Direct Multisearch for Multiobjective Optimization

$$
\text { Ana Luísa Custódio }{ }^{1} \quad \text { José F. Aguilar Madeira }{ }^{2}
$$

A. Ismael F. Vaz ${ }^{3}$ Luís Nunes Vicente ${ }^{4}$
${ }^{1}$ Universidade Nova de Lisboa ${ }^{2}$ IDMEC-IST, ISEL
${ }^{3}$ Universidade do Minho $\quad{ }^{4}$ Universidade de Coimbra CERFACS

September 30, 2011

Outline

(1) Introduction and motivation

(2) Direct MultiSearch

Outline

(1) Introduction and motivation

(2) Direct MultiSearch

(3) Numerical results

 4 Further improvements on DMS
Outline

(1) Introduction and motivation

(2) Direct MultiSearch

(3) Numerical results
\square
Further improvements on DMS Conclusions and references

Outline

(1) Introduction and motivation

(2) Direct MultiSearch

(3) Numerical results
(4) Further improvements on DMS

Outline

(1) Introduction and motivation
(2) Direct MultiSearch
(3) Numerical results
4. Further improvements on DMS
(5) Conclusions and references

Outline

(1) Introduction and motivation

(2) Direct MultiSearch

(3) Numerical results

4 Further improvements on DMS
(5) Conclusions and references

Derivative-free multiobjective optimization

MOO problem

$$
\min _{x \in \Omega} F(x) \equiv\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)^{\top}
$$

where

$$
\Omega=\left\{x \in \mathbb{R}^{n}: \quad \ell \leq x \leq u\right\}
$$

$f_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}, j=1, \ldots, m, \ell \in(\mathbb{R} \cup\{-\infty\})^{n}$ and $u \in(\mathbb{R} \cup\{+\infty\})^{n}$

Derivative-free multiobjective optimization

MOO problem

$$
\min _{x \in \Omega} F(x) \equiv\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)^{\top}
$$

where

$$
\Omega=\left\{x \in \mathbb{R}^{n}: \quad \ell \leq x \leq u\right\}
$$

$f_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}, j=1, \ldots, m, \ell \in(\mathbb{R} \cup\{-\infty\})^{n}$ and $u \in(\mathbb{R} \cup\{+\infty\})^{n}$

- Several objectives, often conflicting.
- Functions with unknown derivatives

Derivative-free multiobjective optimization

MOO problem

$$
\min _{x \in \Omega} F(x) \equiv\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)^{\top}
$$

where

$$
\Omega=\left\{x \in \mathbb{R}^{n}: \quad \ell \leq x \leq u\right\}
$$

$f_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}, j=1, \ldots, m, \ell \in(\mathbb{R} \cup\{-\infty\})^{n}$ and $u \in(\mathbb{R} \cup\{+\infty\})^{n}$

- Several objectives, often conflicting.
- Functions with unknown derivatives.

Derivative-free multiobjective optimization

MOO problem

$$
\min _{x \in \Omega} F(x) \equiv\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)^{\top}
$$

where

$$
\Omega=\left\{x \in \mathbb{R}^{n}: \quad \ell \leq x \leq u\right\}
$$

$f_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}, j=1, \ldots, m, \ell \in(\mathbb{R} \cup\{-\infty\})^{n}$ and $u \in(\mathbb{R} \cup\{+\infty\})^{n}$

- Several objectives, often conflicting.
- Functions with unknown derivatives.
- Expensive function evaluations, possibly subject to noise.
- Impractical to compute approximations to derivatives

Derivative-free multiobjective optimization

MOO problem

$$
\min _{x \in \Omega} F(x) \equiv\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)^{\top}
$$

where

$$
\Omega=\left\{x \in \mathbb{R}^{n}: \quad \ell \leq x \leq u\right\}
$$

$f_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}, j=1, \ldots, m, \ell \in(\mathbb{R} \cup\{-\infty\})^{n}$ and $u \in(\mathbb{R} \cup\{+\infty\})^{n}$

- Several objectives, often conflicting.
- Functions with unknown derivatives.
- Expensive function evaluations, possibly subject to noise.
- Impractical to compute approximations to derivatives.

Outline

(1) Introduction and motivation

(2) Direct MultiSearch

(3) Numerical results

4 Further improvements on DMS
(5) Conclusions and references

DMS algorithmic main lines

- Does not aggregate any of the objective functions.
\square

DMS algorithmic main lines

- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search)

DMS algorithmic main lines

- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search)

DMS algorithmic main lines

- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search).

DMS algorithmic main lines

- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search).
- Tries to capture the whole Pareto front from the polling procedure.

DMS algorithmic main lines

- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search).
- Tries to capture the whole Pareto front from the polling procedure.
- Keeps a list of feasible nondominated points.
- Poll centers are chosen from the list.

DMS algorithmic main lines

- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search).
- Tries to capture the whole Pareto front from the polling procedure.
- Keeps a list of feasible nondominated points.
- Poll centers are chosen from the list.

DMS algorithmic main lines

- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search).
- Tries to capture the whole Pareto front from the polling procedure.
- Keeps a list of feasible nondominated points.
- Poll centers are chosen from the list.
- Successful iterations correspond to list changes.

DMS example

DMS search \& poll steps

- At each iteration considers a list of feasible nondominated points $\hookrightarrow L_{k}$
\square

DMS search \& poll steps

- At each iteration considers a list of feasible nondominated points $\hookrightarrow L_{k}$
- Evaluate a finite set of feasible points $\hookrightarrow L_{\text {add }}$.
- Remove dominated points from $L_{k} \cup L_{\text {add }}$ - Select list of feasible nondominated points

DMS search \& poll steps

- At each iteration considers a list of feasible nondominated points $\hookrightarrow L_{k}$
- Evaluate a finite set of feasible points $\hookrightarrow L_{\text {add }}$.
- Remove dominated points from $L_{k} \cup L_{\text {add }} \hookrightarrow L_{\text {filtered }}$.
- Select list of feasible nondominated points $\hookrightarrow L_{\text {trial }}$
- Compare $L_{\text {trial }}$ to L_{k} (success if $L_{\text {trial }} \neq L_{k}$, unsuccess otherwise)

DMS search \& poll steps

- At each iteration considers a list of feasible nondominated points $\hookrightarrow L_{k}$
- Evaluate a finite set of feasible points $\hookrightarrow L_{\text {add }}$.
- Remove dominated points from $L_{k} \cup L_{\text {add }} \hookrightarrow L_{\text {filtered }}$.
- Select list of feasible nondominated points $\hookrightarrow L_{\text {trial }}$.

DMS search \& poll steps

- At each iteration considers a list of feasible nondominated points $\hookrightarrow L_{k}$
- Evaluate a finite set of feasible points $\hookrightarrow L_{\text {add }}$.
- Remove dominated points from $L_{k} \cup L_{\text {add }} \hookrightarrow L_{\text {filtered }}$.
- Select list of feasible nondominated points $\hookrightarrow L_{\text {trial }}$.
- Compare $L_{\text {trial }}$ to L_{k} (success if $L_{\text {trial }} \neq L_{k}$, unsuccess otherwise).

Numerical Example - Problem SP1 [Huband et al.]

- Evaluated points since beginning.

Current iterate list.

Numerical example - problem SP1 [Huband et al.]

- Evaluated poll points.
- Evaluated points since beginning.

Numerical example - problem SP1 [Huband et al.]

- Nondominated evaluated poll points.

Numerical example - problem SP1 [Huband et al.]

- Evaluated poll points.

Evaluated points since beginning.
Current iterate list.

Numerical example - problem SP1 [Huband et al.]

- Evaluated poll points.
- Evaluated points since beginning.

Numerical example - problem SP1 [Huband et al.]

- Nondominated evaluated poll points.

Numerical example - problem SP1 [Huband et al.]

- Evaluated poll points.
- Evaluated points since beginning.

Current iterate list.

Numerical example - problem SP1 [Huband et al.]

- Evaluated poll points.

Evaluated points since beginning.
Current iterate list.

Numerical example - problem SP1 [Huband et al.]

- Evaluated poll points.
- Evaluated points since beginning.

Current iterate list.

Numerical example - problem SP1 [Huband et al.]

- Evaluated poll points.
- Evaluated points since beginning.

Current iterate list.

Numerical example - problem SP1 [Huband et al.]

- Evaluated poll points.
- Evaluated points since beginning.

Current iterate list.

Refining subsequences and directions

For both globalization strategies (using the mesh or the forcing function in the search step), one also has:

Theorem (existence of refining subsequences)
There is at least a convergent subsequence of iterates $\left\{x_{k}\right\}_{k \in K}$ corresponding to unsuccessful poll steps, such that $\alpha_{k} \longrightarrow 0$ in K.

Refining subsequences and directions

For both globalization strategies (using the mesh or the forcing function in the search step), one also has:

Theorem (existence of refining subsequences)
There is at least a convergent subsequence of iterates $\left\{x_{k}\right\}_{k \in K}$ corresponding to unsuccessful poll steps, such that $\alpha_{k} \longrightarrow 0$ in K.

Definition

Let x_{*} be the limit point of a convergent refining subsequence.

Refining subsequences and directions

For both globalization strategies (using the mesh or the forcing function in the search step), one also has:

Theorem (existence of refining subsequences)
There is at least a convergent subsequence of iterates $\left\{x_{k}\right\}_{k \in K}$ corresponding to unsuccessful poll steps, such that $\alpha_{k} \longrightarrow 0$ in K.

Definition

Let x_{*} be the limit point of a convergent refining subsequence.

Refining directions for x_{*} are limit points of $\left\{d_{k} /\left\|d_{k}\right\|\right\}_{k \in K}$ where $d_{k} \in D_{k}$ and $x_{k}+\alpha_{k} d_{k} \in \Omega$.

Pareto-Clarke critical point

Let us focus (for simplicity) on the unconstrained case, $\Omega=\mathbb{R}^{n}$.

Definition
x_{*} is a Pareto-Clarke critical point of F (Lipschitz continuous near x_{*}) if

$$
\forall d \in \mathbb{R}^{n}, \exists j=j(d), f_{j}^{\circ}\left(x_{*} ; d\right) \geq 0
$$

Analysis of DMS

Assumption

Analysis of DMS

Assumption

- $\left\{x_{k}\right\}_{k \in K}$ refining subsequence converging to x_{*}.

Analysis of DMS

Assumption

- $\left\{x_{k}\right\}_{k \in K}$ refining subsequence converging to x_{*}.
- F Lipschitz continuous near x_{*}.

Analysis of DMS

Assumption

- $\left\{x_{k}\right\}_{k \in K}$ refining subsequence converging to x_{*}.
- F Lipschitz continuous near x_{*}.

Theorem
If v is a refining direction for x_{*} then

$$
\exists j=j(v): f_{j}^{\circ}\left(x_{*} ; v\right) \geq 0
$$

Convergence analysis of DMS

Theorem

If the set of refining directions for x_{*} is dense in \mathbb{R}^{n}, then x_{*} is a Pareto-Clarke critical point.

Convergence analysis of DMS

Theorem
If the set of refining directions for x_{*} is dense in \mathbb{R}^{n}, then x_{*} is a Pareto-Clarke critical point.

Notes

- When $m=1$, the presented results coincide with the ones reported for
- This convergence analysis is valid for multiobjective problems with oeneral nonlinear constraints

Convergence analysis of DMS

Theorem
If the set of refining directions for x_{*} is dense in \mathbb{R}^{n}, then x_{*} is a Pareto-Clarke critical point.

Notes

- When $m=1$, the presented results coincide with the ones reported for direct search.
general nonlinear constraints.

Convergence analysis of DMS

Theorem

If the set of refining directions for x_{*} is dense in \mathbb{R}^{n}, then x_{*} is a Pareto-Clarke critical point.

Notes

- When $m=1$, the presented results coincide with the ones reported for direct search.
- This convergence analysis is valid for multiobjective problems with general nonlinear constraints.

Outline

(1) Introduction and motivation

(2) Direct MultiSearch

(3) Numerical results

4 Further improvements on DMS
(5) Conclusions and references

Numerical testing framework

Problems

- 100 bound constrained MOO problems (AMPL models available at http://www.mat.uc.pt/dms).

Numerical testing framework

Problems

- 100 bound constrained MOO problems (AMPL models available at http://www.mat.uc.pt/dms).
- Number of variables between 1 and 30 .
> - DMS tested against 8 different MOO solvers (complete results available at http://www.mat.uc.pt/dms)

Numerical testing framework

Problems

- 100 bound constrained MOO problems (AMPL models available at http://www.mat.uc.pt/dms).
- Number of variables between 1 and 30 .
- Number of objectives between 2 and 4.
\square DMS tested against 8 different MOO solvers (complete results available at http://www.mat.uc.pt/dms) Results reported only for AMOSA - simulated annealing code BIMADS - based on mesh adaptive direct search algorithm NSGA-II (C version) - genetic algorithm code.

Numerical testing framework

Problems

- 100 bound constrained MOO problems (AMPL models available at http://www.mat.uc.pt/dms).
- Number of variables between 1 and 30 .
- Number of objectives between 2 and 4.

Solvers

- DMS tested against 8 different MOO solvers (complete results available at http://www.mat.uc.pt/dms).
\qquad BIMADS - based on mesh adaptive direct search algorithm NSGA-II (C version) - genetic algorithm code.

All solvers tested with default values.

Numerical testing framework

Problems

- 100 bound constrained MOO problems (AMPL models available at http://www.mat.uc.pt/dms).
- Number of variables between 1 and 30 .
- Number of objectives between 2 and 4.

Solvers

- DMS tested against 8 different MOO solvers (complete results available at http://www.mat.uc.pt/dms).
- Results reported only for AMOSA - simulated annealing code. BIMADS - based on mesh adaptive direct search algorithm. NSGA-II (C version) - genetic algorithm code.

All solvers tested with default values.

DMS numerical options

- No search step.
- List initialization: sample along the line $\ell-u$. - List selection: all current feasible nondominated points.

DMS numerical options

- No search step.
- List initialization: sample along the line $\ell-u$.
- List ordering: new points added at the end of the list, poll center

DMS numerical options

- No search step.
- List initialization: sample along the line $\ell-u$.
- List selection: all current feasible nondominated points.

- List ordering: new points added at the end of the list, poll center

- Positive basis:

DMS numerical options

- No search step.
- List initialization: sample along the line $\ell-u$.
- List selection: all current feasible nondominated points.
- List ordering: new points added at the end of the list, poll center moved to the end of the list.
- Step size parameter: $\alpha_{0}=1$, halved at unsuccessful iterations.

DMS numerical options

- No search step.
- List initialization: sample along the line $\ell-u$.
- List selection: all current feasible nondominated points.
- List ordering: new points added at the end of the list, poll center moved to the end of the list.
- Positive basis: $[I-I]$.
- Step size parameter: $\alpha_{0}=1$, halved at unsuccessful iterations.

DMS numerical options

- No search step.
- List initialization: sample along the line $\ell-u$.
- List selection: all current feasible nondominated points.
- List ordering: new points added at the end of the list, poll center moved to the end of the list.
- Positive basis: $[I-I]$.
- Step size parameter: $\alpha_{0}=1$, halved at unsuccessful iterations.

DMS numerical options

- No search step.
- List initialization: sample along the line $\ell-u$.
- List selection: all current feasible nondominated points.
- List ordering: new points added at the end of the list, poll center moved to the end of the list.
- Positive basis: $[I-I]$.
- Step size parameter: $\alpha_{0}=1$, halved at unsuccessful iterations.
- Stopping criteria: minimum step size of 10^{-3} or a maximum of 20000 function evaluations.

Performance metrics - Purity

$F_{p, s}$ (approximated Pareto front computed by solver s for problem p).
F_{p} (approximated Pareto front computed for problem p, using results for all solvers).

Purity value for solver s on problem p :

$$
\frac{\left|F_{p, s} \cap F_{p}\right|}{\left|F_{p, s}\right|} .
$$

Comparing DMS to other solvers (Purity)

Purity Metric (percentage of points generated in the reference Pareto front)

$$
t_{p, s}=\frac{\left|F_{p, s}\right|}{\left|F_{p, s} \cap F_{p}\right|}
$$

Comparing DMS to other solvers (Purity)

Purity performance profile with the best of 10 runs

Purity Metric (percentage of points generated in the reference Pareto front)

$$
t_{p, s}=\frac{\left|F_{p, s}\right|}{\left|F_{p, s} \cap F_{p}\right|}
$$

Comparing DMS to other solvers (Purity)

Purity performance profile with the best of 10 runs

Purity Metric (percentage of points generated in the reference Pareto front)

$$
t_{p, s}=\frac{\left|F_{p, s}\right|}{\left|F_{p, s} \cap F_{p}\right|}
$$

Performance metrics - Spread

Gamma Metric (largest gap in the Pareto front)

$$
\Gamma_{p, s}=\max _{j \in\{1, \ldots, m\}}\left(\max _{i \in\{0, \ldots, N\}}\left\{\delta_{i, j}\right\}\right)
$$

Comparing DMS to other solvers (Spread)

Gamma Metric (largest gap in the Pareto front)

Performance metrics - Spread

Delta Metric (uniformity of gaps in the Pareto front)

$$
\Delta_{p, s}=\max _{j \in\{1, \ldots, m\}}\left(\frac{\delta_{0, j}+\delta_{N, j}+\sum_{i=1}^{N-1}\left|\delta_{i, j}-\bar{\delta}_{j}\right|}{\delta_{0, j}+\delta_{N, j}+(N-1) \bar{\delta}_{j}}\right)
$$

where $\bar{\delta}_{j}$, for $j=1, \ldots, m$, is the $\delta_{i, j}$'s average.

Comparing DMS to other solvers (Spread)

Average Δ performance profile for 10 runs

Delta Metric (uniformity of gaps in the Pareto front)

Comparing DMS to other solvers

Data profile with the best of 10 runs $(\varepsilon=0.05)$

$\#$ maximum function evaluations $=5000$

Comparing DMS to other solvers

Data profile with the best of 10 runs $(\varepsilon=0.5)$

$\#$ maximum function evaluations $=5000$

Outline

(1) Introduction and motivation

(2) Direct MultiSearch
(3) Numerical results
4. Further improvements on DMS

(5) Conclusions and references

Comparing DMS to other solvers (Purity)

Purity Metric (percentage of points generated in the reference Pareto front)

$$
t_{p, s}=\frac{\left|F_{p, s}\right|}{\left|F_{p, s} \cap F_{p}\right|}
$$

Comparing DMS to other solvers (Purity)

Purity performance profile with the best of 10 runs

Purity Metric (percentage of points generated in the reference Pareto front)

$$
t_{p, s}=\frac{\left|F_{p, s}\right|}{\left|F_{p, s} \cap F_{p}\right|}
$$

Comparing DMS to other solvers (Spread)

Average Γ performance profile for 10 runs

Gamma Metric (largest gap in the Pareto front)

Comparing DMS to other solvers (Spread)

Average Δ performance profile for 10 runs

Delta Metric (uniformity of gaps in the Pareto front)

Comparing DMS to other solvers

Data profile with the best of 10 runs $(\varepsilon=0.05)$

$\#$ maximum function evaluations $=5000$

Comparing DMS to other solvers

Data profile with the best of 10 runs $(\varepsilon=0.5)$

$\#$ maximum function evaluations $=5000$

Outline

(1) Introduction and motivation

(2) Direct MultiSearch
(3) Numerical results

4 Further improvements on DMS
(5) Conclusions and references

Conclusions and references

- Development and analysis of a novel approach (Direct MultiSearch) for MOO, generalizing ALL direct-search methods.

Conclusions and references

- Development and analysis of a novel approach (Direct MultiSearch) for MOO, generalizing ALL direct-search methods.
- Direct MultiSearch (DMS) exhibits highly competitive numerical results for MOO.

Conclusions and references

- Development and analysis of a novel approach (Direct MultiSearch) for MOO, generalizing ALL direct-search methods.
- Direct MultiSearch (DMS) exhibits highly competitive numerical results for MOO.

DMS (Matlab implementation) and problems (coded in AMPL) freely available at: http://www.mat.uc.pt/dms.

Conclusions and references

- Development and analysis of a novel approach (Direct MultiSearch) for MOO, generalizing ALL direct-search methods.
- Direct MultiSearch (DMS) exhibits highly competitive numerical results for MOO.

DMS (Matlab implementation) and problems (coded in AMPL) freely available at: http://www.mat.uc.pt/dms.
A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente, Direct multisearch for multiobjective optimization, to appear, SIAM Journal on Optimization.

