
Direct Minimum-Knowledge Computations

(Extended Abstract)

Russell Impagliazzo

U.C. Berkeley

Moti Yungl

Columbia University

Abstract

We present a protocol scheme which directly simulates any given computation, defined on any
computational device, in a minimum-knowZedge fashion. We also present a scheme for simulation of
computation in dun1 (perfect) minimum-knowledge fashion. Using the simulation protocol, we can
that one user transfers to another user exactly the result of a given computation and nothing more.

The simulation is direct and efficient; it extends, simplifies and unifies important recent results which
have useful applications in cryptographic protocol design. Our technique can be used to h p l e m n t
several different sorts of m f e r of knowledge, including: aansfer of computational results, proving
possession of information, proving knowledge of knowledge, gradual and adaptive revealing of
information, and commiment to input values.

The novelty of the simulation technique is the separation of the data encryption from the encryption of
the device's structural (or control) information.

Supported in part by NSF grants MCS-8303139 and DCR-8511713 and an IBM graduate fellowship.

C. Pomerance (Ed.): Advances in Cryptology - CRYPT0 '87, LNCS 293, pp. 40-51, 1988.
0 Springer-Verlag Berlin Heidelberg 1988

41

1. Introduction
Zero-knowledge interactive proofsystems are a new technique which can be used as a cryptographic

tool for designing provably secure protocols. Goldwasser, Micali, and Rackoff originally suggested this

technique for controlling the knowledge released in an interactive proof of membership in a language, and
for classification of languages [19]. In this approach, knowledge is defined in terms of complexity
theory, and a message is said to convey knowledge if it gives a computational advantage to the receiver,
for example by giving him the result of an intractable computation. The formal model of interacting
machines is described in [19, 15, 171.

A proof-system (for a language L) is an interactive protocol by which one user, the prover, attempts to
convince another user, the verifier, that a given input x is in L. We assume that the verifier is a
probabilistic machine which is limited to expected polynomial-time computation, while the prover is an
unlimited probabilistic machine. (In cryptographic applications the prover has some trapdoor
information, or knows the cleartext of a publicly known ciphertext)

A correct proof-system must have the following properties:
If X E L, the prover will convince the verifier to accept the p m f with very high probability.

If X P L no prover, no matter what program it follows, is able to convince the verifier to
accept the proof, except with vanishingly small probability.

The above definition can be extended to correctness of a more general protocol which transfers to the
verifier the result of a computation. The possible results transferred by the protocol form a probability
distribution defined by the computation of the probabilistic machines. Such a protocol is correct if the
prover can transfer a correct result according to the specified probability distribution (with very hi&
probability), and no adversary can transfer an incorrect result by biasing the distribution (except with a
vanishingly small probability).

In order to model the fact that the interacting parties are not memory-less and, for example, may choose
their action according to previous events, they are provided with history tapes. Each user's history
includes the messages exchanged, the random bits used and the private output that he computes during the
execution.

A proof-system is zero knowledge if the following holds. Given any input XE L, and an initial
verifier's history h (representing the context in which the protocol is started), any verifier can generate a
probability distribution of possible transcripts of a simulated history of an interaction. The simulation
should not be distinguishable by any polynomial time computation from the history of actual interactions
(of the prover and this verifier) on the same input x and same initial history h. The definition of
polynomial rime indisn'nguishubility is given in [23, 191. The zero-knowledge property implies that the
interaction gives the verifier the intended result and nothing more, a fact which is crucial in controlling
the knowledge transmined in cryptographic protocols.

The zero-knowledge notion has been useful in designing secure protocols; see for example
[19,13, 11,2]. In [IS] rhe notion was extended to deal with the knowledge released in a more general

protocol which nansfers a computational result; an example was given of a protocol for nansfemng the

42

value of a certain number-theoretic predicate.

For a protocol which transfers a result, we say that the prover gives the computational result to a
verifier in a minimtun-knawledge fashion if the verifier, when he is allowed to get one answer from a
result oracle, can generate a simulated transcript of the history of an interaction which is indistinguishable
from the history of an actual interaction with the prover which gives him this result. This was originally
formalized for result transfer protocols in [15]: if the provision of the oracle's answer enables the verifier
to simulate the entire interaction, then we can say that the interaction itself did not give any additional
knowledge to the verifier.

An important result by Goldreich, Micali and Wigderson [17] shows that, under the assumption that a
one-way permutation exists, all Np languages have zero-knowledge proofs. This result is the starting

point of our work. As &scribed in [17], this result has important consequences for the design of provably
secure protocols, as will be explained in the next section.

The result of [17] is proved by exhibiting a protocol for graph 3-colorability, i.e. a proof-system for the
language of 3-colorable graphs. To prove a general NP statement one tirst has to translate it into an
instance of the graph 3-colorability problem (using the publicly knawn Karp reduction 1161). Recently,
several protocols for other NP languages were suggested, using similar techniques which exploit
properties of specific NF'ampIete languages. In [8], under the assumption that quadratic residuosity is

intractable, a protocol for satisfiability (SAT) was suggested which directly simulates the circuit that
evaluates given instances of SAT. Chaum[10], independently, gave a protocol for direct circuit
simulation under the assumption that "claw-he" functions exist. In [17] it is mentioned that the
technique of direct computation in[8] does not seem to generalize to an arbitrary one-way function.
Funhermore, it seems that the techniques of [lo, 81 do not generalize to a direct simulation of a general
computational device, since they rely on the input-output relationships of circuit gates.

In this paper we show how it is possible to directly simulate the computation of any given
computational device. The scheme presented is correct; if a one-way permutation exists, then the scheme
guarantees that the transfer is done in minimum-knowledge fashion. Our construction applies to my
polynomial-size device (such as a polynomial-size circuit, or a polynomial-time non-deterministic or
probabilistic-non-deterministic Turing machine [ZO]). The minimum-knowledge property assures that
any information about the input which is not revealed by the output remains secure. Using this new
technique, one can avoid the Karp reduction to a specific NP-complete problem, and directly prove the
result of the computation.

The efficiency of our protocol scheme is directly related to the computational complexity of the given
problem. When the computation is given by a computing circuit of size c (or a Turing machine in which
the product of time and space is c) and k is the size of an encryption of one bit (which is equal to the
system's security parameter), the message size required is ck. In order to make the protocol correct with
high probability, we have to pay in communication rounds. If the tolerated error probability of the
protocol is 6(k), then r, the number of rounds in our scheme, must be logS(k). In case one wants an
exponentidly small probability, then r-k; if 6 has to vanish faster than any k-M for all n, then r= log"k is
enough. Thus, the total communication complexity is ckr, where k is the overhead i o r encryption and r is

43

the overhead for confidence.

Our protocol scheme applies to several different notions of “minimum-knowledge computations”
suggested recently. It is a uniform method which can be used in the following interactions:

It enables the prover to simulate a given computation and transfer only its result [19, 15, 171.
The prover can transfer only parts of the computation (parts of the input, output or
intermediate results), hiding all other information from the verifier, It seems that exhibiting
such partial relations in a minimum-knowledge fashion is harder to do using the reduction of
the computation to an NP statement, while in direct cornputation, partial data decoding is
easily achievable, and is minimum-knowledge with respect to a ‘result oracle’ which gives
the verifier these parcial data.

It can be used to convince the verifier that the prover possesses a piece of information. This is
similar to what was formalized as proving “possession of information” [22], and proving
“knowledge of knowledge” [121.

It has a significant advantage over NP-reduction in solving the problem introduced here of
revealing the output information in an “interactive gradual fashion”; that is, when bits of the
results are being revealed gradually one by one by the prover, for example, in exchange for
an appropriate payment by the verifier. The protocol is run once and for all, and later only
the result bits are opened gradually; no extra interaction is needed, In the full paper we show
how to do this and how to perform “adaptive gradual trading of a result”, in which a verifier
may decide which partial result he wants based on previously opened bits. This adaptive
gradual opening of information is suggested and solved here. The difficulty is that, in order to
make sure that such an interaction is minimum-knowledge, the simulating verifier should
receive only the required information which is actually opened, and in an adaptive fashion.

It can be used directly to verify a “commitment to a value”. This is a model of computation
with encrypted data presented by Yao [24]. In this model, a prover commits himself to
certain data by announcing an encrypted version of i t Later, he can convince the verifier that
a computational result transferred indeed used as inputs the cleartext values to which he had
committed himself.

It can also simulate the most general interactive proof (IF) in a minimum-knowledge fashion.
The technique is applied to the probabilistic nondeterministic polynomially bounded Turing
machine I201 which models the general interactive proof. The fact that the general
interactive proof can be done in minimum-knowledge was first observed by Ben-Or.

The dual (or perfect) zero-knowledge notion was suggested by Brassard and Crepeau, and by Chaum
[7, 101. The prover is restricted to polynomial time; however he knows a witness to the given NP

statement, or an input to the given computation. The verifier may have unlimited computing power (Or,

in a variation on this model, we assume that he is limited to polynomial-time), and he wants to be
convinced that the prover has a witness.

The differences between the dual model and the model described above (which we may call the primal
model) are:

The computational power of the parties is interchanged.

The verifier accepts the proof only under a number-theoretic or cryptographic assumpaon in
the dual model and unconditionally in the primal one.

The computation simulating the actual interaction in the dual model produces a transcript of
interaction which is identical to the original one (and thus indistinguishable); such a PrOtoCo~
is calledpelfecrly zero-knowledge. In the primal model the transcript of the interaction is not

44

identical, and is indistinguishable only under the computational complexity assumption,

The effect of deviations from the specified computational power of the parties differs in the
two models. In the primal model, if the verifier is given enough computational resou~ce~
before the interaction (say, exponential time), the interaction is still (trivially) minimum-
knowledge (using a simulator with the same resources as the verifier). In the dual model,
when the prover gets enough time before the interaction, he can cheat and the protocoI might
not be comct. After the interaction, on the other hand, in tbe primal model giving enough
time M the verifier may enable him to extract more knowledge than intended; in the dual
model the verifier cannot extract any extra knowledge when given unlimited time after the
interaction.

Assuming there exists a one-way function which is a group homomorphism, we give a direct
simulation for the dual minimum-knowledge model. Notice that all known number-theoretic
permutations which are assumed to be one-way (based on the problems of RSA, quadratic residuosity,
and discrete logarithm) are group homomorphisms. The proof-system protocol for this modei is similar

to the first simulation protocol; thus we present a unified way to treat the two models. We note that the
dual zero-knowledge model protocols in [7, lo] are based on quadratic residues or claw-free paks of
functions, and they require the ability to prove equality of two encrypted bit values in a minimum-
knowledge fashion. We d o not need this property for our protocol. The only requirement is that the
homomorphism is one-way; it is used in an encoding technique we call locking. The simulation technique
in the dual model applies to all the various notions of “minimum-knowledge computations” presented
above which are applicable to this model.

In this abstract we present only the basic protocols for simulation of circuit computations. The precise
definitions of the various notions (such as “minimum-knowledge” and “transfer of knowledge”) will be
given in the full paper.

2. Applications of Zero-Knowledge Computations

We assume that a probabilistic encryption scheme exists. Yao [23] showed that this is implied by the
existence of a one-way permutation. Examples of concrete encryption schemes based on assumptions of
the intractability of certain number-theoretic problems are given in [18,3,4, 11. In the full paper we
formalize exactly what properties are required of the encryption scheme in order to implement our
COnSUUCtiOnS.

When a cryptographic protocol is performed, each user wants to be sure that his partners follow the
protocol. For example, in a “mental-poker“ game a player wants to know that his opponent follows his
instructions as specified by the protocol, and gets legal cards from the deck. The fact that every NP
language has a zero-knowledge proof makes on-line validation of such facts possible [17]. Given a
probabilistic encryption scheme, the set of valid encryptions of a legal message is an NP language. Thus,

users can check interactively in minimum-knowledge fashion that a message sent during an execution of a
protocol was indeed generated as specified by the protocol. We call protocols in which each message is
checked on-line using zero-knowledge proofs validated protocols. This validation can be the bottleneck
in the protocol. Therefore, to make validated protocols efficient, the proof-systems used throughout the
protocol should be as efficient as possible. Our direct computation technique can speed up the validation
proofs.

45

Here we present a few examples of validations. Assume that a user is supposed to choose a number
which is a product of rn primes; he constructs a probabilistic circuit which checks primality of m inputs,
then multiplies them and gives the product as an output. Afterwards, he can perform a minimum-
knowledge simulation of the computation and open only the output.

In another example, suppose that a user sends a value y=f(x) and wants to show that he knows the
argument x of the one-way functionf, while keeping x secure. He can convince another user by a
minimum-knowledge simulation of the circuit which computesfl-). The simulation itself uses a one-way
function to encode the circuit, which we may call the underlying encryption function. (In fact, we can use
a ‘bootstrapping technique’ in which the circuit computation that represents the computation o f f is
performed using f itself as the underlying function). In the next section we explain how these
computations are done.

In the above example, the result of the computation is the only information opened by the user. It may
be the case that this information has to be opened gradually, and the receiver of the information has to pay
for each result bit (for example by revealing bits of his own secret mutt). T h i s is the “gradual interactive
revealing of information” that we introduce in this work (to be explained in the full paper). The notion is
similar to the one presented in [9] , but we limit the interaction to an initial phase, separate from the actual
opening of the bits. We also present an adaptive version where the bits to be revealed anz decided on-line
by the verifier.

Assume that a relation Q=(.,.) and a public input x are given. A prover wants to demonstrate Chat he
“knows” or possesses 1221 a private wimess w such that (X.W)E Q. For example, the witness can be a
certificate of the membership of x in an NP language. The possession of the witness can be proved using
a minimum-knowledge simulation of the computation of the predicate Q. Similarly, the prover can
demonstrate that he has a wimess w either to the fact that X E L or to the fact that x e L, where
L E NP n CO-I”, without revealing to the verifier which is the case. There is a a predicate A(x,w) for L,

and a similar predicate B(x,w) for the complement language z. l 3 e prover has to convince the verifier
that he has a wimess which satisfies the predicate A(x,w)vB(x,w); he does this by executing a minimum-
knowledge simulation of the cornputation of this predicate.

Suppose a prover w a r n to demonstrate that he computes C(x) with a value x that he knows, and to
which he has committed himself [24]. The commitment is done at the beginning of the protocol, when
the prover sends y , where y=&) is the image of x under a one-way function. Then, using the same input
X , he evaluates bothfl.) and C(.). The prover opens the outputs, which have to be y and the result C (4 .

The verifier is convinced that the computation must have used the input to which the prover committed
himself earlier.

3. Direct Minimum-Knowledge Computations

interactive simulation of a computation. Let P be the prover and V the verifier.
In this section, we show how any one-way permutation may be used in direct minimum-knowledge

The essential idea of the protocol is that the prover constructs and sends to the verifier a copy Of a

46

simulation of the computing device (i.e. a copy of a circuit or of a computation history of a Turing
machine). This copy includes encoding of the possible input, intermediate results, and output data. In

addition it includes encoding of structural information about the computing device. In the case Of a
circuit, the structural information consists of connections (pointers) from the output of one gate to the
input of another gate in the circuit (based on the gates’ truth tables); a pointer connects two entries which
encode the same bit value. For a Turing machine, the structural information consists of connections
between two consecutive instantaneous descriptions in the computation history; these connections are
based on the machine’s finite control (m i t i o n table). Any computation is a combination of some local
data manipulation and transitions, based on the device’s finite control, which diwt the computation to its
next step. Our technique separates the encoding of data from the encoding of the possible continuations
given by the control element We describe here only the circuit model computations.

First we outline the protccol. U p n receiving an encoding of the cixuit, the verifier flips a coin and
chooses one of two options. With probability 112 he decides to venfi, that is to request that the prover
open all the encryptions in the copy of the circuit In this case he can check that the construction is a legal
computing circuit with the right data in each gate, and that the smctural information encodes correct
connections between gates. With probability 1/2 the verifier chooses to compute, in which case the
prover opens only the result of the computation. To prove that the output pmented is in fact the
computed result of the circuit, the prover opens only the cleartexts of the pointers connecting entries
which are involved in the computation, while all other information is left encrypted. The connections
show how to navigate through the circuit from the input data to the output gates. Then the circuit’s output
is opened as well. The unopened information appears random (and is polynomial-time indistinguishable
from a set of encryptions of any fixed arbitrary data).

The process is repeated r times; each time the prover is ready either to verify or to compute. If all
verifications are successful (that is, each circuit encoding does simulate the computing circuit), and all the
computations produce a connection to the same opened output, then the verifier accepts the result of the
computation.

In a computation, only pointers between gates leading to the output are opened. We remark that if
there are random inputs in the circuit, then from the two possible elements in an input entry V chooses at
random which element to use, and P uses these elements in the computation. (V is actually flipping a
coin into P’s well [5].) In the direct simulation, the result of the computation need not be restricted to an
output of the given circuit. It can include relations between parts of the inputs, intermediate results, and
outputs.

Below we briefly describe the circuit design. (We will give a detailed description in the next version.)
A circuit encoding consists of gates corresponding to the actual gates of the given circuit.

Each gate has input entries, a truth table and output pointers.

Each input entry represents an input bit to the gate and consists of an unordered pair of
ciphextexts encrypting 0,l or 1,0 at random. In an actual computation one of the two
ciphextexts is chosen

The uuth table represents the computation done by the gate. It consists of rows; each one
maps a combination of entries’ ciphertext values to an output pointer. (For example, a binary

47

gate has four rows.)

The rows of each m t h table are permuted at random.

The pointer in each row is a reference to the input entry of the next gate in the circuit The
pointer value is eitherfirst (an encryption of 0) or second (an encryption of 1).

If the pointer value is first (0) it means that the output value of this row is the same as the
value of the first ciphertext in the input entry of the next gate, while a pointer of value second

(1) means that the output is the same as the second value in the input entry of the next gate.

*Since the enaies and rows in the table are randomly permuted in each gate, the pointer
connection giving the structural information about the circuit appears random when it is
deciphered while keeping the other information encrypted.

9 If the gate does not connect to another gate but actually gives a circuit output bit, then the
pointer's value (i.e. the bit it encrypts) is the actual output value.

Next we briefly describe the protocol.

PROTOCOL 1:

{The prover P (who uses his probabilistic encryption procedure E) and the verifier V Simulate the
computation of a circuit C in a minimum-knowledge fashion.}

repeat r times j l o o p ~ :

1. P probabilistically encrypts C as described above. Let E(C) denote the encryption. P-NV: "E(C)".

2. V chooses a bit b E {O,l}. V +P: "b"

3. If b 4 then
{verijjl}: P opens all the encryptions of all gates in E(C) and sends the cleanext circuit to V.

{compute}: P opens only the pointers of the specific computation and sends the cleartexts of these
pointers to V (including the outputs).

else

4. If b=O V verifies that C is properly encrypted;
if b-1 he verifies that the opened pointers lead from the (unopened) input enmes to the output pointers.

jend loop1

If all computations give the same value and all verifications are successful then V accepts. In any Other
case he rejects.

{END PROTOCOL 1)

Theorem 1: Assume that a one-way permutation exists. There is a direct minimum-
knowledge simulation of any circuit of polynomial size c. It takes r rounds and uses kc-bit
messages, where k is the security parameter and c is the size of the simulated circuit The error
probability is 1- (1/23.

4a

The protocol is a correct result-transfer protocol because:
The prover is able to transfer the result and compute the encrypted circuit transferring the
result

On the other hand, no prover can cheat the verifier since in order to do this without being
caught he has to guess the r random coins of step 2 and this evem has vanishingly small
probability (1/23.

Notice that with very high probability (1- 1/23 any machine P’ that sumssfully performs the prover’s
role is ready, in at least one of the iterations. to verify that indeed he constructed the circuit simulation
properly, but is asked instead to compute. This means that in at least one of the rounds the prover indeed
had a valid circuit and indeed computed using a witness. Since all computations and verifications were
valid, the verifier accepts the correctness of the computation. This is true also when the computational
result is actually not interesting, but the circuit is used only for a demonsmaon of some computational
power as was formalized in [12,221 (e.g. “knowledge of a witness” as in one of the examples of section
2).

The system is proven to be minimum-knowledge by showing that for any given verifier V’ there is a
simulating polynomial-time mackine. The machine gets the result of the computation from a ‘result
oracle’ (as was described in 1151) and produces (in expected polynomial time) an output which is a
simulated history of the interaction; this output is polynomial-time indistinguishable from a history of v’
recorded in an actual interaction between V’ and the prover.

The CNX of the proof is that the unopened part of an actual interaction is indistinguishable from an
encryption of fixed random data in the simulated transcript. No polynomial time procedure can get any
partial information about this unopened ciphertext of the transcript in order to tell whether it is an actual
or a simulated one. If rhere is a polynomial time procedure which does, then the set of transcripts is a
message space for which it is possible to distinguish between encrypted messages in polynomial time.
These messages are probabilistically encrypted based on a one-way function. Such a procedure could be
converted into a procedure which efficiently inverts the one-way function, but this is assumed to be
impossible [18,23,21].

4. Direct Dual (Perfect) Minimum-Knowledge Computations
The direct minimum-knowledge computation technique presented is also applicable to the dual model

of minimum-knowledge protocols. In this model the proof is presented by a polynomial-time prover to a
powerful verifier, and the proof is accepted only under a cryprographic assumption 17, 101. The proof has
to convince the verifier that the prover possess some computational knowledge. Chaum [lo] uses this

model for identification protocols in the context of his credential mechanism.

Assume there is a one-way function f which is a group homomorphism. (All the number-theoretic
one-way functions discussed in the literature are group homomorphism,: RSA, modular exponentiation,
modular squaring). Then the following holds:

Given a random ciphertext valuef(x), no polynomial time pnxledure can find x. This follows

Given a random ciphertext valuefix], and a random value q in the range off It is impossible

from the assumption that the function is one-way.

49

(even with unlimited computing power) to decide whether q was generated as q=Ax)*As) for
some randomly chosen s, or q=Ar) for some randomly chosen z.

A random polynomial time procedure which, on input f lx) , is able to compute q, s, and t

related as above, is able to compute x as well. This would contradict the assumption thatf is
one-way.

These facts are the basis of the following protocol scheme. Previously, the dual minimum-knowledge
simulated computation protocols [lo, 7,6] needed the ability to provide a zero-knuwledge proof of

equality of two cleartexo, given the ciphertexts. Here we show ht, using the new technique, this

requirement is not needed.

PROTOCOL 2:

{The polynomial time prover P and the verifier V simulate the computation of a circuit C.}

1 .v -+ P: " z=flx) "

{It is possible to have a model of computation in which z is given and I is unknown to both parties. On
the other hand, it might be the case that the verifier has unlimited power and knows x, in which case the
above transmission can be followed by a minimum-knowledge proof in which V validates that the value z

is in the range off and x is kept secret. This is done using the zero-knowledge proof of a preimage of a
group homomorphism of [14] (generalizing the proof of quadratic residuosity of [19]).}

P encrypts C as described in section 3 above, using as encryption function the following:
0 is encoded asflt), for a randomly chosen r,
1 is encrypted as z*fls), for a randomly chosen s.

{Notice that in the above encryption methods, the encoding of 1 and 0 are drawn from the same
probability distributions. The powerful machine V cannot distinguish between an encryption of 0 and an
encryption of 1. The only difference between them is the way they are produced by the prover. We call
this encrypaon method locking, since it is the computation by P which commits the ciphertext to a value,
and he is the only one who can unlock and reveal the original value.}

{Exhibiting a cleartext value for a ciphertext y is done by opening (unlocking), which means giving
either a preimage by f of y (to unlock y as an encryption of 0) or a preimage of y * r * (to unlock y as an
encryption of l).}

2. Using the locking of bits as encryption mechanism, the users follow the loop and the acceptance
procedure of protocol 1.

{END PROTOCOL 2)

Theorem 2: Assume that a one-way group homomorphism exists. There is a direct 'dual
zero-knowledge' simulation of any circuit of size c. It takes r rounds and uses kc-bit messages,
where k is the security parameter. Its error probability is 1-(1/23.

50

The proof relies on the properties of the locking method described above. The fact that locked 0 and
locked 1 are identical (absolutely indistinguishable) makes the set of aanscripts output by the simulating
machine identical to the set of histories of a real interaction between a verifier and the prover. Such a
protocol is called "perfectly minimum-knowledge".

The verifier accepts the proof under the assumption that the prover Cannot invertflx), and when
unlocking a value, say 1, he can open it only as 1. Notice that as in the proof of theorem 1, with very high
probability, in one of the iterations a prover P' is ready to verify the circuit construction, but is asked,
instead, to compute; thus V accepts with very high probability. A prover cannot cheat since he is likely to
be caught with very high probability. This shows that the protocol is comct.

5. Conclusions
Minimum-knowledge interaction seems to be an important tool for the implementation of secure

correct protocols. We presented direct minimum-knowledge interactive computation systems. Our
implementation is easily derived from the specification of the comptational problem; it is simple and
efficient. It is appropriate for all of the models of minimum-knowledge interaction that have recently
been proposed, as well as the new ones proposed here.

The technique of direct computation deals in a uniform way with any computational problem, and
applies uniformly to the two models of zero-knowledge interactions and to the various notions of
interactive knowledge-transfer.

Acknowledgments

We wish to thank Manuel Blum, Gilles Brassard, David Chaum, Oded Goldreich, Stuart Haber, Steven
Rudich, and Mike Sipser for their helpful discussions and comments.

References

1. Alexi, W., Chor, B., Goldreich 0. and Schnorr C.P. RSNRabin Bits are 1/2 + (I/poly(k)) Secure.
Roc. 25th FOCS, IEEE, 1984, pp. 449-457.

2. Benaloh, J.C. and Yung M. Distributing the Power of a Government to Enhance the Privacy of

3. Blum, M. and S. Goldwasser. An Efficient Probabilistic Public-Key Scheme Which Hides All Partial
Information. Proceedings of Crypto84, 1985, pp. 289-301.

4. Blum, L., Blum M. and Shub M. Comparison of Two Pseudo-Random Number Generators.
Proceedings of Crypto82, August, 1982, pp. 61-78.

5. Blum, M. Coin Flipping by Phone. COMPCON, IEEE, 1982, pp. 133-137.

6. Boyar, J.F., M.W. Krentel, and S.A. Kunz. A Discrete Logarithm Implementation of Zero-Knowledge
Blobs. 87-002, University of Chicago, March, 1987.

7. Brassard, G. and C. Crepeau. Non-Transitive Transfer of Confidence: A Perfect Zero-Knowledge
Interactive Protocol for SAT and Beyond. 27th FOCS, IEEE, October, 1986, pp. 188-195.

Votes. Proc. 5th POX, ACM, 1986, pp. 52-62.

51

8. Brassard, G., and Crepeau C. Zero-Knowledge Simulation of Boolean Circuits. Proceedings of
Crypto 86,1986.

9. Brickell, E.F., D. Chaum, I. Damgad, and J. van de Graaf. Gradual and Verifiable Release of a
Secret. These proceedings.

10. Chaum, D. Demonstrating that a Public Predicate can be Satisfied Without Revealing Any
Information About How. Proceedings of Crypto86,1986.

11. Cohen, J.C. (Benaloh) and Fischer M.J. A Robust and Verifiable Cryptographically Secure Election
Scheme. Proc. 26th FGCS, IEEE, 1985, pp. 372-383.

12. Feige, U., A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity. 19th STW, 1986, pp.

13. Fischer, M., S. Micali, C. Rackoff, and D. Wittenberg. An Oblivious Transfer Protocol Equivalent to
Factoring. Manuscript, 1986.

2 10-2 17.

14. Galil, Z. , Haber S. and Yung M. Symmetric Public-Key Encryption. C1ypto85 proceedings, 1985,
pp. 128-137.

15. Galil, Z., Haber S. and Yung M. A Private Interactive Test of a Boolean Predicate and Mmimum-
Knowledge Public-Key Cryptosystems. Prcc. 26th FOCS, IEEE, 1985, pp. 360-371.

16. Garey, M.R., and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Compfereness. W.H. Freeman and Company, New York, 1979.

17. Goldreich, O., S . Micali and A. Wigderson. Proofs that Yield Nothing But their Validity and a
Methodology of Cryptogrphlc Protocol Design. 27th FOCS, IEEE, October, 1986, pp. 174-187.

18. Goldwasser, S. and M i d S. Probabilistic Encryption and How to Play Mental Poker Keeping
Secret All Partial Information. Proceedings of the 14th Annual ACM Symp. on Theory of Computing,
ACM-SIGACT, May, 1982, pp. 365-377.

19. Goldwasser, S., S. Micali and C. Rackoff. The Knowledge Compiexity of Interactive Proof-Systems.
I7 STOC, ACM-SIGACT, May, 1985, pp. 291-304.

20. Goldwasser, S. and M. Sipser. Private Coins versus Public Coins in Interactive Proof System.
Proceedings of the 18 Amual'ACM Symp. onTheory of Computing, ACM-SIGACT, May,-1986, pp.
59-68.

21. Micali, S., C. Rackoff and B. Sloan. The Notion of Security for Probabilistic Cryptosystems.
Proceedings of Crypto86, 1986.

22. Tompa, M. and H. Woll. Random Self-Reducibility and Zero-Knowledge Interactive Proofs of
Possession of Information. 28th FOCS, 1986.

23. Yao, A. Theory and Applications of Trapdoor Functions. 23rd FOCS, IEEE, November, 1982, pp.

24. Yao, A. How to Generate and Exchange Secrets. 27th FOCS, IEEE, October, 1986, pp. 162-167.

80-91.

