ . (60)

From the relaxed master problem we obtain the new optimal

v = 1 < e . For this value, however, the primal problem

is infeasible and we will get from the feasibility problem

x̂ f = [0,0]. In general, if vk < e, the following feasibility

cut is generated and added to the master problem:

(2−2lnvk)+
(

−
2
vk

)

(v− vk) ≤ 0 ⇔ v ≥ (2− lnvk)vk .

The next values of v from the master problem will be cal-

culated according to the formula:

vk+1 = (2− lnvk)vk .

They all will be from the interval (1,e) giving the whole

time infeasibility and the same optimal values in feasibility

problems (actually the sequence vk will approach e from

the left hand side). The authors explain that “the failure of

Benders decomposition to converge is due to the fact that

the Benders cuts only approach feasibility in the limit and

never collect subgradient information from the objective”

function of the problem ϕ(v). As the remedy they propose,

as they call, “feasibility restoration algorithm”, where in the

case of infeasibility, after solving feasibility problem, the

modified primal problem is solved again with the modified

inequalities (40) in such a way, that on the right hand side of

them there are positive numbers being values of constraints

in the feasibility problem multiplied by some coefficient

bigger than 1. Then both the previously obtained feasibility

as well as the optimality cuts from this relaxed problem are

added to the master problem constraints.

This procedure overcomes the basic disadvantage of the

Benders method combined with Kelley’s cutting plane

algorithm–converging to nonoptimal points, but still has

one drawback: the growing number of constraints in mas-

ter problems as the calculations proceed. One has to wait

longer and longer for new values of complicating vari-

ables v. How to overcome this difficulty and even to replace

the optimization on the upper level with calculation of val-

ues of two simple analytic expressions will be shown in the

next section.

5. Integration of Benders decomposition

with cutting plane and ellipsoid

algorithms

The main idea lies in the application (instead of solving

relaxed master problem as the optimization problem) one

of the simplest algorithms of nondifferentiable optimiza-

tion, which was proposed by Shor [16], Nemirovski and

Yudin [15], namely the ellipsoid algorithm. It will deliver

in subsequent iterations the centers of the smallest volume

ellipsoids, containing smaller and smaller sets of admissible

points, in which the performance index may have a better

value than in points it was calculated so far. It is obtained

by cutting off the halfspaces of points in which, owing to

convexity, for sure the value of performance index is worse

than in the current point (if it is feasible) or the value of

functions defining constraints is worse than the present one

(if the current point is infeasible).

What concerns optimality cuts, we use the same formulae

for derivatives as before, that is, it is defined by:

〈

∂ϕ
∂v

(vk),v− vk
〉

≤ 0 . (61)

The calculation of feasibility cuts may be simplified by

making individual cuts for the most violated constraint. It

is described in the next subsection.

5.1. Feasibility cuts

We will perform for every query point vk ∈ V (that is the

current value of coordinating variables) verification of the

feasibility from the point of view of the constraints (7),

independently for all local problems LPi, i = 1, . . . , p− 1,

and adding the corresponding linear constraints to coordi-

nation problem in the case of a failure.
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The verification of feasibility consists in calculation for ev-

ery LPi the “constraint index” gi(vk), by solving a prelimi-

nary optimization problem:

gi(vk) = min
xi∈Xi

max
j=1,...,mi

gi j(xi,vk) (62)

before the principal optimization problem.

In the case when gi(vk) > 0, we draw a conclusion, that for

the query point vk there are no admissible points xi ∈ Xi
and the rational thing is cutting off a halfspace containing

inadmissible values of coordinating variables. This will be

obtained by the condition:

gi j∗(ximin ,v
k)+

〈

∂gi j∗

∂v
(ximin ,v

k),v− vk
〉

≤ 0 , (63)

where ximin , j∗,vk are such that

gi j∗(ximin ,v
k) = gi(vk) > 0 . (64)

Proposition 4: Condition (63) assures the elimination

from the admissible set V points not belonging to the solv-

ability set V0.

Proof: To prove the proposition we have to show that:

∀v∗ ∈V gi j∗(ximin ,v
k)+

〈

∂gi j∗

∂v
(ximin ,v

k),v∗− vk
〉

> 0

⇒∀xi ∈ R
ni gi j∗(xi,v∗) > 0 . (65)

From the convexity and smoothness of functions gi j we

have for any given pair (x̃i,vk) and all xi,v:

gi j(xi,v) ≥

gi j(x̃i,vk)+

〈

∂gi j

∂xi
(x̃i,vk),xi− x̃i

〉

+

〈

∂gi j

∂v
(x̃i,vk),v−vk

〉

.

(66)

Setting in (66) j = j∗, x̃i = ximin and v = v∗ we will get

∀xi ∈ R
ni

gi j∗(xi,v∗) ≥ gi j∗(ximin ,v
k)+

〈

∂gi j∗

∂xi
(ximin ,v

k),xi − ximin

〉

+

〈

∂gi j∗

∂v
(ximin ,v

k),v∗− vk
〉

. (67)

That is

gi j∗(xi,v∗) ≥

[

gi j∗(ximin ,v
k)+

〈

∂gi j∗

∂v
(ximin ,v

k),v∗− vk
〉

]

+

〈

∂gi j∗

∂xi
(ximin ,v

k),xi − ximin

〉

. (68)

Let us notice, that from the assumption, the term in square

brackets is positive. The second component is nonnega-

tive, because we assumed, that ximin is the solution of the

minimax problem. This means that

gi j∗(xi,v∗) > 0 ∀xi ∈ R
ni (69)

what completes the proof. �

The interpretation of the Proposition 4 is, that by cutting

off from the set V more and more points, we get a better

estimate of the set V ∩V0, that is the admissible set in

the CP problem (4)–(5).

So, if we restrict our attention to these points of the de-

cision space in which the value of the most violated con-

straint function gi j∗ is better than in the current point, it is

sufficient to add a constraint:

〈

∂gi j∗

∂v
(ximin ,v

k),v∗− vk
〉

≤ 0 . (70)

5.2. Ellipsoid algorithm

The presented algorithm was proposed by Shor [16], Ne-

mirovski and Yudin [15]. At every step we obtain an ellip-

soid

Ek =
{

v|(v− vk)TW−1
k (v− vk) ≤ 1

}

. (71)

It is characterized by two parameters: a matrix Wk and

a center vk. It is assumed, that we start from an ellipsoid E0
containing the admissible set V . The subsequent ellipsoids

Ek are such that Ek+1 is the minimum volume ellipsoid

containing Ek ∩{v|〈hk,v− vk〉 ≤ 0}. It is defined by:

vk+1 = vk −
1

nv +1
Wkhk

√

hT
k Wkhk

, (72)

Wk+1 =
n2

v

n2
v −1

(

Wk −
2

nv +1
WkhkhT

k Wk

hT
k WKhk

)

, (73)

where nv is the dimension of v. It can be shown, that the

volume of Ek+1 equals the volume of Ek reduced by the

factor (1−1/(nv +1)2).

5.3. Integration

If we use as the vector hk in expressions modifying el-

lipsoids (72), (73) the gradient
∂ϕ
∂v (vk) from optimality

cut expressions (61), (51) or the gradient
∂gi j∗

∂v (ximin ,v
k)

from feasibility cut expression (70), we will have what we

need–a very simple and fast metod of delivering subse-

quent values of coordinating (complicating) variables with

the convergence guarantee.

This approach seems to be the most promising among all,

because the calculations on the coordination level are the

simplest one can imagine: only two direct formulas with-

out any optimization, iterative process, etc. There are other

techniques from cutting plane family generating queries
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at new points inside the admissible area (e.g., center of

gravity, largest inscribed sphere, volumetric, analytic cen-

ter methods–see [4]), which prevents the algorithm against

blocking, but none of them has so simple and fast master

problem iteration.

6. Conclusions

In the paper the basic approaches to solving optimization

problems with generalized separable structure, where the

performance index is a monotone function of other perfor-

mance indices depending on individual and common sub-

vectors of decision variables, were presented and compared.

It was shown, that in the case when the admissible set is

a Cartesian product of individual domains and a domain

of common variables (that is coordinating or complicating

variables), the problem may be solved by application of

hybrid Gauss-Seidel (between coordination and local level)

and Jacobi (between different units of the local level) algo-

rithms or in a completely symmetric (Jacobi) version, even

with asynchronous iterations. The degree of asynchronism

depends on the features of the overall performance index.

If its Hessian is restricted and diagonally dominated the

steepest descent type iterations and the exchange of infor-

mation may be totally asynchronous, otherwise they may

be partially asynchronous, that is with iterations and com-

munication between local units in a given finite window,

dependent on the length of the step in optimization itera-

tions, the dimension of the problem and the assessment on

the Hessian elements.

The situation is much more complicated when the admis-

sible set is not a Cartesian product of local and common

variables domains. The most natural seems to be the Ben-

ders decomposition, where so-called optimality and fea-

sibility cuts obtained after, respectively, admissible or in-

admissible queries of complicating/coordinating variables

are used to estimate the value function (i.e., the function

whose value is the optimal value of the original problem

for fixed values of coordinating variables) and the solvabil-

ity set (i.e., the set of complicating variables for which all

mixed constraints can be satisfied for at least one combi-

nation of the primal variables). This approach, based on

duality relations, although very general and elegant, has

one serious drawback–since the estimates of both the value

function and the solvability set have to be more accurate as

the computations progress, the number of constraints defin-

ing them systematically grows. It means, that the problems

solved in subsequent iterations are more are more com-

plicated and the time needed for one iteration of master

problem is longer and longer. An attempt to simplify calcu-

lations by combining Benders decomposition with Kelley’s

cutting plane method and transform the master problem

to LP problem is not a good idea, because, as it was shown

in an example, the optimization process even in the convex

case may converge to a nonoptimal point. It is possible to

avoid it by either so-called feasibility restoration algorithm,

which adds an additional optimality cut in an extended do-

main, or the application on the master (i.e., coordination)

level an algorithm which delivers query points lying in-

side the admissible area, e.g., center of gravity method,

the largest inscribed sphere or ellipsoid method, volumet-

ric center method, analytic center method (ACCPM) or the

smallest circumscribing ellipsoid method. The latter ap-

proach seems to be the most attractive due to its simplicity,

noniterative character (that is, the new values of compli-

cating variables are not determined, as for example in op-

timization, via an iterative process, but directly from two

simple formulas) and converges to optimal solution with

the geometric rate.

References

[1] J. F. Benders, “Partitioning procedures for solving mixed-variables

programming problems”, Numer. Math., vol. 4, pp. 238–252, 1962.

[2] D. P. Bertsekas, Nonlinear Programming. 2nd ed. Belmont: Athena

Scientific, 1999.

[3] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Com-

putation: Numerical Methods. Englewood Cliffs: Prentice Hall,

1989.

[4] S. Elhedhli, J. L. Goffin, and J.-P. Vial, “Nondifferentiable opti-

mization: cutting plane methods”, in Encyclopedia of Optimization,

C. A. Floudas and P. M. Pardalos, Eds. Dordrecht: Kluwer, 2001,

vol. 4, pp. 40–45.

[5] A. M. Geoffrion, “Generalized Benders decomposition”, J. Opt. The-

ory Appl., vol. 10, pp. 237–260, 1972.

[6] G. Golub and J. M. Ortega, Scientific Computing: an Introduction

with Parallel Computing. San Diego: Academic Press, 1993.

[7] L. Grippo and M. Sciandrone, “On the convergence of the block

nonlinear Gauss-Seidel method under convex constraints”, Report

R. 467, Istituto di Analisi dei Sistemi ed Informatica, CNDR, Set-

tembre 1998.

[8] A. Grothey, S. Leyffer, and K. I. M. McKinnon, “A note on feasibil-

ity in Benders decomposition”, Numerical Analysis Report NA/188,

Dundee University, 1999.

[9] A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in

Nonlinear Programming, Mathematics in Science and Engineering.

New York: Academic Press, 1983, vol. 165.

[10] W. Findeisen, F. N. Bailey , M. Brdyś, K. Malinowski, P. Tatjewski,

and A. Woźniak, Control and Coordination in Hierarchical Systems.

Chichester: Wiley, 1980.

[11] C. A. Floudas, “Generalized Benders decomposition, GBD”, in En-

cyclopedia of Optimization, C. A. Floudas and P. M. Pardalos, Eds.

Dordrecht: Kluwer, 2001, vol. 2, pp. 207–218.

[12] C. A. Floudas, A. Aggarwal, and A. R. Ciric, “Global optimum

search for nonconvex NLP and MINLP problems”, Comput. Chem.

Eng., vol. 13, no. 10, pp. 1117–1132, 1989.

[13] C. A. Floudas and V. Visweswaran, “A primal-relaxed dual global

optimization approach”, J. Opt. Theory Appl., vol. 78, no. 2,

pp. 187–225, 1993.

[14] J. E. Kelley, “The cutting-plane method for solving convex pro-

grams”, J. Soc. Indust. Appl. Math., vol. 8, pp. 703–712, 1960.

[15] A. Nemirovski and D. Yudin, Problem Complexity and Method Ef-

ficiency in Optimization. Chichester: Wiley, 1983.

[16] N. Z. Shor, Minimization Methods for Non-differentiable Functions.

Berlin: Springer Verlag, 1985.

[17] Optimization Methods for Large-Scale Systems with Applications,

D. A. Wismer, Ed. New York: McGraw-Hill, 1971.

8



Direct method of hierarchical nonlinear optimization–reassessment after 30 years

Andrzej Karbowski received

his M.Sc. degree in electronic

engineering (specialization au-

tomatic control) from Warsaw

University of Technology (Fac-

ulty of Electronics) in 1983. He

received the Ph.D. in 1990 in

automatic control and robotics.

He works as adjunct both at

Research and Academic Com-

puter Network (NASK) and at the Faculty of Electronics

and Information Technology (at the Institute of Control and

Computation Engineering) of Warsaw University of Tech-

nology. His research interests concentrate on data networks

management, optimal control in risk conditions, decompo-

sition and parallel implementation of numerical algorithms.

e-mail: A.Karbowski@ia.pw.edu.pl

Research and Academic Computer Network (NASK)

Wąwozowa st 18

02-796 Warsaw, Poland

9


