Direct Multisearch for Multiobjective Optimization

Ana Luísa Custódio¹ José F. Aguilar Madeira²

A. Ismael F. Vaz³ Luís Nunes Vicente⁴

¹Universidade Nova de Lisboa ²IDMEC-IST, ISEL

³Universidade do Minho ⁴Universidade de Coimbra

CERFACS

September 30, 2011

- Introduction and motivation
- Direct MultiSearch
- Numerical results
- Further improvements on DMS
- Conclusions and references

- Introduction and motivation
- ② Direct MultiSearch
- Numerical results
- 4 Further improvements on DMS
- Conclusions and references

- Introduction and motivation
- 2 Direct MultiSearch
- Numerical results
- Further improvements on DMS
- 5 Conclusions and references

- Introduction and motivation
- Direct MultiSearch
- Numerical results
- Further improvements on DMS
- Conclusions and references

- Introduction and motivation
- Direct MultiSearch
- Numerical results
- Further improvements on DMS
- Conclusions and references

- Introduction and motivation
- 2 Direct MultiSearch
- Numerical results
- 4 Further improvements on DMS
- Conclusions and references

MOO problem

$$\min_{x \in \Omega} F(x) \equiv (f_1(x), f_2(x), \dots, f_m(x))^{\top}$$

$$\Omega = \{ x \in \mathbb{R}^n : \quad \ell \le x \le u \}$$

$$f_j: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, j=1,\ldots,m, \ \ell \in (\mathbb{R} \cup \{-\infty\})^n \ \text{and} \ u \in (\mathbb{R} \cup \{+\infty\})^n$$

- Several objectives, often conflicting.
- Functions with unknown derivatives
- Expensive function evaluations, possibly subject to noise.
- Impractical to compute approximations to derivatives

MOO problem

$$\min_{x \in \Omega} F(x) \equiv (f_1(x), f_2(x), \dots, f_m(x))^{\top}$$

$$\Omega = \{ x \in \mathbb{R}^n : \quad \ell \le x \le u \}$$

$$f_j: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, j=1,\ldots,m, \ \ell \in (\mathbb{R} \cup \{-\infty\})^n \text{ and } u \in (\mathbb{R} \cup \{+\infty\})^n$$

- Several objectives, often conflicting.
- Functions with unknown derivatives
- Expensive function evaluations, possibly subject to noise.
- Impractical to compute approximations to derivatives

MOO problem

$$\min_{x \in \Omega} F(x) \equiv (f_1(x), f_2(x), \dots, f_m(x))^{\top}$$

$$\Omega = \{ x \in \mathbb{R}^n : \quad \ell \le x \le u \}$$

$$f_j: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, j=1,\ldots,m, \ \ell \in (\mathbb{R} \cup \{-\infty\})^n \text{ and } u \in (\mathbb{R} \cup \{+\infty\})^n$$

- Several objectives, often conflicting.
- Functions with unknown derivatives.
- Expensive function evaluations, possibly subject to noise.
- Impractical to compute approximations to derivatives

MOO problem

$$\min_{x \in \Omega} F(x) \equiv (f_1(x), f_2(x), \dots, f_m(x))^{\top}$$

$$\Omega = \{ x \in \mathbb{R}^n : \quad \ell \le x \le u \}$$

$$f_j: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, j=1,\ldots,m, \ \ell \in (\mathbb{R} \cup \{-\infty\})^n \ \text{and} \ u \in (\mathbb{R} \cup \{+\infty\})^n$$

- Several objectives, often conflicting.
- Functions with unknown derivatives.
- Expensive function evaluations, possibly subject to noise.
- Impractical to compute approximations to derivatives

MOO problem

$$\min_{x \in \Omega} F(x) \equiv (f_1(x), f_2(x), \dots, f_m(x))^{\top}$$

$$\Omega = \{ x \in \mathbb{R}^n : \quad \ell \le x \le u \}$$

$$f_j: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, j=1,\ldots,m, \ \ell \in (\mathbb{R} \cup \{-\infty\})^n \text{ and } u \in (\mathbb{R} \cup \{+\infty\})^n$$

- Several objectives, often conflicting.
- Functions with unknown derivatives.
- Expensive function evaluations, possibly subject to noise.
- Impractical to compute approximations to derivatives.

- Introduction and motivation
- ② Direct MultiSearch
- Numerical results
- 4 Further improvements on DMS
- Conclusions and references

- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search)
- Tries to capture the whole Pareto front from the polling procedure.
- Keeps a list of feasible nondominated points
- Poll centers are chosen from the list
- Successful iterations correspond to list changes.

- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search)
- Tries to capture the whole Pareto front from the polling procedure.
- Keeps a list of feasible nondominated points
- Poll centers are chosen from the list.
- Successful iterations correspond to list changes.

- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search)
- Tries to capture the whole Pareto front from the polling procedure.
- Keeps a list of feasible nondominated points
- Poll centers are chosen from the list.
- Successful iterations correspond to list changes

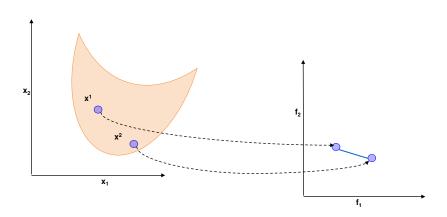
- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search).
- Tries to capture the whole Pareto front from the polling procedure.
- Keeps a list of feasible nondominated points
- Poll centers are chosen from the list.
- Successful iterations correspond to list changes.

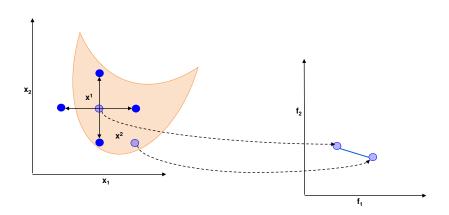
- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search).
- Tries to capture the whole Pareto front from the polling procedure.
- Keeps a list of feasible nondominated points
- Poll centers are chosen from the list.
- Successful iterations correspond to list changes.

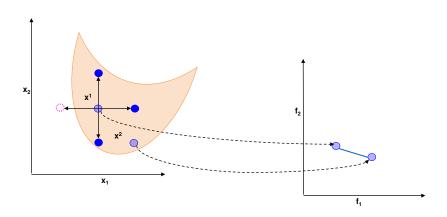
- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search).
- Tries to capture the whole Pareto front from the polling procedure.
- Keeps a list of feasible nondominated points.
- Poll centers are chosen from the list.
- Successful iterations correspond to list changes.

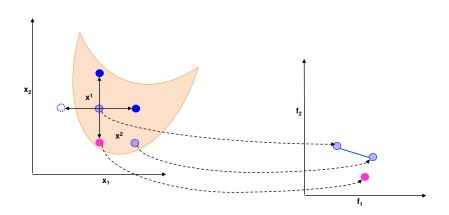
- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search).
- Tries to capture the whole Pareto front from the polling procedure.
- Keeps a list of feasible nondominated points.
- Poll centers are chosen from the list.
- Successful iterations correspond to list changes.

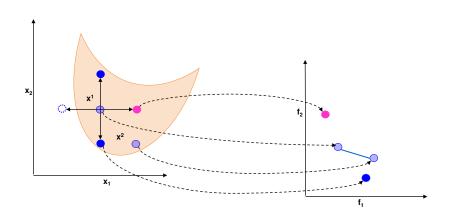
- Does not aggregate any of the objective functions.
- Generalizes ALL direct-search methods of directional type to MOO.
- Makes use of search/poll paradigm.
- Implements an optional search step (only to disseminate the search).
- Tries to capture the whole Pareto front from the polling procedure.
- Keeps a list of feasible nondominated points.
- Poll centers are chosen from the list.
- Successful iterations correspond to list changes.

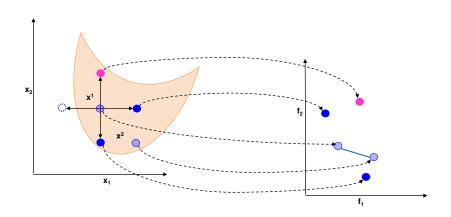


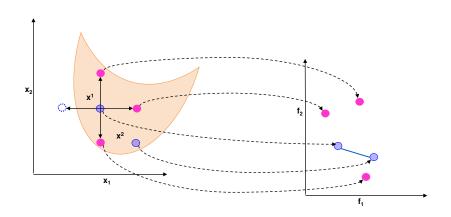


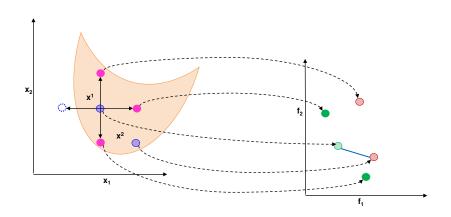


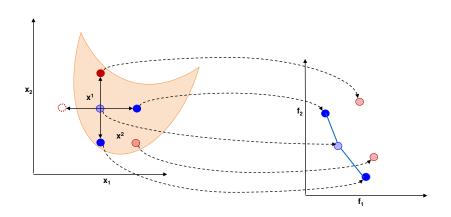












- ullet At each iteration considers a list of feasible nondominated points $\hookrightarrow L_k$
- Evaluate a finite set of feasible points $\hookrightarrow L_{add}$.
- Remove dominated points from $L_k \cup L_{add} \hookrightarrow L_{filtered}$.
- ullet Select list of feasible nondominated points $\hookrightarrow L_{trial}$
- Compare L_{trial} to L_k (success if $L_{trial} \neq L_k$, unsuccess otherwise).

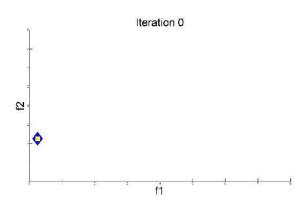
- ullet At each iteration considers a list of feasible nondominated points $\hookrightarrow L_k$
- Evaluate a finite set of feasible points $\hookrightarrow L_{add}$.
- Remove dominated points from $L_k \cup L_{add} \hookrightarrow L_{filtered}$
- Select list of feasible nondominated points $\hookrightarrow L_{trial}$.
- Compare L_{trial} to L_k (success if $L_{trial} \neq L_k$, unsuccess otherwise).

- ullet At each iteration considers a list of feasible nondominated points $\hookrightarrow L_k$
- Evaluate a finite set of feasible points $\hookrightarrow L_{add}$.
- Remove dominated points from $L_k \cup L_{add} \hookrightarrow L_{filtered}$.
- Select list of feasible nondominated points $\hookrightarrow L_{trial}$.
- Compare L_{trial} to L_k (success if $L_{trial} \neq L_k$, unsuccess otherwise).

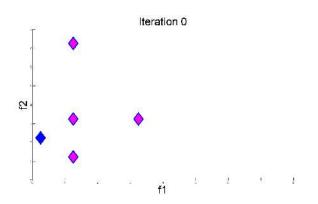
- ullet At each iteration considers a list of feasible nondominated points $\hookrightarrow L_k$
- Evaluate a finite set of feasible points $\hookrightarrow L_{add}$.
- Remove dominated points from $L_k \cup L_{add} \hookrightarrow L_{filtered}$.
- Select list of feasible nondominated points $\hookrightarrow L_{trial}$.
- Compare L_{trial} to L_k (success if $L_{trial} \neq L_k$, unsuccess otherwise).

- ullet At each iteration considers a list of feasible nondominated points $\hookrightarrow L_k$
- Evaluate a finite set of feasible points $\hookrightarrow L_{add}$.
- Remove dominated points from $L_k \cup L_{add} \hookrightarrow L_{filtered}$.
- Select list of feasible nondominated points $\hookrightarrow L_{trial}$.
- Compare L_{trial} to L_k (success if $L_{trial} \neq L_k$, unsuccess otherwise).

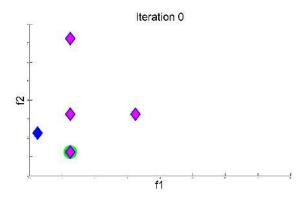
Numerical Example — Problem SP1 [Huband et al.]



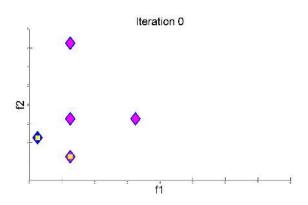
- Evaluated points since beginning.
- Current iterate list.



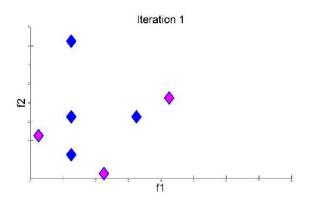
- Evaluated poll points.
- Evaluated points since beginning.



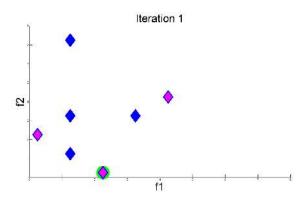
• Nondominated evaluated poll points.



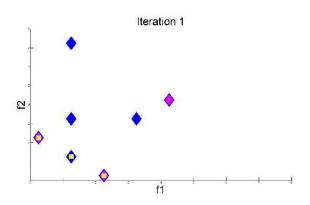
- Evaluated poll points.
- Evaluated points since beginning.
- Current iterate list.



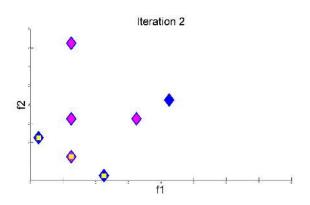
- Evaluated poll points.
- Evaluated points since beginning.



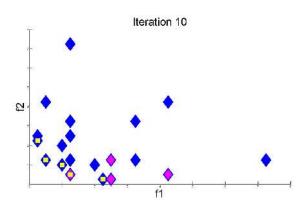
Nondominated evaluated poll points.



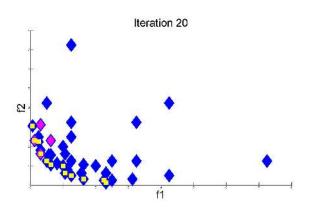
- Evaluated poll points.
- Evaluated points since beginning.
- Current iterate list.



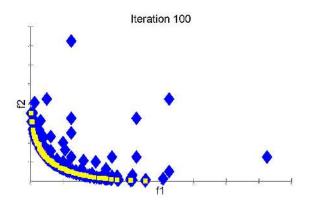
- Evaluated poll points.
- Evaluated points since beginning.
- Current iterate list.



- Evaluated poll points.
- Evaluated points since beginning.
- Current iterate list.



- Evaluated poll points.
- Evaluated points since beginning.
- Current iterate list.



- Evaluated poll points.
- Evaluated points since beginning.
- Current iterate list.

Refining subsequences and directions

For both globalization strategies (using the mesh or the forcing function in the search step), one also has:

Theorem (existence of refining subsequences)

There is at least a convergent subsequence of iterates $\{x_k\}_{k\in K}$ corresponding to unsuccessful poll steps, such that $\alpha_k \longrightarrow 0$ in K.

Definition

Let x_* be the limit point of a convergent refining subsequence.

Refining directions for x_* are limit points of $\{d_k/\|d_k\|\}_{k\in K}$ where $d_k\in D_k$ and $x_k+\alpha_kd_k\in\Omega$.

Refining subsequences and directions

For both globalization strategies (using the mesh or the forcing function in the search step), one also has:

Theorem (existence of refining subsequences)

There is at least a convergent subsequence of iterates $\{x_k\}_{k\in K}$ corresponding to unsuccessful poll steps, such that $\alpha_k \longrightarrow 0$ in K.

Definition

Let x_* be the limit point of a convergent refining subsequence.

Refining directions for x_* are limit points of $\{d_k/\|d_k\|\}_{k\in K}$ where $d_k\in D_k$ and $x_k+\alpha_kd_k\in\Omega$.

Refining subsequences and directions

For both globalization strategies (using the mesh or the forcing function in the search step), one also has:

Theorem (existence of refining subsequences)

There is at least a convergent subsequence of iterates $\{x_k\}_{k\in K}$ corresponding to unsuccessful poll steps, such that $\alpha_k \longrightarrow 0$ in K.

Definition

Let x_* be the limit point of a convergent refining subsequence.

Refining directions for x_* are limit points of $\{d_k/\|d_k\|\}_{k\in K}$ where $d_k\in D_k$ and $x_k+\alpha_kd_k\in\Omega$.

Pareto-Clarke critical point

Let us focus (for simplicity) on the unconstrained case, $\Omega = \mathbb{R}^n$.

Definition

 x_* is a Pareto-Clarke critical point of F (Lipschitz continuous near x_*) if

$$\forall d \in \mathbb{R}^n, \exists j = j(d), f_i^{\circ}(x_*; d) \ge 0.$$

Assumption

- ullet $\{x_k\}_{k\in K}$ refining subsequence converging to x_* .
- ullet F Lipschitz continuous near x_*

Theorem

$$\exists j = j(v) : f_j^{\circ}(x_*; v) \ge 0.$$

Assumption

- $\{x_k\}_{k\in K}$ refining subsequence converging to x_* .
- F Lipschitz continuous near x_*

Theorem

$$\exists j = j(v) : f_i^{\circ}(x_*; v) \ge 0.$$

Assumption

- $\{x_k\}_{k\in K}$ refining subsequence converging to x_* .
- F Lipschitz continuous near x_* .

Theorem

$$\exists j = j(v) : f_i^{\circ}(x_*; v) \ge 0.$$

Assumption

- $\{x_k\}_{k\in K}$ refining subsequence converging to x_* .
- F Lipschitz continuous near x_* .

Theorem

$$\exists j = j(v) : f_i^{\circ}(x_*; v) \ge 0.$$

Theorem

If the set of refining directions for x_* is dense in \mathbb{R}^n , then x_* is a Pareto-Clarke critical point.

Notes

 \bullet When m=1, the presented results coincide with the ones reported for direct search.

Theorem

If the set of refining directions for x_* is dense in \mathbb{R}^n , then x_* is a Pareto-Clarke critical point.

Notes

- When m=1, the presented results coincide with the ones reported for direct search.
- This convergence analysis is valid for multiobjective problems with general nonlinear constraints.

Theorem

If the set of refining directions for x_* is dense in \mathbb{R}^n , then x_* is a Pareto-Clarke critical point.

Notes

- ullet When m=1, the presented results coincide with the ones reported for direct search.
- This convergence analysis is valid for multiobjective problems with general nonlinear constraints.

Theorem

If the set of refining directions for x_* is dense in \mathbb{R}^n , then x_* is a Pareto-Clarke critical point.

Notes

- ullet When m=1, the presented results coincide with the ones reported for direct search.
- This convergence analysis is valid for multiobjective problems with general nonlinear constraints.

Outline

- Introduction and motivation
- 2 Direct MultiSearch
- Numerical results
- 4 Further improvements on DMS
- Conclusions and references

Problems

- 100 bound constrained MOO problems (AMPL models available at http://www.mat.uc.pt/dms).
- Number of variables between 1 and 30.
- Number of objectives between 2 and 4.

Solvers

- DMS tested against 8 different MOO solvers (complete results available at http://www.mat.uc.pt/dms).
- Results reported only for AMOSA – simulated annealing code.
 BIMADS – based on mesh adaptive direct search algorithm NSGA-II (C version) – genetic algorithm code.

Problems

- 100 bound constrained MOO problems (AMPL models available at http://www.mat.uc.pt/dms).
- Number of variables between 1 and 30.
- Number of objectives between 2 and 4.

Solvers

- DMS tested against 8 different MOO solvers (complete results available at http://www.mat.uc.pt/dms).
- Results reported only for AMOSA – simulated annealing code.
 BIMADS – based on mesh adaptive direct search algorithm NSGA-II (C version) – genetic algorithm code.

Problems

- 100 bound constrained MOO problems (AMPL models available at http://www.mat.uc.pt/dms).
- Number of variables between 1 and 30.
- Number of objectives between 2 and 4.

Solvers

- DMS tested against 8 different MOO solvers (complete results available at http://www.mat.uc.pt/dms).
- Results reported only for AMOSA – simulated annealing code.
 BIMADS – based on mesh adaptive direct search algorithm NSGA-II (C version) – genetic algorithm code.

Problems

- 100 bound constrained MOO problems (AMPL models available at http://www.mat.uc.pt/dms).
- Number of variables between 1 and 30.
- Number of objectives between 2 and 4.

Solvers

- DMS tested against 8 different MOO solvers (complete results available at http://www.mat.uc.pt/dms).
- Results reported only for AMOSA – simulated annealing code.
 BIMADS – based on mesh adaptive direct search algorithm NSGA-II (C version) – genetic algorithm code.

Problems

- 100 bound constrained MOO problems (AMPL models available at http://www.mat.uc.pt/dms).
- Number of variables between 1 and 30.
- Number of objectives between 2 and 4.

Solvers

- DMS tested against 8 different MOO solvers (complete results available at http://www.mat.uc.pt/dms).
- Results reported only for AMOSA – simulated annealing code.
 BIMADS – based on mesh adaptive direct search algorithm.
 NSGA-II (C version) – genetic algorithm code.

- No search step.
- List initialization: sample along the line ℓ -u
- List selection: all current feasible nondominated points
- List ordering: new points added at the end of the list, poll center moved to the end of the list.
- Positive basis: [I I]
- ullet Step size parameter: $lpha_0=1$, halved at unsuccessful iterations.
- Stopping criteria: minimum step size of 10^{-3} or a maximum of 20000 function evaluations.

- No search step.
- List initialization: sample along the line ℓ -u.
- List selection: all current feasible nondominated points
- List ordering: new points added at the end of the list, poll center moved to the end of the list.
- Positive basis: [I-I].
- ullet Step size parameter: $lpha_0=1$, halved at unsuccessful iterations.
- Stopping criteria: minimum step size of 10^{-3} or a maximum of 20000 function evaluations.

- No search step.
- List initialization: sample along the line ℓ -u.
- List selection: all current feasible nondominated points.
- List ordering: new points added at the end of the list, poll center moved to the end of the list.
- Positive basis: [I I]
- Step size parameter: $\alpha_0 = 1$, halved at unsuccessful iterations.
- Stopping criteria: minimum step size of 10^{-3} or a maximum of 20000 function evaluations.

- No search step.
- List initialization: sample along the line ℓ -u.
- List selection: all current feasible nondominated points.
- List ordering: new points added at the end of the list, poll center moved to the end of the list.
- Positive basis: [I I].
- Step size parameter: $\alpha_0=1$, halved at unsuccessful iterations.
- Stopping criteria: minimum step size of 10^{-3} or a maximum of 20000 function evaluations.

- No search step.
- List initialization: sample along the line ℓ -u.
- List selection: all current feasible nondominated points.
- List ordering: new points added at the end of the list, poll center moved to the end of the list.
- Positive basis: [I I].
- Step size parameter: $\alpha_0 = 1$, halved at unsuccessful iterations.
- Stopping criteria: minimum step size of 10^{-3} or a maximum of 20000 function evaluations.

- No search step.
- List initialization: sample along the line ℓ -u.
- List selection: all current feasible nondominated points.
- List ordering: new points added at the end of the list, poll center moved to the end of the list.
- Positive basis: [I I].
- Step size parameter: $\alpha_0 = 1$, halved at unsuccessful iterations.
- Stopping criteria: minimum step size of 10^{-3} or a maximum of 20000 function evaluations.

- No search step.
- List initialization: sample along the line ℓ -u.
- List selection: all current feasible nondominated points.
- List ordering: new points added at the end of the list, poll center moved to the end of the list.
- Positive basis: [I I].
- Step size parameter: $\alpha_0 = 1$, halved at unsuccessful iterations.
- Stopping criteria: minimum step size of 10^{-3} or a maximum of 20000 function evaluations.

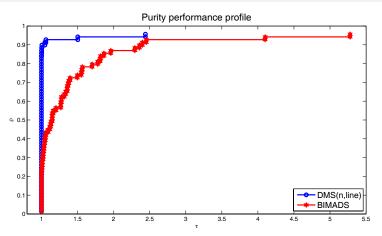
Performance metrics — Purity

 $F_{p,s}$ (approximated Pareto front computed by solver s for problem p).

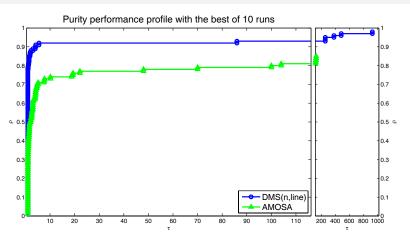
 ${\it F_p}$ (approximated Pareto front computed for problem p, using results for all solvers).

Purity value for solver s on problem p:

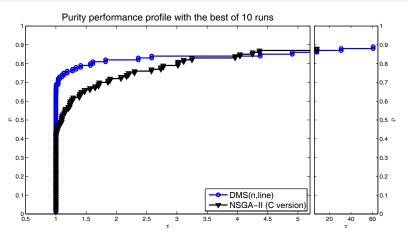
$$\frac{|F_{p,s}\cap F_p|}{|F_{p,s}|}.$$



$$t_{p,s} = \frac{|F_{p,s}|}{|F_{p,s} \cap F_p|}$$



$$t_{p,s} = \frac{|F_{p,s}|}{|F_{p,s} \cap F_p|}$$

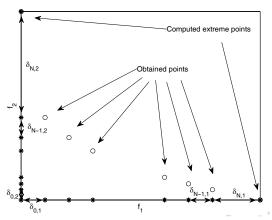


$$t_{p,s} = \frac{|F_{p,s}|}{|F_{p,s} \cap F_p|}$$

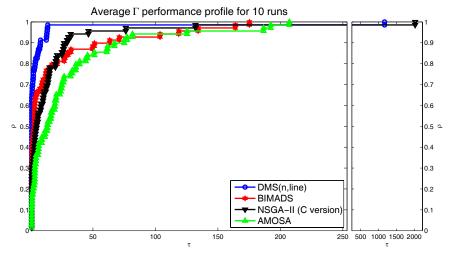
Performance metrics — Spread

Gamma Metric (largest gap in the Pareto front)

$$\Gamma_{p,s} = \max_{j \in \{1,\dots,m\}} \left(\max_{i \in \{0,\dots,N\}} \{\delta_{i,j}\} \right)$$



Comparing DMS to other solvers (Spread)



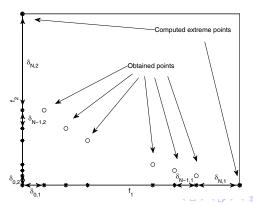
Gamma Metric (largest gap in the Pareto front)

Performance metrics — Spread

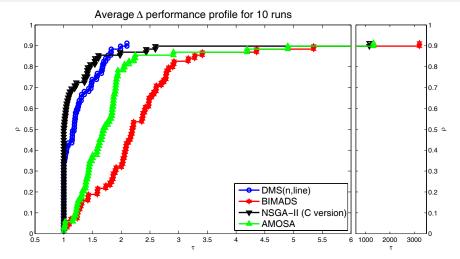
Delta Metric (uniformity of gaps in the Pareto front)

$$\Delta_{p,s} = \max_{j \in \{1,\dots,m\}} \left(\frac{\delta_{0,j} + \delta_{N,j} + \sum_{i=1}^{N-1} |\delta_{i,j} - \bar{\delta}_{j}|}{\delta_{0,j} + \delta_{N,j} + (N-1)\bar{\delta}_{j}} \right)$$

where $\bar{\delta}_j$, for $j=1,\ldots,m$, is the $\delta_{i,j}$'s average.

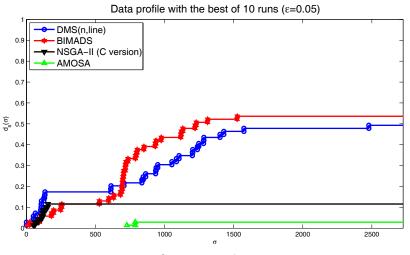


Comparing DMS to other solvers (Spread)



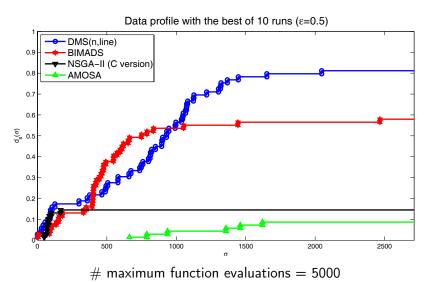
Delta Metric (uniformity of gaps in the Pareto front)

Comparing DMS to other solvers



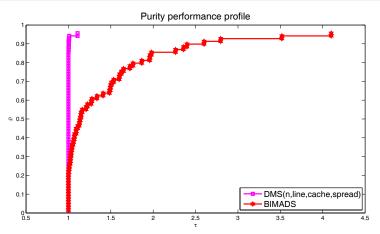
maximum function evaluations = 5000

Comparing DMS to other solvers

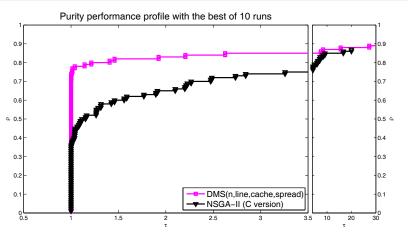


Outline

- Introduction and motivation
- 2 Direct MultiSearch
- Numerical results
- Further improvements on DMS
- Conclusions and references



$$t_{p,s} = \frac{|F_{p,s}|}{|F_{p,s} \cap F_p|}$$

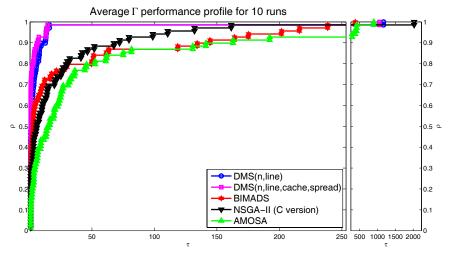


Purity Metric (percentage of points generated in the reference Pareto front)

$$t_{p,s} = \frac{|F_{p,s}|}{|F_{p,s} \cap F_p|}$$

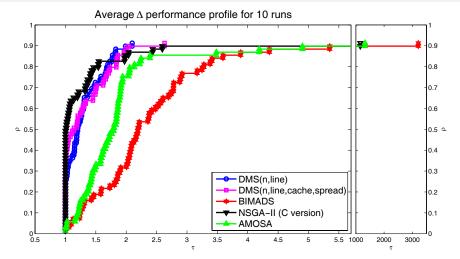
4□ > 4回 > 4目 > 4目 > 目 り900

Comparing DMS to other solvers (Spread)



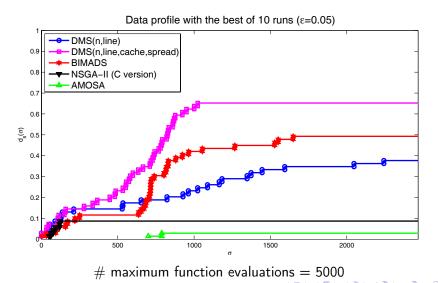
Gamma Metric (largest gap in the Pareto front)

Comparing DMS to other solvers (Spread)

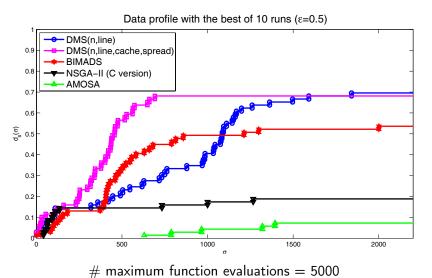


Delta Metric (uniformity of gaps in the Pareto front)

Comparing DMS to other solvers



Comparing DMS to other solvers



Outline

- Introduction and motivation
- 2 Direct MultiSearch
- Numerical results
- 4 Further improvements on DMS
- **(5)** Conclusions and references

- Development and analysis of a novel approach (Direct MultiSearch) for MOO, generalizing ALL direct-search methods.
- Direct MultiSearch (DMS) exhibits highly competitive numerical results for MOO.

DMS (Matlab implementation) and problems (coded in AMPL) freely available at: http://www.mat.uc.pt/dms.

- Development and analysis of a novel approach (Direct MultiSearch) for MOO, generalizing ALL direct-search methods.
- Direct MultiSearch (DMS) exhibits highly competitive numerical results for MOO.

DMS (Matlab implementation) and problems (coded in AMPL) freely available at: http://www.mat.uc.pt/dms.

- Development and analysis of a novel approach (Direct MultiSearch) for MOO, generalizing ALL direct-search methods.
- Direct MultiSearch (DMS) exhibits highly competitive numerical results for MOO.

DMS (Matlab implementation) and problems (coded in AMPL) freely available at: http://www.mat.uc.pt/dms.

- Development and analysis of a novel approach (Direct MultiSearch) for MOO, generalizing ALL direct-search methods.
- Direct MultiSearch (DMS) exhibits highly competitive numerical results for MOO.

DMS (Matlab implementation) and problems (coded in AMPL) freely available at: http://www.mat.uc.pt/dms.