Direct Methods
for Recovering Motion
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In this chapter we consider the problem of determining the motion of a
monocular observer moving with respect to a rigid, unknown world. We use
a “least squares,” as opposed to a discrete method of solving for the motion
parameters; our method uses all of the points in a two-image sequence and
does not attempt to establish correspondence between the images. Hence
the method is relatively robust with respect to quantization error, noise,
illumination gradients, and other effects.

So far, we can determine the observer motion in two special cases:

e  When the motion is pure rotation.
¢  When the motion is pure translation or when the rotational component
of the motion is known.

At this writing we have not developed a direct method that is applicable
to arbitrary motion.

Earlier work

In the continuous or least squares approach to motion vision, motion pa-
rameters are found that are consistent with the observed motion of the
entire image. Bruss and Horn [1983] use this approach to calculate mo-
tion parameters assuming that the optical flow is known at each point.
Adiv [1984] uses the approach of Bruss and Horn to segment the scene
into independently moving planar objects; he shows that given the optical
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flow, segmentation can be performed and the motion calculated. Negah-
daripour and Horn [1987] eschew the use of optical flow and calculate the
observer’s motion directly from the spatial and temporal derivatives of the
image brightness, assuming a planar world. The advantage of this direct
approach, which we also use here, is that certain computational difficulties
inherent in the calculation of optical flow are avoided. In particular, it is
not necessary to make the usual assumption that the optical flow field is
smooth; an assumption that is violated near object boundaries, necessitat-
ing flow segmentation. ’

Waxman and Ullman [1985] and Waxman and Wohn [1985] also avoid
the discrete approach to motion vision; their techniques make use of first
and second derivatives of the optical flow to compute both the motion
parameters and the structure of the imaged world. In the interests of
developing methods which can be implemented, the techniques presented
in this chapter avoid the use of second and higher-order derivatives.

Summary of the chapter

One of our approaches to the motion vision problem can be summarized
as follows: Given the observer motion and the spatial brightness function
of the image one can predict the time derivative of brightness at each
point in the image. We find the motion that minimizes the integral of the
square of the difference between this predicted value and the observed time
derivative. The integral is taken over the image region of interest, which,
in the discussion here, is usually taken to be the whole image.

We use auxiliary vectors derived from the derivatives of brightness and
the image position that occur in the basic brightness change constraint
equation. Study of the distribution of the directions of these vectors on the
unit sphere suggests specific algorithms and also helps uncover relationships
between accuracy and parameters of the imaging situation.

We have developed a simple robust algorithm for recovering the an-
gular velocity vector in the case of pure rotation. This algorithm involves
solving three linear equations in the three unknown components of the ro-
tation vector. The coefficients of the equations are moments of components
of one of the auxiliary vectors over the given image region. We show that
the accuracy of the recovered component of rotation about the direction
towards the image region is poor relative to the other components, unless
the image region subtends a substantial solid angle.

We have developed several algorithms for recovering the translational
velocity in the case of pure translation. These algorithms exploit the con-
straint that objects have to be in front of the camera in order to be imaged.
This constraint leads to a non-linear constrained optimization problem.
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The performance of these algorithms depends on a number of factors in-
cluding:

Angle subtended by the image, that is, the field of view.

Direction of motion relative to the optical axis.

Depth range.

Distribution of brightness gradients.

Noise in the estimated time derivative of brightness.

Noise in the estimated spatial gradient of brightness.

Number of picture cells considered.

We have not yet been able to select a “best” algorithm from the set devel-
oped, because one may be more accurate under one set of circumstances
while another is better in a different situation. Also, the better algorithms
tend to require more computation, and some do not lend themselves to par-
allel implementation. Further study using real image data will be needed
to determine the range of applicability of each algorithm.

We found a strong dependence of the accuracy of recovery of certain
components of the motion on the size of the field of view. This is in concert
with other reports describing difficulties with small fields of view, such as
Adiv [1984] and Waxman and Wohn [1985].

Comments on sampling, filtering, and aliasing

Work with real image data has demonstrated the need to take care in filter-
ing and sampling. The estimates of spatial gradient and time derivatives
are sensitive to aliasing effects resulting from inadequate low-pass filtering
before sampling. This is easily overlooked, particularly in the time direc-
tion. It is usually a mistake, for example, to simply pick every n** frame
out of an image sequence. At the very least, n consecutive frames should
be averaged before sampling in order to reduce the high frequency compo-
nents. One may object to the “smearing” introduced by this technique, but
a series of widely separated snap-shots typically do not obey the conditions
of the sampling theorem, and as a result the estimates of the derivatives
may contain large errors.

This, of course, is nothing new, because the same considerations apply
when one tries to estimate the optical flow using first derivatives of image
brightness [Horn & Schunck 1981]. It is important to remember that the
filtering must be applied before sampling—once the data has been sampled,
the damage has been done.

The Brightness-Change Constraint Equation

Following Longuet-Higgins and Prazdny [1980] and Bruss and Horn [1983]
we use a viewer-based coordinate system. Figure 1 depicts the system
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under consideration. A world point

R=(X,Y,2)T (1)
is imaged at

r=(z,y,1)7. ‘ (2)
That is, the image plane has equation Z = 1. The origin is at the projection
center and the Z-axis runs along the optical axis. The X- and Y-axes are
parallel to the z- and y-axes of the image plane. Image coordinates are
measured relative to the principal point, the point (0,0,1)T where the
optical axis pierces the image plane. The points r and R are related by
the perspective projection equation

xvy z\" R
=er"=(377) “ma @

with
Z=R-%, (4)
and where Z denotes the unit vector in the Z direction.

T

v

Image plane

Figure 1. The viewer-centered coordinate system. The translational velocity of
the camera is t = (U, V, W)T, while the rotational component is w = (4, B, C)T.

Suppose the observer moves with instantaneous translational velocity t =
(U,V,W)T and instantaneous rotational velocity w = (4, B,C)7 relative
to a fixed environment, then the time derivative of the vector R can be

written as
Rt=—t—w><R. (5)




Chapter 40 Direct Methods for Recovering Motion 441

The motion of the world point R results in motion of the corresponding
image point; the value of this motion field is given by

i d ( R >=Rt(R-2)—(Rt~2)R

"T % T @ \R -z R - 2)? ' ©
This can also be expressed as
Z X (Rt X I')
R e Tl & 7
ry R z ’ ( )

since a X (b X ¢) = (c-a)b — (a- b)c. Substituting equation (5) into this
result (see Negahdaripour and Horn [1987]) gives:

- t
rt_—zx(rx(rxw—R_i). (8)
In component form this can be expressed as
T W+Azy—B(x2+l)+0y
ri=\1y | = :V—;M—Bmy+A(y2+1)—Ca: ) (9)
0 0

a result first obtained by Longuet-Higgins and Prazdny [1980].

This shows how, given the world motion, the motion field can be cal-
culated for every image point. If we assume that the brightness of a small
surface patch is not changed by motion, then expansion of the total deriva-
tive of brightness E leads to

Q_]*z_d_x OF dy _B_E_ =0. (10)

Ordt Oydt 0Ot
(The applicability of the constant brightness assumption is discussed in
Appendix A.) Denoting the vector (0E/8x,0E/dy,0)T by E, and OE /8t
by FE;, permits us to express this result more compactly in the form

E. v +E =0. (11)

Substituting equation (8) into this result and rearranging gives
(Er x2) Xr) -t

Et—(((E,xz)xr)xr)-w+ R 3 =0. (12)
To simplify this expression we let
s=(Ey X%)Xr (13)
and
v=-sXr, (14)

so equation (12) reduces to the brightness change constraint equation of
Negahdaripour and Horn [1987], namely

s-t
. —— = —F;. 15
Vwtps t (15)
The vectors s and v can be expressed in component form as
—-E, +E, +y(zE; + yE,)
s = —-E, and v=|-E;-z(E;+yE,) |. (16)

zE; +yE, yE; —zE,
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Note that s-r = 0, v-r = 0, and s-v = 0. These three vectors thus form an
orthogonal triad. The vectors s and v are inherent properties of the image.
Note that the projection of s into the image plane is just the (negative)
gradient of the image. Also, the quantity s indicates the directions in which
translation of a given magnitude will contribute maximally to the temporal
brightness change of a given picture cell. The quantity v plays a similar
role for rotation.

Solving the Brightness Change Constraint Equation

Equation (15) relates observer motion (t,w), the depth of the world R-Z =
Z(x,y), and certain measurable quantities of the image (s,v). In general,
it is not possible to solve for the first two of these given the last. Some
interesting special cases are addressed in this chapter and in Negahdaripour
and Horn [1987]; these are:?

1 Known depth: We show that given Z, s and v, the quantities, t
and w can be calculated in closed form using a least-squares method.

2 Pure rotation (||t] = 0):  We show that given v, the rotation
vector w can be calculated in closed form.

3  Pure translation or known rotation: = We present a least-squares
method for determining t. Once t is known, the brightness change
constraint equation can be used to find the depth at each picture cell:

" s-t
Z=R-2= Eiv o an

4 Planar world: Negahdaripour and Horn [1987] present a closed
form solution for t, w and the normal n of the world plane.

5 Quadratic patches: Negahdaripour [1986] gives a closed-form so-
lution in the case that a portion of the world can be represented as a
quadratic form.

In this chapter we consider various integrals over an image region thought
to correspond to a single rigid object in motion relative to the viewer. In
the simplest case, the observer is moving relative to a static environment
and the whole image can be used. The size of the field of view has a strong
effect on the accuracy of the determination of the components of motion
along the optical axis. When we need to estimate this accuracy, we will, for
convenience, assume a circular image of radius r,. This corresponds to a
conical field of view with half angle §,, where r, = tan§,, because we have
assumed that the focal length equals one (we assume that 0 < 8, < 7/2).

We will show that the field of view should be large. Although ortho-
graphic projection usually simplifies machine vision problems, this is one
case in which we welcome the effects of perspective “distortion”!

IWe do not discuss here related methods using optical flow, such as those of
Bruss and Horn [1983)].
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Depth known

When depth is known, it is straightforward to recover the motion. (Depth
may have been obtained using a binocular stereo system or some kind of
range finder.) We cannot, in general, find a motion to satisfy the brightness
change constraint equation at every picture cell, because of noise in the
measurements. Instead we minimize

// [Bs+v-w+ (1/2)s-t]? dedy. (18)

Differentiating with respect to w and t and setting the results equal to zero
leads to the pair of vector equations

[//(I/Z)zssT d;rdy] t+ U (1/Z)SVTdmdy] g

=——/ E:(1/Z)sdz dy

[//(1/Z)V5Td:cdy] t+ [//VVTd:cdy] o _/ Bvdody.

(19)
This is a set of six linear equations in six unknowns with a symmetric
coefficient matrix. (The equations can be solved by partitioning in order
to reduce the computational effort.) The coeflicients are all integrals of
products of components of (1/Z)s and v. It may be useful to note that
Trace(sv?) = Trace(vs') =s-v = 0. (20)
We could have obtained slightly different equations for w and t if we had
chosen to weight the integrand in equation (18) differently. We study the
special case in which {|t|| = 0 and the special case in which ||w]| = 0 later.
One application of the above result is to “dynamic stereo.” A binoc-
ular stereo system can provide disparity estimates from which 1/Z can be
calculated. The above equations can then be used to solve for the motion,
provided estimates of the derivatives of image brightness are also supplied.
The correspondence problem of binocular stereo has, unfortunately, been
found to be a difficult one. It would represent the major computational
burden in a “dynamic stereo” system. We hope that motion vision re-
search will eventually lead to simpler methods for recovering depth than
those used for binocular stereo—although they are likely to be relatively
inaccurate when based only on instantaneous translational and rotational
velocity estimates.

Pure rotation

When ||t|| = 0, the brightness change constraint equation reduces to
Et+v~w=0. (21)
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We wish to find the value of w that minimizes the sum of the squares of
the errors in the time derivative of brightness, that is, we want to minimize

/ (B + v - w)® dedy. (22)

Differentiating with respect to w and setting the result equal to zero gives
us

/ [B: +v-w]vdzxdy =0. (23)

Since (v - w)v = v(v-w) = (vvI)w, we can write this in the form

[//vadmdy]w———/ E,vdzdy, (24)

which is just a special case of equation (19). This is a set of three linear
equations in the three unknown components of w, namely, A, B, and C.
The coefficient matrix is symmetric and only the right-hand side depends
on the time derivative of brightness.

One can tell whether one is dealing with a case of pure rotation or
not. In the presence of a translational component, equation (21) will not
be a good approximation and so the integral in formula (22) will not be
small. Experiments show that this simple method of determining rotation
is robust and easy to implement. Slight variations are possible by weighting
the intergrand differently. This method is reminiscent of the optical flow
based method of Bruss and Horn [1983] and very similar to a method
developed by Aloimonos and Brown [1984], to which our attention was
drawn after we wrote this chapter.

Shown in figure 2 is every tenth frame out of a 40 frame sequence taken
with a tripod-mounted CCD camera rotated manually about its vertical
axis. The vertical component of the computed rotational velocity is shown
in figure 3 as a function of the frame number. The units along the vertical
axis are picture cells per time step in the center of the image (rather than
say radians/second). After the initial acceleration, image components near
the center of the image move by about 7 to 8 picture cells between successive
frames. Three curves are given for varying amounts of image low-pass
filtering and sub-sampling. The lowest curve (A) corresponds to the raw
image data, and shows that for this particular scene at least, a motion of 7
to 8 picture cells is too much for accurate recovery of the angular velocity.
The computed velocity appears to “saturate” at around 4 picture cells per
time step. The next higher curve (B) corresponds to image compression by
low-pass filtering and sub-sampling by a factor of two in each direction. In
the compressed image sequence, the motion is in effect only about 3 to 4
picture cells per time step. The top curve (C) was obtained using images
that were low-pass filtered and sub-sampled a second time to reduce them
by a total of a factor of four in each direction. In this doubly compressed
sequence, motion in the center of the image amounts to only about 1.5
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Figure 2. Shown here are the (a)10t*, (b)20?", (c)30t*, and (d)40th image
out of a 40-image sequence obtained when a CCD camera mounted on a tripod
was (manually) rotated about its vertical axis. After the initial acceleration, the
image motion in the center is between 7 and 8 picture cells between successive

frames. Image motion between frames is slightly larger in the corners of the
image.
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Figure 3. Recovered vertical component of the angular velocity vector as a func-
tion of the frame number. The angular velocity is given in picture cells of image
displacement at the center of the image per time step. Curve A was obtained us-
ing the raw image data, curve B from a low-pass filtered and subsampled image
sequence, and curve C from an image sequence that was low-pass filtered and
sampled twice. Further low-pass filtering and subsampling produces essentially
the same curve.

to 2 picture cells per time step, and the angular velocity is accurately
recovered. Further filtering and sub-sampling leads to velocity estimates
that are essentially the same as the ones obtained with this sequence.

{ Distribution of the directions of v

To understand the properties of the algorithm for recovering the instan-
taneous rotational velocity, one needs to study the matrix obtained by
integrating vvZ. We can think of the direction of v as identifying a point
on the unit sphere and of ||v|| as the mass of a particle placed there. The

" collection of vectors corresponding to an image region then can be thought
of as a set of particles on the unit sphere. The integral of vvT is the
symmetric 3 X 3 matrix whose elements are integrals of the nine pair-wise
products of components of v. This matrix is related to the inertia matrix of
this set of particles. If the particles were spread uniformly over the surface
of the sphere, this matrix would be the total mass times the identity ma-
trix. As we show next, the particles are confined to a band, so this matrix,
while diagonal on average, is not a multiple of the identity matrix.
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image plane

Figure 4. A cross-section through the v-sphere defined by the image point r.

We know that v-r = 0 and that the possible directions of r lie within a
cone defined by the field of view. For a particular value of r, the equation
v -r = 0 defines a plane that cuts the unit sphere in a great circle (see
figure 4). The vector v must point in a direction corresponding to a point
on this great circle. Since r lies inside a cone of directions with half-angle
#,, these great circles have axes that lie in this cone also. The collection
of great circles lies in a band around the unit sphere of width equal to the
total width of the visual field.

We can obtain the same result algebraically as follows: Let #, ¥, and

§ be unit vectors in the directions r, v, and s. Then, because r, s, and v
are mutually orthogonal,

(Z-8)?+(z-v)2+(2-8)*=1, (25)
while

(-9 4+ (592 + (29 =1, (26)
where X, ¥, and Z are unit vectors in the X, Y, and Z directions. Sub-
tracting the two equalities we obtain

&9+ F-92=E 1)+ (287, (27)
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which, since
(2-#)2%>cos?8, and (2-8)%2>0, (28)
tells us that
(%92 +(F-9) > cos? b, . (29)
Thus the directions of v lie within an angle 8, of the “equator” of the unit
sphere. We call this band (shown in figure 5) the permissible band.

Figure 5. The permissible band on the v-sphere (front and rear views).

{ Estimate of the condition number

It is important to determine under what circumstances the recovery of the
rotational velocity is ill conditioned, and whether the different components
of the rotation vector are equally affected by noise in the data. To study
these issues, one needs to estimate some of the properties of the coefficient
matrix of the equations. We can get a rough idea of what the integral of
vvT looks like by assuming that the particles corresponding to v are spread
uniformly within the permissible band. In Appendix B we show that the
area of this band is

K =4rsiné, . (30)
The mixed inertia terms (such as the integral of the product of x and y) are
all zero because of the symmetry of the band. The resulting 3 x 3 matrix
is thus diagonal. Furthermore, if we let I, I, and I.. be the diagonal
terms then it can be shown (in Appendix B) that

Lo = Iy = (K/3) [1+ (1/2) cos® 6,] , (31)
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while
I, = (K/3)sin?6,. (32)

Thus I, /K and I,,/K vary little with 6,, while I,,/K changes dramati-
cally. The (L?%) condition number of this matrix—the ratio of the largest
to the smallest eigenvalue—is just

I, 1+(1/2)cos?9, 3/2 1

— = — == . (33)

I, sin® 4, sin’4, 2
This is very large when the field of view is small. When the condition
number is very large, small errors in the right hand sides of the equations,
or in the coefficients of the matrix itself, can lead to large errors in the
solution.

In fact, the particles are not spread uniformly within the permissible
band and do not have mass independent of position, so the above is only
an estimate. We obtain the exact result later.

{ Stability of the solution method

The numerical stability of the solution for w is reduced when the condition
number is large. In practice, the elements of the matrix of equation (24)
will be corrupted by noise in the measurements, as will the right-hand side
vector in this equation. The estimate of the third component of w will
be affected more by these perturbations than the other two. Experiments
confirm that the component of rotation about the optical axis is disturbed
more by noise than the others. The ratio of the errors grows roughly as
the inverse of the size of the field of view. This is not a peculiarity of our
method, but applies in general.

It is intuitively obvious why this should be. Rotations about the z-
and y-axes produce motion fields that vary but little over the image. A
small field of view can be used to estimate these components with almost
the same accuracy as can a large field of view (provided the same number of
picture cells used.) Rotation about the z-axis, on the other hand, produces
a motion field that varies directly with distance from the principal point.
Thus the maximum velocity depends on the size of the field of view. With
a small field of view, the maximum velocity in the image will be small and
relative errors in measurements correspondingly larger.

If an image region is used that is smaller than the whole field of view
and perhaps off center, the analysis becomes more complex. In this case,
the component of rotation about the direction towards the center of the
region is less accurately known; the accuracy again decreasing with the size
of the image region. This shows the futility of approaches based on data
from small image patches, or higher derivatives of brightness at one point
in the image. When working with very small image regions, the best one
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can do is to estimate the optical flow—there is no point in trying to recover
the “rotation” about the center of the region.

¢$ Ensemble average of the integral of vvT

The integral of vvT varies from image to image. It has already been sug-
gested, however, that it will be approximately diagonal. We can obtain
a more precise .answer by averaging over an ensemble of images with all
possible directions for the brightness gradient at each image point. We as-
sume that different directions for the brightness gradient are equally likely.
The result so obtained can be viewed in another way: it is the integral
obtained in the limit from a textured image as the scale of the texture is
made smaller and smaller. In this case we can arrange for every direction
of the brightness gradient to be found in any small patch of the image.
By suitable choice of the texture we can arrange that no directions of the
brightness gradient is favored—all directions occur with equal frequency.

If we take into account the distribution of directions of v and the
weights ||v||, we find (in Appendix B) that

—_——— 1+7r2/2+7%/6 0 0
//vadxdyzkv 0 1+72/2+7r3/6 0 , (34)
0 0 r2/2
where r,, is the diameter of the image and the constant &, depends on the
size of the field of view as well as the distribution of magnitudes of the
brightness gradient. In practice we can easily find k, since

Trace (// vl dz dy) =/ Trace(vvT) drdy = //v~vdz dy, (35)
S0

2k,,(1+3r$,/4+r;4,/6)=//v~vdzdy. (36)
Note that the condition number is
1+r2/2+7r1/6 2 2
T = E +1+ 3 (37)

It attains a minimum of 1+2+/2/3 = 2.633... when r, = v/v/6 = 1.565....
Thus the component of rotation about the optical axis is not recovered as
accurately as the other two components, no matter how large the field
of view. Also, as far as rotation is concerned, there is little advantage
to making the field of view wider than a half-angle §, = tan™! m =
57.42 ... degrees, because the condition number reaches its minimum there.

Some simplifications of the method for recovering the rotational veloc-

ity based on the above analysis are discussed by us in Horn and Weldon
[1987].
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¢{ The v-Bar projection

We know that the directions of the vectors v lie in the permissible band.
But what about the vectors

V=—-Ev (38)
occurring in the integral on the right-hand side of equation (24)? We know
that in the case of pure rotation E; = —v-w, 50 V = (v-w)v. We conclude
that : -

Vw=(v-w?>0. (39)

Thus the directions. of the vectors ¥V are confined to a hemisphere with w
at its pole or “navel.” We call this the compatible hemisphere for the case
of pure rotation.

If the vectors Vv covered this hemisphere uniformly, we could easily
estimate w by finding the center of mass of the particles on the unit sphere
corresponding to the values of v. The center of mass of a hemisphere of
uniform density is at a point midway between the center of the sphere and
the navel of the hemisphere, so we could use the formula

2 [[Vdzrdy

wz—ff—“%m. (40)

Unfortunately, the vectors Vv do not cover the whole compatible hemisphere,
because they are confined to the permissible band, in the same way as
vectors v. In fact, the vectors ¥ lie in the intersection of the permissible
band and the compatible hemisphere, as shown in figure 6.

Figure 6. The v-sphere showing the intersection of the permissible band and
the compatible hemisphere, in the case when the field of view is wide (front and
rear views).
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Figure 7. The intersection of the permissible band with three different compat-
ible hemispheres when the field of view is narrow.

We can now see in another way why a small field of view reduces the
accuracy with which we can estimate the component of rotation about the
optical axis. If the field of view is small, the permissible band will be
narrow, a mere ring. Our task is to guess which hemisphere cut the ring in
half. This is easy when we are dealing with a band that covers almost the
whole sphere—when it is very narrow, however, there is some uncertainty.
A hemisphere claimed to provide a solution can easily be rotated about the
line connecting the ends of the cut ring without significantly changing the
intersection of the hemisphere and the ring as illustrated in figure 7. Thus
the z-component of the direction to the navel of the hemisphere is uncertain
in the presence of noise, or, when measurements from only a small number
of picture cells are available.

We could use the geometric insight that the vectors v all lie in the inter-
section of the permissible band and the compatible hemisphere to construct
algorithms for recovering the direction of the vector w. Some other method
would then have to be found to estimate the magnitude of w. However,
we do not need to approach the problem in this way, in light of the least-
squares solution presented above. This geometric approach, however, will
be fruitful in the case of pure translation where we find a similar geometric
constraint and have no need to find the magnitude of the motion vector.

If there is a translational component to the motion, the points v will
not be confined to a hemisphere. This provides a convenient test to see
whether the method presented above can be applied or not.

R P
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Rotation known or pure translation

If the rotation is known, perhaps measured by some other instrument, but
depth is not, then the general problem reduces to the problem of pure
translation. We can write

E,+(1/Z)s-t=0, (41)
where
E,=E;+v-w. (42)
In the remainder of this section we do not distinguish between E; and E;.
Note that equation (41) is not altered if we replace Z by kZ and t by
kt. Thus we can recover motion and depth only up to a scale factor. In
the sequel we will set ||t|| = 1 when convenient.

First, note that unlike the case in which depth is known, we cannot
obtain a useful result by simply minimizing

] B+ @zs- o dsay, (43)

because the integrand can be trivially made equal to zero at each point by
the choice

Z=—(s-t)/E;. (44)
(However, this may produce negative values for Z, a fact that we exploit
later.) Given the correct value of t, the above equation provides a means
for recovering depth, as already mentioned.

Equation (44) and the fact that depth must be positive leads to a
simple upper bound on the depth at a particular point even when the
direction of translational velocity is not known. Because Z > 0 we can
write

Z=|z|=s-t|/|B¢, (45)
and so
Z < sl lItll /| E| - (46)
The right-hand side here is the depth computed on the assumption that
s is parallel to t. Of course this is only an upper bound, because Z will
be much smaller if s happens to be nearly orthogonal to t. The bound is
particularly poor, as a result, where r is nearly parallel to t, that is, near
the focus of expansion (or the focus of compression) in the image.

{ Depth known—the case of pure translation

If we know the depth, as earlier, we can minimize the total error in the
time derivative of brightness:

/ / (B, + (1/Z)s - ) dz dy (a7)
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by differentiating with respect to t. Setting the result equal to zero gives

[ / (1/Z)2ssT]tdmdy=- / (1/2)Ees dz dy (48)

which is just equation (19) with ||w| = 0. This is a set of three linear
equations in the three components of t (I, V, and W). The coeflicient
matrix is symmetric and only the right-hand side depends on the time
derivative of brightness. Note that in equation (48) we attach less weight
to information from points where Z is large.

The method is accurate if the correct values of depth are given. If
estimates are used, the quality of the result will depend on the quality of
the estimates. The accuracy of the result also depends on the size of the
field of view, as we show later.

We get slightly different results if we weight the integrand in equa-
tion (47) differently. Multiplying by Z, for example, gives [ZE; + s - t] for
the integrand and

[//ssszdy]t=—//ZEtsdacdy, (49)

for the solution. Alternatively multiplying by Z/E; gives [Z + (1/Ey)s -t]
for the integrand and

Jemra sa] i [[@rmman, o

for the solution. In this case we are minimizing the error in depth, rather
than the error in the time derivative of brightness, as in equation (48).
The two alternate solutions given in Eqgs. (49) and (50) have the ad-
vantage that the depth Z does not appear in the integrals on the left-hand
side. This means that they are particularly well suited for iterative schemes
where Z is re-estimated on each cycle. The solution of equation (49) has
the further advantage that neither Z nor E; appear on the left-hand side.
This makes it easy to compute an ensemble average for this integral.

{ Distribution of the directions of s

To understand the properties of the above algorithms for recovering t, we
must examine the matrix obtained by integrating multiples of ss”. Once
again, we can think of the direction of s as identifying a point on the unit
sphere and of a multiple of ||s|| as the mass of a particle placed there. The
integral considered is related to the inertia matrix of the set of particles on
the unit sphere.

Now just as the directions of v lay in a band of width equal to the
width of the field of view, because v - r = 0, so do the directions of s,
because s - r = 0. The distribution of points within the band is not quite
the same, but we will ignore such details for now. First, assuming again a
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uniform distribution within the permissible band, we get the same estimate
of the condition number as previously, namely

1+ (1/2)cos®6,  3/2 1

sin? @, "~ sin?6, 2°
Accuracy in the determination of W, the Z component of t, will be reduced
relative to that of the other two components when the field of view is
small. Experiments confirm that for small fields of view, the estimate of
the component of translation along the optical axis is disturbed more by
noise than the other two. Hence a wide field of view is called for.

The integral of ss” varies from image to image. In order to better
understand the matrix defined by ss”, we would like to examine a “typical”
image. Because it is difficult to define such an image, instead, we can take
an average over an ensemble of images containing all possible directions for
the brightness gradient at each image point. If we take into account the
distribution of directions of s and the weights ||s||, we find (in Appendix
B) that

—_— 1 0 0
// ssTdrdy=k, |0 1 0O , (51)
0 0 r2/2

where 7, is the radius of the image and the constant k, depends on the
size of the field of view as well as the distribution of magnitudes of the
brightness gradient. In practice we can find k; by noting that

Trace (// ssT dx dy) =/ Trace(ss” ) dz dy = //s -sdxdy, (52)
so

2k, (1+12/4) =//s-sdxdy. (53)

Note that the condition number is just min(r2/2, 2/r2) which reaches a
minimum of 1 when r, = v/2. In the case of pure translation, the com-
ponent of translation along the optical axis is found with more accuracy
than the other two when the field of view has a half-angle wider than
0, = tan~! /2 = 54.74. .. degrees, because 7"12,/ 2 then is larger than one.

Some simplifications of the method for recovering the translational
velocity based on the above analysis are discussed by us in Horn and Weldon
[1987].

Translation with rotation known

In this section we deal with the problem of determining the direction of
translation and depth Z(z,y) given the rotation vector w.
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Figure 8. The intersection of the permissible band on the s-shape and the
compatible hemisphere for two cases. (a) Focus of expansion within field of view.
(b) Focus of expansion outside field of view.

¢ The importance of a wide field of view

In the general case, the need for a wide field of view is very clear. In a small
image region near the center of the image, for example, rotation about the
y-axis looks the same as translation along the z-axis, while rotation about
the z-axis looks the same as translation along the (negative) y-axis. As
is well known in stereo-photogrammetry, a large field of view is needed
to separate these components of the transformation between two camera
positions [Wolf 1983; Gosh 1972].

If we take note of this ambiguity, and the uncertainty with which the
components of rotation and translation along the optical axis can be de-
termined, we see that locally, out of six parameters, only two combinations
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can be estimated. These two quantities are just the components of the
motion field. The same argument can be made for points at some distance
from the principal point of the image.

There is a difference between the case when the motion is predomi-
nantly along the optical axis and the case where it is predominantly parallel
to the image plane. The transition between the two situations occurs when
the direction of the vector t moves outside the cone of directions of the
field of view, that is, when the focus of expansion (or compression) moves
outside the image. When the focus of expansion is inside the image, then
the great circle defined by s -t = 0 lies entirely inside the permissible band
on the unit sphere (figure 8a). The measured values of s then provide con-
straint all the way around the great circle. Conversely, when the focus of
expansion lies outside the image, the great circle cuts the permissible band
(see figure 8b).

In this case the known values of s provide constraint only along two
segments of the great circle. These segments get shorter and shorter as
the vector t becomes more and more parallel of the image plane. It should
be clear that in this case the direction of the vector t can be determined
with somewhat lower accuracy than when the focus of expansion is near
the principal point.

¢$ The s-Bar projection

The integrals on the right hand side of the equations for t developed earlier
contain positive multiples of the vector

§ = —sign(Ey)s. (54)
(Here we only care about the directions of the vectors, so we ignore scale
factors.) Now in the case of translation with known rotation, we have (from
equation (41))
E, = _(I/Z)St’
and
5-t=(1/Z)sign(s-t)s-t=(1/2)|s-t| >0, (55)
because Z > 0. We are only interested at this point in the sign of §-t, so
we can use any convenient positive multiple of § such as
—(1/Ey)s, —sign(E)s, or — Ess
in the discussion that follows.

Equation (55) states that § can only lie in the hemisphere that has t as
its navel. We call this the compatible hemisphere in the case of translation
with known rotation. Because § is a multiple of s, it must also lie in the
permissible band. Thus S can only lie in the intersection of the permissible
band and the compatible hemisphere. We will exploit this geometric insight
shortly.
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Our task can be viewed as that of finding the hemisphere that contains
all of the directions specified by the vectors § derived from the image. Note
that the solution may not be unique and that there may not be any solution.
Later we will modify the problem definition somewhat to deal with these
possibilities.

If there is a rotational component to the motion, then the points § will
not be confined to a hemisphere. This provides a convenient test to see
whether the methods presented here can be applied or not.

{ Motion determination as a linear programming problem

We wish to find a vector t that makes §-t > 0 at all image points. We can
think of this as a gigantic linear programming problem.? There are three
unknowns and one inequality for every picture cell. (Actually, because
we do not care about the magnitude of t, there are only two degrees of
freedom.)

Because we do not have a criterion function to be extremized, we will
have an infinite number of solutions—if there are any solutions at all. All
of these solutions will lie in a convex polygon on the unit sphere. The sides
of this polygon are portions of great circles corresponding to constraints
which we will call critical constraints (see figure 9). With data from a large
number of cells we expect this solution polygon to be small. We may choose
its center as the “best” solution.
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Figure 9. The s-sphere showing great circles for many image points. Circles for
critical points (emphasized) constrain location of t.

2We do not wish to suggest, by the way, that linear programming algorithms
could be fruitfully applied to this problem.
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Typically, the solution polygon will have relatively few sides. Thus data
from a small number of critical picture cells fully constrains the solution.
First, note that each side of this polygon corresponds to an equality of the
form s - t = 0 for some picture cell. From the brightness change constraint
equation we know that E; = 0 when 8-t = 0. Thus the critical constraints
are provided by picture cells where E; is small (and § is not). This is an
important observation, which can be used to reduce the size of the linear
programming problem; we simply disregard the inequalities arising from
picture cells where E; is large.

There is a class of points for which § - t is arbitrary, even though E;
is small and § is not; these are image points for which Z is large. Such
points provide “false” constraints on t. For a practical system, some means
must be found for identifying these points. One way of doing this, for
images with large depth range, is based on the following observation. In a
real image, regions for which Z is large, that is, the background, tend to
encompass a significant area with all points in the area having E; ~ 0. On
the other hand, points with s-t = 0 and § large are usually isolated and
surrounded by regions for which E; # 0. The above difficulty appears in
all of the methods of determining motion; it is harder to determine t when
the depth range is large.

We observe in passing that the points that are most useful in constrain-
ing the translational motion vector are the very same points where it is
difficult to calculate depth accurately! One may also make the observation
that a method for segmenting the scene into foreground and background
regions would be very useful in the case of general motion, because the
background regions can then be used to recover the rotationally compo-
nent. The known rotational velocity can then, in turn, be used to recover
the translational component from the foreground regions.

The linear proegramming method of determining t discussed above uses
relatively little of the image data. In fact, only points at the edge of the
compatible hemisphere influence the solution at all. While this is a sensible
procedure if the data is trustworthy, it will be quite sensitive to noise. For
noisy, that is, real images, it may be worthwhile to consider other points,
such as those in a band for which E; is less than a small cutoff value.

{ The perceptron “learning” algorithm

One way of finding the solution of a large number of homogeneous inequal-
ities is by means of the iterative perceptron “learning” algorithm [Minsky
& Papert 1969; Duda & Hart 1973]. Given a set of vectors {8;}, this pro-
cedure is guaranteed to find a vector t that satisfies §; -t > 0, if such a
vector exists. It even does this in a finite number of steps, provided there
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exists some € such that §; -t > € for all §; in the given set (which almost
always happens when the set is finite).

The idea is to start with some non-zero vector t° and to test whether
the inequalities are satisfied. (A reasonable choice for t° is one of the
vectors 8;.) If the inequality is not satisfied for a particular vector in the
set, then the smallest adjustment is made to make the dot-product zero.
(Note that this may disturb inequalities that have passed the test already).
Suppose that the present estimate for the direction of the translation vector
is the direction of t”. We now test the dot-product §; - t™. If it is negative,
we adjust our estimate of the vector t according to the rule

"t = t™ 4 6t", (56)

where tn
6t? = — Si S;. (57)

Si- 84

Note that §;-t"*! = 0 and that the magnitude of s; does not matter. (Also,
the test above can be replaced with a test that checks whether —s; - t™ has
the same sign as E;.)

If the inequalities are inconsistent, that is, if the §; are not confined
to a hemisphere (or nearly so), as will happen in practice due to noise,
the algorithm will not converge. Furthermore, there is no guarantee that
the guess at any stage is particularly good. We discuss several simple
refinements that can help in this case in Horn and Weldon [1987].

The vector t™ in the perceptron “learning” algorithm is obviously a
linear combination of vectors drawn from the set {§;}. Vectors in this set
have directions that correspond to points in the permissible band. Now
suppose that this band is very narrow. Then, to build a vector with a
significant z-component one has to add many of these vectors. In order
to keep the z- and y-components small, these vectors must almost come
in pairs from opposite ends of the narrow band. Not surprisingly, the
algorithm performs rather poorly in this situation; it is much happier with
vectors sprinkled uniformly in direction over a full hemisphere.

It should also be noted that in a “real-time” application, we do not
expect the velocity estimates to change rapidly. Thus the previous value of
the velocity is likely to be an excellent first estimate for the current value of
t. This means that very few iterations will be needed to get an acceptable
new value. A considerable amount of computation can be saved this way,
just as it can in the computation of the optical flow [Horn & Schunck 1981].
We discuss a “parallel” perceptron algorithm in Horn and Weldon [1987].

¢ Minimizing the integral of Z2

In this section we assume that the depth range Z,,,z/Zm;n is finite. This
will generally be the case in robotic applications. The method discussed in
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this section can also be applied to images in which the background has very
large Z, if, as discussed earlier, these regions are excised from the image
before the motion vector is calculated.

We have seen that we can compute depth when the motion t is known
using equation (44)

Z = —(I/Et)s -t.
Now if we use the wrong value t’ in this formula, we get the wrong depth
value:
Z'=—(1/E)s-t' =Z(s-t')/(s-t). (58)

‘We expect only positive values for Z, but this formula may give us negative
values, because (s - t’) may be negative where (s - t) is positive and wvice
versa. More interestingly, we may obtain very large values for Z (both
positive and negative), because (s - t) may be almost zero while (s - t') is
not. That is, the magnitude of Z will often be very large near points where
E; =~ 0. We may conclude that we could determine the correct value for t
by minimizing the integral of Z? over the image, that is by minimizing the
quadratic form

/ (1/E)*(s - t)? dedy = t7 [/ (1/E?)ss™ dx dy] t, (59)

subject to the constraint |[t]] = 1. The solution is the eigenvector of the
real symmetric 3 x 3 matrix

M= //(I/Ef)ssT dz dy (60)

associated with the smallest eigenvalue. We can prove this by minimizing
the sum

S =tTMt + 21 - tTt), (61)
where A is a Lagrangian multiplier. Then
a8
§—2Mt—2)\t—0, (62)
which yields
Mt =)t (63)

Thus X is an eigenvalue of M, and t is the corresponding eigenvector.
Substituting equation (63) into equation (61) gives the results S = A. Thus
tT Mt is minimized by taking the smallest of the three eigenvalues of M
for A.

To minimize problems due to noise, we can add a small positive con-
stant to E? commensurate with the expected noise in E2. That is, we take
as our solution the eigenvector of

1
M = / / st dody (64)
t

associated with the smallest eigenvalue.
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If e is an eigenvector, so is —e. But we want Z to be positive. Rather
than test this condition at a single point, we compute an average like

5y = —//(I/Et)sdx dy or §p = —// Ez—E_'f?sdx dy (65)
t

and check whether
So:-t>0. (66)
If it is not, we simply change the sign of the solution t.

As before, we may choose to weight the integral of equation (59) ac-
cording to some measure of how trustworthy the data from each picture
cell is.

The method presented in this section produces an estimate of the
translation vector t in closed form and with high accuracy. Of course, a
cubic must be solved to obtain the eigenvalues—but there is an analytic
method for doing that. The corresponding eigenvectors can then be found
by taking cross products of two rows of a 3 x 3 matrix.

The preceding method of calculating t has another justification that
some readers might find more persuasive. From equation (41) we know
that s - t = 0 for points with E; =~ 0 (again ignoring background points).
Thus we are basically looking for a vector t that makes s - t &~ 0 whenever
E; = 0. The points where the time derivatives are small provide most
constraint, as already discussed. We could try to minimize something like

[0, (67)

where C' is the set of image points where E; ~ 0. Rather than use a strict
cut-off on F;, we may consider a weighting scheme in an integral like

v//w(s-t)2 dz dy, (68)

over the whole image where the weighting function w is chosen to empha-
size points where E; ~ 0. A reasonable choice, w = 1/(E? + n?), leads
to integral given in equation (64). The eigenvector corresponding to the
smallest eigenvalue is a normal of the plane that best fits the weighted set
of points (see figure 10).

If there is a rotational component to the motion then the vectors §
where E; is small will not lie near a great circle. In this case the smaliest
eigenvalue will not be small. This provides a convenient test. We discuss a
method that avoids the need to find eigenvalues and eigenvectors in Horn
and Weldon [1987]. Related methods for finding the focus of expansion are
discussed in Negahdaripour and Horn [1987].

Figure 11 shows a scatter plot of positions on the unit sphere for t
recovered from noisy synthetic data. Each estimate is based on brightness
gradient at 200 picture cells with 1% noise in the derivatives of brightness.
Note the elongation of the cluster of points in a direction parallel to the
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Figure 10. The great circle corresponding to the motion t which best fits the
points on the s-sphere for which F; =~ 0.

optical axis. When tens of thousands of picture cells are used, instead
of hundreds, the algorithm can tolerate considerably more noise. While
further experimentation is called for, we found that this algorithm behaves
at least as well, if not better than the others we have investigated.

Conclusions

We have developed methods for recovering motion directly from the first
derivatives of brightness in an image region in the cases of pure rotation
and pure translation (and general motion when the rotational component
is known). We have tested these methods on synthetic image data and, to
a limited extent, on some kinds of real image sequences. In the case of pure
rotation we give an exact simple solution to the obvious least-squares prob-
lem. In the case of pure translation we give several methods with different
trade-offs between accuracy, noise-sensitivity and computational expense.
While we have preliminary ideas about the relative merits of these meth-
ods, detailed conclusions will have to await further careful experimentation
with real images. Some further results on both synthetic and real image
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Figure 11. Plot of several noisy estimates of the translation vector t on the
s-sphere (200 pixels/estimate, 1% noise in brightness measurements).

data are reported in Horn and Weldon [1987] and Negahdaripour and Horn
[1987].

We show that it is trivial to recover depth when the motion is known
and that it is trivial to recover the motion when depth is known. We em-
phasize the importance of a large field of view and point out difficulties
arising in the pure translation case when there is a very large depth range.
We also note that image points where the brightness derivative is small
provide most constraint on the translation vector while the depth at these
points is hard to recover. We also show that it is difficult to recover the
translational motion towards, and rotational motion about, the line con-
necting the projection center to the image region of interest, when that
region is small. We emphasize the need for adequate low-pass filtering in
both spatial and time dimension before sampling in order to ensure that
estimates of derivatives are accurate.

The discussion is facilitated by introduction of the auxiliary vectors s
and v. The directions of these vectors have been shown to be constrained
to lie in the intersection of a “permissible band” and a “compatible hemi-
sphere” on the unit sphere. These geometric concepts help lend intuitive
support to the algebraic results.
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Appendix A: The Brightness Change Constraint
Equation

The brightness change constraint equation is based on the assumption that
the brightness of the image of a patch on the surface does not change as the
observer moves relative to the surface. Expansion of the total derivative in
the equation dE/dt = 0 by means of the chain-rule leads to the constraint
equation

OF dx OFE dy

Gt Py a T (41)

or

uE, +vE, + E; =0, (A2)
where E;, E,, and F, are the partial derivatives of brightness with respect
to z, y, and ¢, while u and v are the time derivatives of z and y.

In practice, the brightness of a patch rarely remains exactly the same.
The brightness change constraint equation is nevertheless a useful approx-
imation, as long as the change in brightness at an image point due to the
motion is much larger than the change in brightness due to other effects,
such as change in viewing direction or illumination. This will be the case as
long as there is good contrast at high spatial frequencies, as will be shown
next.

Suppose that the brightness of a patch does in fact change due to
changes in viewing direction or changes in illumination. In most cases
the rate of change of brightness will be relatively small. Let us say that
dE/dt = €, and so

E, = —(uE; +vE,) + €. (A3)
Consider now a simple grating pattern in the image that, at a particular
time, is described by the equation
E = Eo(1 + sin(az + by)) . (A4)
Then the components of the brightness gradients are
E, = aEqcos(az + by)

A
E, = bE cos(az + by) . (45)

Consequently

uE, +vE, = (au + ) Ep cos(az + by) . (A6)
It is clear that the error in E,, the rate of change of brightness at a point
in the image, resulting from changes in the brightness of the surface, is
relatively small, as long as (au + bv)Ey is large compared to ¢. (This term,
(au + bv)Eg, will be zero when the image motion happens to be parallel
to the ridges of the grating. In practice, however, surface markings will
contain many spatial frequency components and most of these will not be
aligned in this special way). We conclude that the relative error in the rate
of change of brightness with time is small, as long as there is significant
contrast at the higher spatial frequencies.
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The approximation breaks down when the surface markings are weak
and the changes of brightness due to changes in viewing direction or illu-
mination are rapid. This happens, for example, in the rare situation where
a specular surface momentarily lines up exactly to reflect the light from a
point source towards the viewer. It also happens when an object moving
relative to a point source enters a cast shadow.

A number of additional factors help keep the relative error in E; small.
First of all, some surfaces have the property that they appear equally bright
from all viewing directions. A Lambertian surface is a very special case of
this, where the brightness varies as the cosine of the incident angle. The
image brightness is not affected at all by the motion of the observer when
a surface of this type is fixed relative to the light source. While most real
surfaces do not appear equally bright from all viewing directions, brightness
typically varies slowly with changes in observer position (slowly enough that
we are usually not aware of any such changes).

Brightness variations resulting from changes in surface orientation are
most severe when there is a single point source. These variations are re-
duced when there are multiple sources or an extended source. In the ex-
treme case of a scene illuminated from all sides, for example, image bright-
ness does not depend on surface orientation at all, even if the surface is
specular!

Similarly, a lens occupying a large solid angle, as seen from the object,
will smooth out changes in brightness resulting from changes in viewer
position. One can see this easily in the extreme case of a glossy reflection,
which will be seen only over a small range of positions if a small lens or
pin-hole is used. A large entrance aperture on the other hand will smear
out the highlight effect over a larger range of viewing positions. This is
not a big help in many imaging situations, however, because objects are
far from the sensor relative to the size of the sensor, except in the case of
microscopy.

To summarize: The brightness of the image of a patch may change
somewhat as the observer moves relative to the surface. The brightness
change constraint equation nevertheless provides a good way of estimating
the rate of change of brightness with respect to time at a point in the image.
The relative error in this estimate will be small when there is significant
contrast in the surface markings at higher spatial frequencies. (There will
be no error at all when the surface appears equally bright from all viewing
directions and the object does not move relative to the light source).

Appendix B: Ensemble Averages

Some of the integrals that appear in this chapter, while functions of the
scene content, tend to lie close to “average” values when evaluated over
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sufficiently large textured regions. These average values can be useful in
two different enterprises:

e Analyzing the relative stability of the components of the solution.

e Developing simplified methods for recovering the solution (as shown
in Horn and Weldon [1987]).

In order to compute these averages we have to make some assumptions
about the probability distribution of brightness gradients. We assume here
that this distribution is rotationally symmetric and independent of image
position. That is, on average we see the same brightness gradients at every
image point and all directions of the brightness gradient are equally likely.
The distribution of magnitude of this gradient is left arbitrary, however,
because it does not directly affect the main results.

Moment integrals for the uniform band

Before we start, let us quickly obtain the equivalent results under the as-
sumption that data points (s or v) are uniformly distributed over the per-
missible band. Let n denote the latitude and £ the longitude on the unit
sphere. We see that the area of the band is just

4 8.,
K =/ / cosndndf = 4mwsinb, . (B1)
- J =8,

The Cartesian coordinates of a point on the unit sphere are given by p =
(z,y,2)T where
x =cosncosé,

y =cosnsiné, (B2)
z =sin7n.
Let the integral of pp” be
™ g, T Imz Izy I:vz
[ [ eetande= {1 Ly L. ). (B3)
—m /by I, Izy 1.

Then
T 6, ™ 0,
o= [ [ ocosndnds= [ coteds [ costnan, (B4
—xJ—0, - =0y
that is,
T
e

Lz = 3 [3sind, +(1/3)sin 36,]) = %’fsinev [1+(1/2)cos®6,], (B5)

while

T G, bd 8.
I, = / / 22cosndndé = d¢ / sin?ncosndn, (B6)
—rJ—8, -7 —0y
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that is,
4
I, = —371 sin3 6, . (B6)
Also, by symmetry, I, = I, and the off-diagonal terms, I, I,., and I,
are all zero. We have

L. = (K/3) [1 +(1/2) cos® 8,] = Iy, (B7)
and
I, = (K/3)sin®4,, (B8)
SO
Lo+ Ty+I1,=K. (B9)

The moment matrix is diagonal and so I, Iy, and I,, are the three
eigenvalues. The condition number is the ratio of the largest to the smallest
or
1+ (1/2)cos? 8,

sin® 6, '
These results give us a quick estimate of the ensemble averages of the
integrals if ssT and vvT. To do better, we have to take into account the
actual distribution of s and v in the permissible band.

(B10)

Ensemble average of the integral of ssT

It is convenient to use polar coordinates in the case of a circular image. We
have

T =rcosf -7 <0<+,
. (B11)
y=rsind 0<r<r,.
Similarly, we may use polar coordinates for the brightness gradient
E, = pcos - < o<+,
e = pCose <o< (B12)

E, = psing 0<p.
Let the probability of seeing a brightness gradient with magnitude lying
between p and p + 6p be 2mp P(p) 6p. Now

-F; —cos ¢
s = -E, =p —sing . (B13)
zE, +yE, rcos(f — ¢)
Consequently
s s=p? (1+7r2cos’(0 — ¢)) . (B14)

Consider first the integral of s - s:

/_:/(;”(ss)rdrd& (B15)

To obtain the desired ensemble average we integrate over p and ¢ as follows:

/_Z/OOOP(P) [/:; OTU(S.s)rdrdO] pdpdd. (B16)
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This integral can be split into two parts:

/ p3P(p)dp/ d¢/ rdr/ do = 2n2Pyr? (B17)
- 0 —7

0
and

oo i d Ty T 2
/ o2 P(p) dp / d / 3 dr / cos? ' df = %—Pz ri,  (B18)
0 —T 0 -7
where 6/ = (6 — ¢) and
o= [ 0P()dp. (B19)
0

We note in passing that P is a measure of the average squared magnitude
of the brightness gradient. Combining the two parts above we find that

//s csdrdy = 2m Py r2(1 +12/4). (B20)

Similarly we obtain

IM——-/_:/OOOP(p) [/_:/O P2 cos g drde] pdpdé

=/ p3P(p)dp/ cosqudd)/vrdr/ dd = n?Pyr?,
0 0 -

-

(B21)

and

I,,= /_: /000 P(p) [/_7; /Orn pPricos’*(d — @) r drdO} pdpd¢

o0 g Ty ™ 7(.2
=/ p*P(p) dp/ dd)/ rd dr/ cos? @' do = 'ZP2 i,
0 - 0 -

while I, = I;s.
The moment matrix is diagonal, so I, I, and I,, are the eigenvalues.
The condition number is the ratio of the largest to the smallest or
2 9 r2 2
) for ri <2 and ?” for r;>2. (B23)

This result does not depend on P;, as stated earlier.

(22)

Ensemble average of the integral of vvT

Here we proceed much as in the previous section with
+E, + y(zE; + yE,) +sin¢ + r? sinf cos(f — @)
v=| —-E,~z(zE, +yE,) | =p| ~cosp —r?cosfcos(d - ¢) |,
( yE, — zE, ) ( 7 sin(6 — @) )
(B24)
and
v.v=p(1+7%) (1412 cos®(0 - ¢)) , (B25)
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which follows fromv=sxr,s-r=0,r-r =1+ 1r? and
s-s=p?(1+r%cos’(6 - ¢)) . (B26)

After some tedious manipulations, similar to those in the last section, we
find

- r 2
//v-vdmdy:%Pgrg (1+3r2/4+712/6) . (B27)
and
g =m*Pyr2 (L+7r2/2+715/6) = I, (B28)
and
L, =mPy(rt/2). (B29)

Again, the matrix is diagonal and so I, I, and I,, are the eigenvalues.
The condition number is just
2 r2
- 1 v R B3
2 +1+ 3 (B30)

v

which is independent of P, once more.



Imagine that you are a terrestrial, aquatic, or flying robot
and that you want to keep track of where you are, relative
to some coordinate system, given only that you have an eye
or a camera to look through. You have no gyroscope, no
compass, no navigation radio, no form of radar or sonar,
and no map.

You might think that the only hope would be to un-
derstand what you see at least to the point of identifying
some features or objects to keep track of as you move. Per-
haps surprisingly, it seems better, in most cases, to work
directly with large numbers of image points, noting only
their first derivatives of brightness with respect to time and
space. Although a general solution is not yet known, Horn
and Weldon show how to deal with special cases in which
the motion is pure rotation, pure translation, or arbitrary
motion when the rotation is known. Their analysis demon-
strates the critical importance of sufficient field of view and
of adequate, aliasing-avoiding spatial and temporal filtering.
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