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In this paper, we present a direct numerical simulation database of high-speed zero-

pressure-gradient turbulent boundary layers developing spatially over a flat plate with nominal

freestream Mach number ranging from 2.5 to 14 and wall-to-recovery temperature ranging

from 0.18 to 1.0. The flow conditions of the DNS are representative of the operational con-

ditions of the Purdue Mach 6 quiet tunnel, the Sandia Hypersonic Wind Tunnel at Mach 8,

and the AEDC Hypervelocity Tunnel No. 9 at Mach 14. The DNS database is used to gauge

the performance of compressibility transformations, including the classical Morkovin’s scaling

and strong Reynolds analogy as well as the newly proposed mean velocity and temperature

scalings that explicitly account for wall heat flux. Several insights into the effect of direct com-

pressibility are gained by inspecting the thermodynamic fluctuations and the Reynolds stress

budget terms. Precomputed flow statistics, including Reynolds stresses and their budgets, will

be available at the website of the NASA Langley Turbulence Modeling Resource, allowing other

investigators to query any property of interest.

Nomenclature

Bq = wall heat transfer rate, Bq = qw/(ρwCpuτTw), dimensionless

Cp = heat capacity at constant pressure, J/(K·kg)

Cv = heat capacity at constant volume, J/(K·kg)

H = shape factor, H ≡ δ∗/θ

M = Mach number, M ≡ u/a, dimensionless

Mt = turbulent Mach number, Mt ≡

√
u′
i
u′
i
/a, dimensionless

Mτ = friction Mach number, Mτ = uτ/(γRTw)
1/2, dimensionless

Nf = number of fields used to accumulate statistics, dimensionless
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Pr = molecular Prandtl number, Pr = 0.71, dimensionless

Prt = turbulent Prandtl number, Prt ≡
(
ρu′w′(∂T/∂z)

)
/
(
ρw′T ′(∂u/∂z)

)
, dimensionless

R = ideal gas constant, R = 287, J/(K·kg)

Reθ = Reynolds number based on momentum thickness and freestream viscosity, Reθ ≡ ρ∞u∞θ/µ∞, dimensionless

Reδ2 = Reynolds number based on momentum thickness and wall viscosity, Reδ2
≡ ρ∞u∞θ/µw , dimensionless

Reτ = Reynolds number based on shear velocity and wall viscosity, Reτ ≡ ρwuτδ/µw , dimensionless

Re∗τ = semilocal Reynolds number, Re∗τ ≡
√
τw/ρ∞δ/ν∞, dimensionless

T = temperature, K

Tr = recovery temperature, Tr = T∞(1 + 0.89
γ−1

2
M2

∞), K

Tf = time spanned to accumulate statistics, s

U∞ = freestream velocity, m/s

a = speed of sound, m/s

bi j = anisotropy tensor, defined by Eq. 4, dimensionless

k = turbulent kinetic energy, k ≡ u′′
i

u′′
i
/2, J/kg

p = pressure, Pa

q = surface heat flux, W/m2

s = entropy, J/(kg·K)

u = streamwise velocity, m/s

uτ = friction velocity, uτ ≡ τw/ρw , m/s

u∗ = density weighted velocity scale, u∗ ≡
√
τw/ρ = uτ

√
ρw/ρ, m/s

v = spanwise velocity, m/s

w = wall-normal velocity, m/s

x = streamwise direction of the right-handed Cartesian coordinate, m

xa = streamwise location selected for statistical analysis, m

y = spanwise direction of the right-handed Cartesian coordinate, m

z = wall-normal direction of the right-handed Cartesian coordinate, m

zτ = viscous length, zτ = νw/uτ , m

z∗τ = semilocal length scale, z∗ ≡ µ̄/(ρ̄u∗), m

γ = specific heat ratio, γ = Cp/Cv , dimensionless

δ = boundary layer thickness (based on 99% of the freestream velocity), m

δi j = Kronecker delta, dimensionless

δ∗ = displacement thickness, m
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κ = von Kármán constant κ = 0.41, dimensionless

ω = vorticity, Hz

θ = momentum thickness, m

µ = dynamic viscosity, µ = 1.458 × 10−6T3/2/(T + 110.4), kg/(m·s)

ν = kinematic viscosity, ν = µ/ρ, m2/s

ρ = density, kg/m3

τw = wall shear stress, Pa

τi j = viscous stress tensor, Pa

P = production term, Pa/s

T = turbulent transport term, Pa/s

Π
t = pressure diffusion term, Pa/s

Π
d = pressure dilatation term, Pa/s

Π
c = compressibility term, Pa/s

φ = viscous dissipation per unit volume, Pa/s

D = viscous diffusion term, Pa/s

M = terms arise when density is not constant, Pa/s

Subscripts

V D = variable associated with Van Driest transformation

T L = variable associated with the transformation of Trettel and Larsson [1]

i = inflow station for the domain of direct numerical simulations

rms = root mean square

w = wall variables

∞ = freestream variables

0 = stagnation quantities

Superscripts

+ = variable in inner wall units, (·)+ ≡ (·)/zτ

∗ = variable in semilocal units, (·)∗ ≡ (·)/z∗τ

(·) = standard (Reynolds) averaged variable

˜(·) = density-weighted (Favre) averaged variable, ˜(·) ≡ ρ(·)/ρ

(·)′ = fluctuations around standard averages
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(·)′′ = fluctuations around Favre averages

I. Introduction

The knowledge of turbulent boundary layers at high Mach numbers is important to the design of high speed vehicles,

as turbulent boundary layers determine the aerodynamic drag and heat transfer. One of the most important foundations

for our understanding of high speed turbulence is Morkovin’s hypothesis, which postulates that high speed turbulence

structure in zero pressure-gradient turbulent boundary layers remains largely the same as its incompressible counterpart [2].

An important consequence of Morkovin’s hypothesis is the so-called ‘compressibility transformations’ that transform

the mean velocity and Reynolds stress profiles in a compressible boundary layer to equivalent incompressible profiles

by accounting for mean property variations across the thickness of the boundary layer. A classical example of such

transformations is the density-weighted velocity scaling of Van Driest [3]. Another consequence of Morkovin’s

hypothesis is the analogy between the temperature and velocity fields that leads to velocity-temperature relations such as

the classical Walz formula [4] and the strong Reynolds numbers analogy (SRA) [5–7]. In addition to the classical Van

Driest transformation and the SRA, which have been verified largely for supersonic turbulent boundary layers (M∞ < 5)

with an adiabatic wall, new mean velocity and velocity-temperature scaling relations have recently been proposed to

explicitly account for a finite wall heat flux [1, 8, 9]. For example, Patel et al. [10] proposed a semilocal Reynolds

number Re∗τ for comparing wall turbulence statistics among cases with substantially different mean density and viscosity

profiles. Trettel and Larsson [1] recently provided an extension to the Van Driest transformation for compressible wall

turbulence with heat transfer by deriving a novel velocity transformation based on arguments about log-layer scaling

and near-wall momentum conservation. Zhang et al. [8] generalized the temperature-velocity relation of Walz and

Huang’s SRA to explicitly account for a finite wall heat flux. These new scaling relations have been shown to yield

much improved collapse of the supersonic data to the incompressible case when there is a strong heat transfer at the

surface [11]. The success of the compressibility transformations and the SRA may suggest that there exist few, if any,

dynamic differences due to Mach number, as postulated by Morkovin, at least for wall turbulence at moderate Mach

numbers (M∞ < 5).

At hypersonic speeds (M∞ > 5), the validity of Morkovin’s hypothesis may come into question because of the

increasing density and pressure fluctuations at high Mach numbers. Turbulent fluctuations can even become locally

supersonic relative to the surrounding flow, creating the so-called eddy shocklets that could significantly modify the

dynamics of the flow. However, the Mach number at which Morkovin’s hypothesis would lose significant accuracy

remains largely undetermined. There are still limited measurements at hypersonic speeds that are detailed and accurate

enough for testing the validity of Morkovin’s hypothesis. Experimental investigations of hypersonic turbulent boundary

layers have been conducted historically with hot-wire anemometry (see, for example, the review by Roy and Blottner [12]).

4



A recent investigation by Williams et al. [13] showed that much of the historical hot-wire measurements of turbulence

statistics suffered from poor frequency response and/or spatial resolution. Hot-wire anemometry may also suffer from

uncertainties associated with the mixed-mode sensitivity of the hot wires, given that the hot wire measures a combination

of the fluctuating mass flux and the fluctuating total temperature [14]. In addition to hot-wire anemometry, direct

measurements of spatially varying velocity fields of high-speed turbulent boundary layers have been attempted using

Particle Image Velocimetry (PIV) [13, 15–17]. Among the existing PIV measurements, the measurement by Williams

et al. [13] in a Mach 7.5 flat-plate turbulent boundary layer is the only PIV measurement conducted at a Mach number

above five. Although the existing PIV results provided direct experimental evidence for the validity of Morkovin scaling

for the streamwise velocity at Mach numbers as high as 7.5, accurate measurements were not yet acquired for the

wall-normal component of the velocity or the Reynolds stress. The existing PIV data exhibited reduced levels of the

wall-normal component of the velocity in comparison with the predictions based on the Morkovin scaling, and the

deviation became larger with increasing Mach number. As noticed by Williams et al. [13], the loss in accuracy is largely

due to particle response limitations that result in significantly reduced levels of wall-normal velocity fluctuations.

Complementary to experiments, direct numerical simulations (DNS) of high-speed turbulent boundary layers have

been conducted to overcome the experimental difficulties and provide access to three-dimensional turbulence statistics.

Although several DNS have been conducted for studying Morkovin’s scaling in turbulent boundary layers with moderate

freestream Mach number (M < 5) [1, 8, 11, 18–22], there is little DNS data for turbulent boundary layers in the high

Mach number regime [12]. Martín [23, 24] made a pioneering effort toward characterizing boundary-layer turbulence in

the hypersonic regime by developing a temporal DNS database of canonical zero-pressure-gradient, flat-plate turbulent

boundary layers up to Mach 8 with varying wall temperatures. Duan et al. [25–27] extended the datasets of Martín [23]

to even higher Mach numbers (up to Mach 12) with cold wall and high enthalpy and conducted a systematic study of

wall turbulence and its dependence on freestream Mach number, wall cooling, and high enthalpy. Additional DNS

studies of hypersonic turbulent boundary layers in the literature include that by Lagha et al. [28] up to Mach 20 with an

adiabatic wall (Tw/Tr = 1.0) and that by Priebe and Martín at Mach 7.2 [29] with Tw/Tr = 0.53. Except for the work by

Duan et al. [26], who systematically studied the effect of wall cooling on boundary-layer turbulence at Mach 5, most of

the previous DNS at high Mach number simulated a turbulent boundary layer over a hypothetically adiabatic wall. The

new scaling relations of Refs. [1, 8, 9] that explicitly account for finite wall heat flux have not yet been systematically

assessed under high Mach number, cold-wall conditions.

As far as the modeling of high-speed turbulence is concerned, the most common classes of compressibility correction

for Reynolds-averaged Navier-Stokes (RANS) turbulence models were developed for improving predictions of free-shear

layers or jets. As such, these corrections are often unacceptable for attached boundary layer flows. However, practical

experiences indicate that the need for correction in hypersonic boundary layers becomes increasingly evident as

Mach number increases, particularly for cold walls [30, 31]. In particular, Rumsey [31] recently investigated the
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performance of many of the compressibility corrections described in the literature for k − ω turbulence models in

hypersonic boundary-layer applications. He found that the dilatation-dissipation correction designed by Zeman [30]

works reasonably well for predicting turbulent skin friction at high-Mach-number, cold wall conditions. As concluded

by Rumsey, the effects of dilatation-dissipation and pressure-dilation on turbulence models are still not clear for

high-Mach-number, cold wall cases, and there is a need for improved understanding and better physical modeling for

turbulence models applied to hypersonic boundary layers.

In the present paper, we describe a new DNS database of spatially developing, flat-plate turbulent boundary layers

that was developed using a large computational domain with low-dissipative spatial discretization, and that covers a

wide range of freestream Mach number (M∞ = 2.5 – 14) and wall-to-recovery temperature ratio (Tw/Tr = 0.18 – 1.0).

Unlike the temporal DNS of Martín [23] and Duan et al. [25, 26] that used a small streamwise domain (≈ 8δ) with a

periodic boundary condition in the streamwise direction, these DNS simulate spatially developing turbulent boundary

layers with a long streamwise domain length (> 50δi) to minimize any artificial effects of inflow turbulence generation

and to guarantee the convergence of high-order turbulence statistics. Moreover, the new DNS database mimics realistic

flow conditions such as those in hypersonic wind tunnel facilities with a cooled wall rather than simulating hypersonic

turbulent boundary layers over a hypothetically adiabatic wall [24, 25, 28]. The combination of high freestream Mach

number (with nominal freestream Mach number as high as M∞ = 14) and cold wall temperature (with wall-to-recovery

temperature as low as Tw/Tr = 0.18) covered in the database extends the available database to more extreme, yet

practical, cases that serve as a reference for modeling wall-bounded turbulence in the high-Mach-number, cold-wall

regime as well as for developing novel compressibility transformations that collapse compressible boundary-layer

profiles to incompressible results. For that purpose, both statistical quantities and subsets of raw flow samples are made

publicly available on a web site, which will allow other investigators to access any property of interest. In the following

sections, we briefly describe the DNS methodology and present a limited number of numerical results, including a

comparison with recent experimental data and an application of the numerical data to gauge the performance of some

recently proposed compressibility transformations [1, 8] and to probe intrinsic compressibility effects.

II. Numerical Database and Underlying Methodology

The database used for the current analysis includes the DNS of spatially-developing, flat-plate turbulent boundary

layers over a wide range of nominal freestream Mach numbers (M∞ = 2.5–14) and wall-to-recovery temperature ratios

(Tw/Tr = 0.18–1.0). Table 1 outlines the freestream conditions for the simulations, and Table 2 summarizes the

boundary-layer parameters at a selected location where the turbulence statistics are gathered. Cases M2p5, M6Tw076,

and M6Tw025 correspond to the DNS reported in previous papers [32–35], in which pressure statistics including the

freestream acoustic radiation were presented and discussed in detail. Two additional cases at higher freestream Mach

numbers (Cases M8Tw053 and M14Tw018) are presented herein for the first time, with flow conditions representative
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of the nozzle exit of the Sandia Hypersonic Wind Tunnel at Mach 8 and the AEDC Hypervelocity Tunnel No. 9 at Mach

14, respectively. The new cases extend the available database to more extreme, yet practical, cases that would allow one

to probe the effects of Mach number on turbulence scaling and structure under these conditions. All the DNS cases have

a similar friction Reynolds number of Reτ ≈ 500 and fall within the perfect gas regime. The working fluid for Case

M8Tw053 is nitrogen whose viscosity is calculated using Keyes law [36]. The working fluid for the rest of DNS cases is

air with viscosity calculated with Sutherland’s law. A constant molecular Prandtl number of 0.72 is used for all the DNS

cases.

Table 3 summarizes the domain sizes and grid resolutions for all DNS cases. The simulations either involve a

single domain with a long streamwise box or are carried out in two stages involving overlapping streamwise domains as

illustrated in Figure 1. The boundary layer is allowed to develop spatially over an extended region along the streamwise

direction (> 50δi) so as to minimize any artificial effects of the inflow turbulence generation and to contain the largest

relevant flow structures within the computational domain. Another noteworthy feature of the database corresponds to

the large spanwise domain (nearly an order of magnitude larger than the boundary layer thickness), which guarantees

spanwise statistical decorrelation in turbulence fluctuations throughout the boundary layer.

The boundary layer is simulated in a rectangular box over a flat plate with spanwise periodic boundary conditions and

a modified rescaling/rescaling method for inflow turbulence generation [32]. The numerical code solves the compressible

Navier-Stokes equations in conservative form, using an optimized seventh-order weighted essentially nonoscillatory

(WENO) scheme [37, 38] for capturing eddy shocklets and ensuring numerical stability. A third-order low-storage

Runge-Kutta scheme is used for time integration [39]. A detailed description of the problem formulation, the numerical

scheme, and the initial and boundary conditions can be found in Ref. [32–35]. The validity of numerical methods and

procedures have been established in multiple previous publications [33, 34, 40], with the computational domain size and

grid resolution summarized in Table 3. The computational grid resolution inside the boundary layer is comparable to

those reported in the literature in the context of previous simulations of turbulent wall-bounded flows using comparable

numerical algorithms [25, 26, 32–35]. The effect of spanwise domain size on flow statistics is monitored by sufficient

decay of two-point correlations and/or by comparing to cases with an auxiliary simulation of the same grid resolution

but with a narrower span, and negligible difference is observed in the flow statistics of interest. Furthermore, the

physical realism and accuracy of the computed flow fields have been validated by comparing to experimental results at

similar flow conditions [33, 41]. Additional comparisons of DNS results with both experiments and other high-quality

simulations are presented in the following sections.

In the following sections, averages are first calculated over a streamwise window ([xa − 0.5δ, xa − 0.5δ]) and the

spanwise direction for each instantaneous flow field; then, an ensemble average over Nf flow-field snapshots spanning a

time interval of Tf uτ/δ is calculated. Statistical convergence is verified by calculating averages over varying streamwise

window sizes or over a different number of snapshots and by making sure that the differences in flow statistics are
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Table 1 Freestream and wall-temperature conditions for various DNS cases.

Case M∞ U∞ (m/s) ρ∞ (kg/m3) T∞ (K) Tw (K) Tw/Tr δi (mm)

M2p5 2.50 823.6 0.100 270.0 568.0 1.0 4.0

M6Tw025 5.86 869.1 0.044 55.0 97.5 0.25 1.3

M6Tw076 5.86 870.4 0.043 55.0 300.0 0.76 13.8

M8Tw053 7.86 1155.1 0.026 51.8 298.0 0.53 20.0

M14Tw018 13.68 1882.2 0.017 47.1 300.0 0.18 18.8

Table 2 Boundary layer properties at the station selected for the analysis for various DNS cases.

Case xa/δi Reθ Reτ Reδ2
Re∗τ θ (mm) H δ (mm) zτ (µm) uτ (m/s) −Bq Mτ

M2p5 53.0 2835 510 1657 1187 0.58 4.14 7.7 15.0 40.6 0 0.08

M6Tw025 88.6 2121 450 1135 932 0.20 8.4 3.6 8.0 33.8 0.14 0.17

M6Tw076 54.1 9455 453 1746 4130 0.95 13.6 23.8 52.6 45.1 0.02 0.13

M8Tw053 60.9 9323 437 1908 3659 1.15 19.0 33.7 77.2 51.9 0.06 0.15

M14Tw018 91.9 14408 646 2354 4925 1.35 37.6 66.1 102.4 67.6 0.19 0.19

negligible (<1%) among the different data-averaging techniques. Throughout the paper, statistics are reported based on

fluctuations either around the standard (Reynolds) averages or around density-weighted (Favre) averages. For Mach

numbers as high as 13.68, only small differences (< 3%) have been found between the standard and density-weighted

(Favre) averages for the statistics reported in this article.

Table 3 Grid resolution and domain size for the direct numerical simulations. Lx , Ly and Lz are the domain

size in the streamwise, spanwise and wall-normal directions, respectively. ∆x+ and ∆y+ are the uniform grid

spacing in the streamwise and spanwise directions, respectively; ∆z+
min

and ∆z+max denote the minimum and

maximum wall-normal grid spacing. The grid resolutions are normalized by the viscous length zτ at the location

where the turbulence statistics are gathered. Nf is the number of fields used to accumulate statistics, and Tf is

the time spanned by those fields. The values of δi , zτ , uτ , and δ for each case is listed in Tables 1 and 2.

Case Nx × Ny × Nz Lx/δi Ly/δi Lz/δi ∆x+ ∆y
+
∆z+

min
∆z+max Nf Tf uτ/δ

M2p5 1760 × 800 × 400 54.6 15.6 41.0 9.2 5.5 0.6 9.5 282 14.9

M6Tw025 2400 × 400 × 560 91.7 8.8 57.5 6.42 3.72 0.46 4.75 312 7.3

M6Tw076 1600 × 800 × 500 58.7 15.7 39.7 9.64 5.14 0.51 5.33 153 7.3

M8Tw053 3200 × 500 × 600 65.0 10.2 41.2 5.4 5.4 0.54 5.6 395 9.1

M14Tw018, Box1 2500 × 460 × 540 133.3 12.2 55.6 9.36 4.67 0.47 5.18 – –

M14Tw018, Box2 2000 × 460 × 786 102.2 12.2 55.6 9.36 4.67 0.47 5.68 137 1.4
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(a) M8Tw053 (b) M14Tw018

Fig. 1 Computational domain and simulation setup for DNS of Mach 8 and Mach 14 turbulent boundary

layers, with flow conditions representative of the nozzle exit of the Sandia Hypersonic Wind Tunnel at Mach

8 and the AEDC Hypervelocity Tunnel No. 9 at Mach 14, respectively. An instantaneous flowfield is shown,

visualized by an isosurface of the density gradient magnitude, corresponding to |∇ρ|δi/ρ∞ = 0.9825, colored by

the streamwise velocity component (with levels from 0 to U∞, blue to red).

III. Computational Results

A. Compressibility Transformations

In this section, the DNS database is used to gauge the performance of several velocity and temperature scalings.

Complementary to the previous studies of Duan et al. [25, 26], the present study pays special attention to the recently

proposed scaling relations [1, 8, 10] that have not yet been scrutinized in the high-Mach-number, cold-wall regime, in

addition to the classical scalings according to Morkovin.

Figure 2 plots the Van Driest transformed mean velocity u+
VD

, which is defined as

u+VD =
1

uτ

∫ u

0

(
ρ/ρw

)1/2
du. (1)

The mean velocity shows an approximately logarithmic region where u+
VD
=

1
k

log (z+) + CVD upon Van Driest

transformation. The Van Driest transformed mean velocity shows a decrease in the mean slope SVD in the linear viscous

sublayer with higher wall cooling rate −Bq . A similar trend was reported in previous studies of Refs. [11, 26, 34, 42, 43].

The log-layer intercept CVD slightly increases with wall-cooling rate and Reynolds number, although the change seems

to be less rapid in comparison with the results for compressible channel flows with cooled walls [1, 44, 45] and a

turbulent boundary layer at Mach 4.5 [18]. Here, we use the semilocal Reynolds number Re∗τ as a characteristic

Reynolds number for comparing CVD among the different DNS cases, since Re∗τ is known from Patel et al. [10] to be

the governing parameter for wall turbulence statistics with different mean density and viscosity profiles, at least for wall

9



turbulence at lower Mach numbers.

An alternative transformation of mean velocity was proposed by Trettel and Larsson [1] for compressible wall

turbulence with cold walls, based on arguments about log-layer scaling and near-wall momentum conservation. The

velocity scaling is defined as

u+TL =

∫ u+

0

(
ρ̄

ρw

)1/2 [
1 +

1

2

1

ρ̄

d ρ̄

dz
z −

1

µ̄

d µ̄

dz
z

]
du+. (2)

Figure 3 shows a much improved collapse within the viscous sublayer region of the computational datasets when the

modified velocity u+
TL

is used for comparison. Furthermore, the sublayer slope STL of the transformed velocity is nearly

constant at different wall-cooling rates. The collapse of u+
TL

in the viscous sublayer is not unexpected, since the velocity

transformation of Trettel and Larsson [1] is designed to satisfy the stress-balance condition within the entire inner

layer, including the viscous sublayer. In the log region, however, the log-law intercept CTL of the transformed velocity

u+
TL

shows a similar scatter as that of the Van Driest transformed velocity at different wall-cooling rates and Reynolds

numbers; and the value of CTL for boundary layers is consistently larger than that for channel flows. The difference in

the log-law intercept between boundary layers and channels may suggest an influence of the “wake” component on the

log region for boundary layers. The lack of collapse in CTL for boundary layers may also be due to the discrepancy in

the characteristic Reynolds number Re∗τ among the boundary layer DNS cases or a lack of an extended log-law region

for the existing boundary-layer datasets, making it difficult to accurately probe the log-law region. Although not shown

here, a different mean velocity transformation proposed by Patel et al. [9] based on Re∗τ gives very similar results as that

of Trettel and Larsson [1].

Figure 4 plots the wall-normal profiles of the turbulence intensities and the Reynolds shear stress. In general, an

apparently good collapse of the data across a wide range of Mach numbers is achieved via Morkovin’s scaling [5],

consistent with the experimental and computational observations of Refs. [13, 17, 25, 26] at lower Mach numbers and/or

without strong wall cooling. The wall-normal component of turbulence intensity and the Reynolds stress measured by

PIV [13] exhibit reduced magnitude than those predicted by the various DNS at high Mach number. Such a reduction in

magnitude is typical of particle-based velocimetry studies of supersonic flows [13]. Figure 5 further shows that the peak

locations of turbulence intensities in the classical inner scaling (z+) shift away from the wall with increasing wall-cooling

rate. The semilocal scaling (z∗) of Huang et al. [7] better collapses the location of the near-wall peak of turbulence

intensities. There is an apparent increase in the peak value of the Morkovin transformed streamwise turbulence intensity

u′
rms/u∗ as the freestream Mach number increases, which is consistent with the DNS of turbulent channel flows at bulk

Mach numbers of 1.5 and 3 by Modesti & Pirozzoli [11]. A similar increase in the near-wall peak value with increasing

Mach number is not observed for the spanwise and wall-normal turbulence intensities nor for the Reynolds shear stress.

The vorticity fluctuation components are presented in Figures 6a and 6b, scaled in wall units and semilocal units,
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(a) (b)

(c) (d)

Fig. 2 Effect of applying the Van Driest transformation to the mean velocity profile. (a) Velocity profile u+
VD

;

(b) viscous sublayer slope SVD; (c) log-law intercept CVD as functions of the wall-cooling rate −Bq; (d) Reynolds

number effects in the log-law intercept CVD .
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(a) (b)

(c) (d)

Fig. 3 Effect of applying the Trettel and Larsson [1] transformation to the mean velocity profile. (a) Velocity

profile u+
TL

; (b) viscous sublayer slope STL; (c) log-law intercept CTL as functions of the wall-cooling rate −Bq; (d)

Reynolds number effects in the log-law intercept CTL . The open diamonds denote the results for compressible

turbulent channels by Trettel and Larsson [1].
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(a) Streamwise turbulence intensity (b) Spanwise turbulence intensity

(c) wall-normal turbulence intensity (d) Reynolds shear stress

Fig. 4 Turbulence intensities and Reynolds shear stress transformed according to Morkovin as a function of

wall-normal distance z/δ, where u∗ = uτ
√
ρw/ρ is the Morkovin transformed velocity scale. For comparison,

experimental data by Williams et al. [13] (M∞ = 7.5, Reτ = 279, Tw/Tr = 0.8) and DeGraaff & Eaton [46]

(M∞ ≈ 0, Reτ = 2220) along with DNS data by Priebe & Martín [29] (M∞ = 7.2, Reτ = 233, Tw/Tr = 0.53),

Sillero et al. [47] (M∞ ≈ 0, Reτ = 1310), and Jiménez et al. [48] (M∞ ≈ 0, Reτ = 445) are also plotted in this

figures.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 5 Turbulence intensities and Reynolds shear stress transformed according to Morkovin in (a,b,c,g) classical

inner scaling and (d,e,f,h) semilocal scaling. See Figure 4 for symbol legend.

14



(a) (b)

Fig. 6 Wall-normal distribution of vorticity fluctuations nondimensionalized by (a) wall units and (b) semilocal

units, respectively. Variable in wall units are normalized by uτ/zτ , and variables in semilocal units are normalized

by u∗/z∗τ . For comparison, the DNS data by Bernardini and Pirozzoli [49] (M∞ = 4, Tw/Tr = 1, Reτ = 500) is

also plotted in (a).

respectively. Excellent comparison in vorticity fluctuations is achieved between Case M2p5 of the current DNS and the

DNS of Bernardini and Pirozzoli [49] at Mach 4 with an adiabatic wall. The semilocal scaling yields a much improved

collapse of vorticity fluctuation distributions among the DNS cases in most parts of the boundary layer, although notable

differences exist in z∗ . 10 for the spanwise vorticity component and in z∗ . 30 for the streamwise and wall-normal

components. Since the vorticity fluctuations are largely induced by small scale turbulence motions, the better collapse

of vorticity profiles among the various DNS cases with semilocal scaling may indicate that the small scale motions are

dictated by local mean flow conditions in terms of the mean density and the mean viscosity. A similar observation has

been made by Modesti and Pirozzoli [11] in their DNS study of compressible isothermal channel flow at bulk Mach

numbers of 1.5 and 3. Furthermore, the differences in semilocally scaled vorticity fluctuations ω′
i,rms

z∗τ/u∗ within the

near-wall region among the various DNS cases may be due to wall temperature effects that cause a change in turbulence

anisotropy, as a similar variation in the near-wall vorticity fluctuations has also been reported by Patel et al. [9] in

the context of zero-Mach-number channel flows with different surface heat transfer rates. The changes in turbulence

anisotropy in the near-wall region is also indicated by Figure 12 in Section III.C.

As far as the coupling between thermal and velocity fields is concerned, Figure 7 plots the mean temperature as a

function of the mean velocity for the two highest Mach number DNS cases (M8Tw053 and M14Tw018). The DNS

results are compared with the classical relation of Walz [4] and a modified relation of Zhang et al. [8]. The Walz relation

compares reasonably well with the DNS data for case M8Tw053, while a significantly larger deviation from DNS exists

for case M14Tw018. The modified version of Zhang et al. [8], which explicitly accounts for the finite wall heat flux,
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(a) (b)

Fig. 7 Relation between mean temperature and mean velocity. (a) The classical relation of Walz [4]: T̄
T∞
=

Tw
T∞
+

Tr−Tw
T∞

(
ū
U∞

)
+

T∞−Tr
T∞

(
ū
U∞

)2

; (b) the generalized relation of Zhang et al. [8]: T̄
T∞
=

Tw
T∞
+

Trg−Tw
T∞

(
ū
U∞

)
+

T∞−Trg
T∞

(
ū
U∞

)2

,

where Trg = T∞ + rgU2
∞/(2Cp) and rg = 2Cp(Tw − T∞)/U

2
∞ − 2Prqw/(U∞τw).

leads to a much improved comparison with the DNS at Mach numbers as high as 14.

Figure 8 shows that the turbulent Prandtl number Prt and the modified SRA of Huang et al. [7] across the boundary

layer. The Huang’s SRA (HSRA) relates the temperature fluctuations T ′
rms to the streamwise velocity fluctuations u′

rms

as given by

T ′
rms/T

(γ − 1)M2(u′
rms/u)

=

1

Prt (1 − (∂T t/∂T))
. (3)

The results from Figure 8 suggest that both Prt and HSRA are insensitive to the freestream Mach number and the wall

temperature conditions, with values close to unity in most of the outer region of the boundary layer. Although not shown

here, a different modified SRA recently proposed by Zhang et al. [8] gives marginally improved prediction compared

to HSRA for z/δ < 0.8. The temperature-velocity scalings as high as Mach 13.68 are generally consistent with the

predictions from several previous studies at lower Mach numbers [8, 26, 42].

B. Thermodynamic Properties

In this section, several thermodynamic fluctuations and their dependence on Mach number and wall temperature

conditions are presented. Thermodynamic fluctuations, especially the density fluctuations, appear in many unclosed

terms in the Reynolds-averaged Navier-Stokes (RANS) equations, the knowledge of which is thus useful for turbulence

modeling.

Figures 9a and 9b plot the simulation results of the wall-normal variation of the fluctuating Mach number M ′
rms,

with the wall-normal distance nondimensionalized by wall units and semilocal units, respectively. The fluctuating
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(a) (b)

Fig. 8 (a) Turbulent Prandtl number and (b) Huang’s modified SRA as a function of wall-normal distance.

Mach number increases dramatically with the freestream Mach number, and such an increase cannot be accounted

for with the semilocal scaling. At Mach 7.86 and 13.68, the fluctuating Mach number develops a strong peak with

a peak value greater than one toward the edge of the boundary layer. As a result, the turbulent fluctuations become

locally supersonic relative to the surrounding flow, likely creating local shocklets that may be the source of significant

dilatational dissipation and entropy production. Figures 10a and 10b further show that the peak of M ′
rms at the boundary

layer edge is associated with the strong local fluctuations of density and temperature. The sharp gradients of the density

and temperature at the boundary layer edge may be connected with the turbulent-non-turbulent interface or the edge of

the turbulent bulges as illustrated in Figure 11. Unlike the r.m.s. profiles of density and temperature from Figures 10a

and 10b, the profile of r.m.s. pressure fluctuations (Figure 10c) does not exhibit a strong peak near the edge of the

boundary layer. The different behavior of the density and temperature fluctuations in comparison with the pressure

fluctuations as well as the similarity in the density and temperature magnitudes near the edge of the boundary layer may

be indicative of the local importance of the entropic mode. Indeed, as shown by Figure 10d, the entropy fluctuation

profile exhibits a local peak near the boundary layer edge, similar to that of density and temperature fluctuations. The

entropy fluctuations decay rapidly outside the boundary layer. For z/δ ' 1.6, the acoustic mode becomes dominant

due to ‘eddy-Mach-wave’ radiation from the boundary layer [50]. The acoustic radiation increases significantly with

increasing freestream Mach number as reported in Refs. [32–34].
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(a) (b)

Fig. 9 Wall-normal distribution of fluctuating Mach number for various Mach number cases, with the wall-

normal distance nondimensionalized by (a) wall units and (b) semilocal units.

C. Reynolds Stress Anisotropy

Figure 12 plots the Reynolds stress anisotropy for the various Mach number cases. The anisotropy tensor is defined

as

bi j =
ρu′′

i
u′′
j

2ρk
−

1

3
δi j . (4)

The semilocal scaling is successful in collapsing the near-wall peak locations of the normal and shear stress anisotropies

among the DNS cases. Of the three normal components of anisotropy, the streamwise component b11 increases with

increasing Mach number and wall cooling for z∗ ' 10, while the opposite is seen for the spanwise component b22. As

discussed by Patel et al. [9, 10] and Duan et al. [26], the increase in b11 with increasing Mach number and wall-cooling

rate may indicate a decrease in the redistribution of turbulent energy from the streamwise direction to the other two

directions when the Mach number and wall-cooling rate increase. The decreased redistribution of turbulent energy is

also consistent with the increased peak value of u′
rms/u∗ (Figure 5d) when the Mach number and wall cooling rate are

increased.

Compared with b11 and b22, the wall-normal component of the normal stress anisotropy, b33, and the Reynolds

shear stress anisotropy, b13, are less sensitive to Mach number and wall-cooling conditions, with the influence of Mach

number and wall cooling limited to z∗ / 10.

D. Turbulent Kinetic Energy Budget

The turbulent kinetic energy (TKE) for a compressible boundary layer is given by

D(ρk̃)

Dt
= P + T + Π − φ + D + M (5)

18



(a) (b)

(c) (d)

Fig. 10 Wall-normal distribution of the r.m.s. fluctuations of (a) density, (b) temperature, (c) pressure, and (d)

entropy for various Mach number cases.

Fig. 11 Visualization of a typical instantaneous flow field for Case M14Tw018 in a streamwise wall-normal

(x-z) plane and a spanwise wall-normal (y-z) plane. The contours are those of numerical schlieren, with density

gradient contour levels selected to emphasize large scale motions of the boundary layer. The location of the y-z

plane is indicated by the vertical dashed line.
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(a) (b)

(c) (d)

Fig. 12 Distributions of (a), (c) normal Reynolds stress anisotropies and (b), (d) Reynolds shear stress anisotropy.

Open circles are used to group the various cases for each normal stress component in (a) and (c), and hence,

to make the profiles for different components easier to distinguish from each other. The anisotropy tensor is

defined as bi j = ρu
′′
i

u′′
j
/2ρk − δi j/3.
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with

P = −ρu′′
i

u′′
k

∂ũi

∂xk

T = −
∂

∂xk
(
1

2
ρu′′

i
u′′
i

u′′
k
)

Π = Π
t
+ Π

d
= −

∂

∂xi
(p′u′′

i
) + p′

∂u′′
i

∂xi

φ = τ′
ik

∂u′′
i

∂xk

D =
∂

∂xk
(τ′′

ik
u′′
i
)

M = u′′
i
(
∂τik

∂xk
−
∂p

∂xi
) − ρk̃

∂ũk

∂xk

(6)

where P is the production term, T is the turbulent transport term, Π is the pressure term (pressure diffusion and pressure

dilatation), −φ is viscous dissipation per unit volume, D is viscous diffusion, and M represents additional terms that

arise when density is not constant.

Figure 13 plots the terms in the TKE budget, normalized by the conventional inner scaling (Figure 13a) and the

‘semilocal’ scaling (Figure 13b). Overall, the semilocal scaling yields a significantly better collapse of the budget terms

among the different Mach number cases in comparison with the inner scaling. Such a finding is consistent with the

previous study by Duan et al. [25, 26] based on temporal DNS of turbulent boundary layers up to Mach 12. Figure 14

further shows that the semilocal scaling largely collapses the terms associated with turbulence production, turbulence

transport, pressure terms, and viscous diffusion and dissipation. Notable differences among the different cases are

confined to the inner region with z∗ / 5. The production term shows a near-wall peak in the buffer layer at z∗ ≈ 12 with

a slight increase in the peak value as the Mach number increases. The collapse of the near-wall peak in the buffer layer

and the increase in the peak value with Mach number are consistent with those of the Morkovin-transformed streamwise

turbulence intensity u′
rms/u∗.

The effects of compressibility on the dissipation have been of interest in the context of compressible turbulence

models [51–53]. The dissipation can be expanded into solenoidal dissipation φs and dilatational dissipation φd, after

neglecting terms that involve viscosity fluctuations and the term due to inhomogeneity [7, 54]. Figure 15 plots the

wall-normal variation in solenoidal and dilatational components of the dissipation rate. The solenoidal dissipation φs

normalized with semilocal units is insensitive to Mach number and wall temperature conditions, except in the near-wall

region of z∗ / 10 (Figure 15a), while the dilatational dissipation increases significantly with increasing freestream

Mach number or wall-cooling rate (Figure 15b). At M∞ = 13.68, the dilatational dissipation φd becomes non-negligible

compared with the solenoidal dissipation φs , with a maximal ratio of φd/φs ≈ 11% in regions near the wall and close to

the boundary-layer edge (Figure 15c).
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(a) (b)

Fig. 13 TKE budget for different cases nondimensionalized by (a) wall units and (b) semilocal units, respectively.

Variables in wall units are normalized by ρ̄wu3
τ/zτ , and variables in semilocal units are normalized by ρ̄u∗3/z∗τ .

Solid lines: M2p5; Dashed lines: M6T2025; Dash-Dot lines: M6Tw076; Long Dash lines: M8Tw053; Dash-Dot-

Dot lines: M14Tw018.

Finally, the effect of compressibility on the pressure terms is considered. The pressure terms for a compressible flow

include pressure diffusion (Πt ), pressure dilatation (Πd), and compressibility (Πc), defined as

Π
t
= −

∂

∂xi
(p′u′′

i
), Π

d
= p′
∂u′′

i

∂xi
, Π

c
= −u′′

i

∂p

∂xi
. (7)

Figures 16a and 16b show comparisons of pressure diffusion and pressure dilatation, respectively, among the various

DNS cases. The pressure diffusion and pressure dilatation terms show a large Mach number and wall temperature

dependence, especially in the near wall region (z∗ / 10). The pressure dilatation Πd increases with Mach number;

and at Mach 13.68, the pressure dilatation term has significant contribution to the sum of the pressure terms in the

wall region with z∗ . 10 (Figure 16c). The Zeman compressibility correction is insufficient for correcting Πd for

z∗ / 10. However, it conforms well with the DNS farther away from the wall. Although not shown here, the traditional

Sarkar-Zeman-Wilcox correction for free-shear flows [51–53] significantly overcorrects throughout the boundary layer

when applied to the current DNS cases. The better match of Zeman’s model with the DNS is consistent with the

observation by Rumsey [31], who showed that Zeman’s compressibility correction exhibits a less dramatic influence

than the free-shear type of correction when applied to boundary-layer flows, and that the correction works reasonably

well in predicting wall skin friction for cold-wall cases. As also indicated by Figure 16c, Πc is negligibly small in

comparison with Πt and Πd throughout the boundary layer.
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(a) (b) (c)

(d) (e)

Fig. 14 TKE budget terms for different cases normalized by ρ̄u∗3/z∗τ .

(a) (b) (c)

Fig. 15 Plot of solenoidal dissipation φs = µ̄ω
′
i
ω′
i

and dilatational dissipation φd =
4
3
µ̄
∂u′

i

∂xi

∂u′
k

∂xk
as a function of

wall-normal distance.
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(a) (b) (c) M14Tw018

Fig. 16 Wall-normal variation of pressure terms: (a) pressure diffusion and (b) pressure dilatation for

the various DNS cases; (c) comparison of pressure terms for Case M14Tw018. All the terms are normal-

ized by ρ̄u∗3/z∗τ . For comparison, the Zeman’s compressibility correction [30], defined as Πd
= 0.02γ[1 −

exp(−M2
t /0.2)]p̄u′′

i
(∂ρ̄/∂xi)/ρ̄, is also plotted in (c).

IV. Conclusions

A DNS database of high-speed, zero-pressure-gradient turbulent boundary layers developing spatially over a flat

plate is presented. Complementary to the limited datasets in the literature under high Mach number, cold-wall conditions,

the database covers a wide range of freestream Mach numbers (M∞ = 2.5 – 14) and wall-to-recovery temperature ratios

(Tw/Tr = 0.18 – 1.0) and simulates the operational conditions of hypervelocity wind tunnels. The DNS is based on a

high-order scheme with a large domain size and sufficiently long sampling size (Lx/δi > 50, Ly/δi > 8, Tf uτ/δi > 5)

to minimize any artificial effects due to inflow turbulence generation and to ensure the convergence of some of the

high-order turbulence statistics. The physical realism and accuracy of the computed flow fields have been established by

comparing with existing experimental results at similar flow conditions and with other high-quality simulations at lower

Mach numbers.

The DNS database has been used to gauge the performance of compressibility transformations in the high-Mach-

number, cold-wall regime, including the recently developed velocity and temperature scalings that explicitly account for

the effect of wall cooling, with the main observations and conclusions summarized as follows:

(i) The mean velocity transformation of Trettel and Larsson [1] yields much improved collapse of the hypersonic

data in the viscous sublayer when there is a strong heat transfer at the surface.

(ii) Zhang’s generalized relation [8] between the mean velocity and the mean temperature yields better comparison

with the DNS than that of Walz under cold wall conditions.

(iii) The semilocal scaling successfully collapses the Reynolds stresses, vorticity fluctuations, and the TKE budgets

in most of the boundary layer at different Mach number and wall-cooling conditions, with notable differences

largely limited to the near-wall region (z∗ / 10).

The apparent success of the various compressibility transformations in most of the boundary layer indicates that, within
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the relatively broad range of Mach number and wall cooling considered in this study, the effects of those two parameters

can be largely taken into account with local mean flow conditions, in terms of density and viscosity, and that the

turbulence dynamics of hypersonic turbulent boundary layers exhibits strong similarity to that of incompressible flows

at comparable Reynolds numbers.

Additional insights into the effects of intrinsic compressibility and wall-cooling are gained from the inspection of

Reynolds stress anisotropy, the thermodynamic fluctuations, and the dissipation and pressure terms in TKE budgets.

The main observations may be summarized as follows:

(i) There is an increase in the streamwise component of the Reynolds stress anisotropy and a decrease in the

spanwise component as the Mach number and wall cooling increase, and such a change in Reynolds stress

anisotropy may be indicative of modifications to intercomponent energy transfer in the high-Mach-number,

cold-wall regime.

(ii) The fluctuating Mach number increases dramatically with the freestream Mach number; and at Mach 7.86 and

13.68, turbulent fluctuations become locally supersonic relative to the surrounding flow near the edge of the

boundary layer.

(iii) As a result of the locally supersonic turbulent bulges and the likely creation of local shocklets that are a source

of significant entropy production and dilatational dissipation, the fluctuating density and temperature develop

a strong peak with large entropy fluctuations toward the edge of the boundary layer.

(iv) A sharp gradient in density and temperature is seen at the instantaneous interface between turbulent and

nonturbulent flow regions or the edge of the turbulent bulges for the high-Mach-number cases.

(v) The dilatational dissipation and the pressure dilatation increase dramatically with increasing Mach number

and wall-cooling rate. At Mach 13.68, the dilatational dissipation becomes non-negligible compared with the

solenoidal dissipation in the near-wall region and close to the boundary-layer edge; pressure dilatation has a

significant contribution to the sum of the pressure terms in the near-wall region (z∗ / 10) but the contribution

diminishes farther away from the wall.

The DNS database under hypervelocity (but ideal gas) conditions complements the limited experimental datasets and

the existing DNS databases that simulate either temporal boundary layers [23, 25, 26] or spatial boundary layers over an

adiabatic wall [28]. The database therefore represents a reliable resource for studying turbulence physics under high

Mach number, cold-wall conditions and for validating compressibility transformations and RANS models. Precomputed

flow statistics including Reynolds stresses and their budgets will be available at the website of the NASA Langley

Turbulence Modeling Resource, allowing other investigators to query any property of interest.
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