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We present a systematic, multiscale, fully detailed numerical modeling for dynamics of fluid flow and

ion transport covering Ohmic, limiting, and overlimiting current regimes in conductance of ion-selective

membrane. By numerically solving the Poisson-Nernst-Planck-Navier-Stokes equations, it is demonstrated that

the electroconvective instability, arising from the electric field acting upon the extended space charge layer, and

the induced strong vortical fluid flow are the dominant factors of the overlimiting current in the planar membrane

system. More importantly, at the transition between the limiting and the overlimiting current regimes, hysteresis

of electric current is identified. The hysteresis demonstrates the important role of the electroconvective flow in

enhancing of current in electrolyte systems with ion-selective membrane.

DOI: 10.1103/PhysRevE.86.046310 PACS number(s): 47.20.−k, 82.40.Bj, 82.45.−h, 82.39.Wj

I. INTRODUCTION

Ion-selective membraness are widely used in many engi-

neering applications, such as water desalination, fuel cells,

and blood analysis, etc. Operational efficiency of a conducting

ion-selective membrane is characterized by its current-voltage

(I -V ) curve. As depicted in Fig. 1, a typical I -V curve consists

of three distinct regimes: a low current Ohmic regime, a

plateau-limiting regime, and an overlimiting current regime.

While the first two regimes could be explained by the classical

theory of concentration polarization [1,2], the mechanism

for the third regime was unclear for a long time. So far,

one of the most promising mechanisms for the overlimiting

current is the fluid convection caused by electro-osmotic slip

of the second kind, suggested by Rubinstein and Zaltzman

[3,4]. Such electro-osmotic slip at the membrane surface

yields instability of the quiescent concentration polarization

region and generates an electroconvective flow that manifests

paired vortices. This vortical flow destroys the diffusion

layer, and brings more ions to the membrane surface to

produce an overlimiting conductivity. This mechanism is

supported by a number of experimental studies. Kim and

co-workers reported a visualization of strong nonequilibrium

electro-osmotic vortices in the overlimiting current regime

of a nanochannel array proving the existence of the second

kind electro-osmosis and vortical flow on a flat permselective

membrane [5]. The first direct experimental verification of

the electro-osmotic instability was conducted by Rubinstein

et al. [6]. It was reported that, when a significantly high

electric field is applied across a flat cation-selective membrane,

vortical flow appears near the membrane surface; concurrently,

the electric current passing through the system exceeds

the limiting-current value. Additional direct experimental

evidence for the electro-osmotic instability was reported by

Yossifon and Chang [7] who demonstrated that the vortex pairs

appearing near nanoslot are due to the instability of the space

charge layer. The mechanism was also supported indirectly by

the experimental observation [8] where overlimiting current

disappeared as the fluid convection is suppressed by using a

high viscosity solution.

The electro-osmotic slip of the second kind was first

introduced by Dukhin et al. [9]. Subsequently, Rubinstein and

Zaltzman [3,4] proposed that such a nonlinear electrokinetic

slip on a flat permselective membrane surface could explain

ion transport in the overlimiting current regime. However,

clear understanding and modeling of this phenomenon would

require an accurate calculation of the ion concentrations,

residual space charge, local electric field, and the fluid flow

near the ion-selective membrane, which is a numerically

expensive, coupled, and multiscale problem. Demekhin and

co-workers [10] recently reported a simulation work on elec-

troconvection in electrolyte for this problem. By decoupling

the nonlinear Poisson-Nernst-Planck (PNP) equations, and

ignoring the inertial term in the Navier-Stokes (NS) equations,

they demonstrated the existence of electrokinetic instability of

electrolyte near a permselective membrane.

In this paper, we study the electroconvection near a perms-

elective membrane by accurately solving the full PNP and

NS equations. Unlike Demekhin’s method, the PNP equations

are not decoupled in this work, and the inertial term in the

NS equations will be considered accurately. The I -V curve

will be considered under the context of electroconvection.

We will examine in detail the formation and development

of electroconvective instability over the membrane surface.

Details of the transition between different current regimes

will be also revealed. Importantly, we will show that the

electroconvection system exhibits a hysteretic characteristic in

the transition between the limiting and overlimiting regimes.
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FIG. 1. Sketch of a typical current-voltage (I -V ) curve of a

permselective membrane.

The hysteresis provides important insights into the mechanism

behind this transition.

II. FORMULATION

We consider a model system of a permselective membrane

interfacing with a symmetric, binary electrolyte solution. The

bulk space is assumed at a distance l0 from the membrane,

where the concentrations of the anions and cations are main-

tained at bulk concentration CBulk. Electric current is driven

through the membrane by a bias voltage between the bulk space

and the membrane. To mimic macroscopic flat membrane

surface with microscale variations, the membrane is modeled

by a series of wavy cation-selective surfaces as sketched in

Fig. 2, where the amplitude of the wave is purposely chosen to

be very small (e.g., 0.001 times the wavelength). This variation

in membrane surface produces a periodical electric field

that generates a perturbative fluid motion when an external

electric field is applied. Such a fluid flow perturbation is

typically confined within the distance of ∼O(a), and therefore

does not lead to significant changes in ion transport in the

Ohmic regime. However, in the overlimiting regime, this

perturbation can lead to significant fluid instability and changes

in both ion concentration and flux. This setup reflects the

FIG. 2. Model system of a permselective membrane interfacing

with an electrolyte. The membrane is modeled by a series of wavy

cation-selective surfaces. The wave amplitude (a) is much smaller

than the wavelength (l), e.g., a = 0.001 × l. A bias voltage is applied

between the membrane and bulk space to drive electric current

through the membrane.

experimental situation, where micro- or submicroscale rough-

ness of the membrane could act as the initiation point of fluid

instability.

In the system, transport of ions is governed by the Nernst-

Planck equations [Eqs. (1) and (2)]; electric potential field

is related to the ion concentrations via the Poisson equation

[Eqs. (3) and (4)]; and the fluid motion is governed by the

Navier-Stokes equations [Eqs. (5) and (6)]. These equations

are given in the dimensionless form as follows:

1

λ̃D

∂C̃±

∂t̃
= −∇̃ · J̃±, (1)

J̃± = −D̃(∇̃C̃± + Z±∇̃�̃) + Pe ŨC̃±, (2)

λ̃2
D∇̃ · (∇̃�̃) = −ρ̃e, (3)

ρ̃e = Z+C̃+ + Z−C̃−, (4)

1

Sc

1

λ̃D

∂Ũ

∂t̃
= −∇̃P̃ + ∇̃2Ũ − Re(Ũ · ∇̃)Ũ −

1

λ̃2
D

ρ̃e∇̃�̃, (5)

∇̃ · Ũ = 0, (6)

where t̃ , C̃±, �̃, Ũ, and P̃ denote the dimensionless time,

concentration of cations ( + ) and anions ( − ), electric poten-

tial, vector of fluid velocity, and pressure, respectively. These

quantities were normalized by the following reference values

of time, ionic concentration, electric potential, velocity, and

pressure, respectively:

τ0 =
l2
0

D0

; C0 = CBulk; �0 =
kBT

Ze
;

(7)

U0 =
ε�0

ηl0
; P0 =

ηU0

l0
,

where CBulk is the concentration of ions at the bulk space, l0
is the characteristic length scale, D0 = (D+ + D−)/2 is the

average diffusivity, kB is the Boltzmann constant, T is the

absolute temperature, e is the elementary charge, Z = |Z±|

is ion valence, η is the dynamics viscosity of solution, and ε

is the permittivity of the solvent. Parameters D̃± = D±/D0,

λ̃D = λD/l0, and ρ̃e = ρe/CBulk are dimensionless diffusion

coefficients, the Debye length (λD =
√

εkBT/2CBulkZ2e2),

and the space charge, respectively. Pe = U0l0/D0, Sc =

η/ρmD0, and Re = U0l0ρm/η are the Péclet number, the

Schmidt number, and the Reynolds number, respectively.

The system is characterized by the dimensionless Debye

length λ̃D . In this study, λ̃D = 0.001 corresponds to the

characteristic length l0 = 13.8 μm, the bulk concentration

CBulk = 0.5 mM, and the absolute temperature T = 300 K.

Other parameters used in the simulation include the diffusiv-

ities D+ = D− = 10−9 m2/s, the number of wavy surfaces

ns = 20, and the membrane length lm = 13.8 μm.

For closure of the governing equations, boundary condi-

tions are also supplied. At the bulk space, ionic species are well

mixed, C̃+ = C̃− = 1, and the fluid is stationary, Ũ = 0. At

the membrane surface, no-flux condition is enforced to anions

J̃− · n = 0; cations are assumed to be accumulated uniformly
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at a concentration of C̃m (C̃+ = C̃m = 2); the common no-slip

boundary condition is enforced to the fluid Ũ = 0. Bias voltage

is applied to the system through a fixed-value boundary

condition for electric potential at the bulk space (�̃ = 0) and

the membrane (�̃ = −V ). At other boundaries, all variables

are assumed to be periodic.

III. NUMERICAL METHODS

The PNP and NS equations are nonlinearly coupled. These

sets of equations relate to each other via the convection term

in the PNP equations and the electric body force in the

NS equations. Two major difficulties in solving numerically

the PNP-NS equations are (i) the stiff nonlinear coupling

of the PNP equations, especially occurring in the electrical

double layer (EDL) of the permselective membrane where

counterions strongly accumulate, and (ii) the rapid change

of electrical body force field across the membrane’s EDL

where ions accumulate and the electric potential changes

rapidly. A possible method to solve the PNP-NS equations

is to discretize the fully coupled set of equations using the

finite element method [11]. This approach, however, results in

a large system of linear equations, which is computationally

expensive. In contrast, the method proposed by Demekhin

et al. [10] decouples the Poisson-Nernst-Planck equations and

solves them sequentially. Although this method reduces the

computational cost significantly, the accuracy might suffer in

dealing with the strongly coupled equations.

In order to avoid solving the large system of linear equations

and guarantee the strong coupling of the PNP equations, we

developed a coupled method for solving the sets of PNP and

NS equations. Starting with a velocity field from the previous

iteration or initial condition, the potential and concentrations

are simultaneously solved from the PNP equations. Then,

electric body force is calculated and substituted into the NS

equations. The velocity field obtained by solving the NS

equations is substituted back into the PNP equations. The

process is repeated until convergence is reached.

The finite volume method [12–14], which is locally

conservative, is used for discretization of the equations. The

nonlinear discretized PNP equations are solved using the

Newton-Raphson method [15]. Due to the rapid variations of

the ion concentrations and electric potential in the EDL, the

mesh near the membrane is refined using the GMSH [16]. To

avoid the nonlinear no-flux boundary condition of co-ions

at the membrane, the primitive concentration variables

C̃± are replaced by electrochemical potential variables

μ± = ln C̃± + Z±�̃. In terms of the electrochemical

potential variables, the ionic fluxes can be written as J̃± =

eμ±−Z±�̃(−D̃±∇̃μ± + Pe Ũ). Taking into account the no-slip

boundary condition at the membrane surface, the no-flux

boundary condition thus reduces to a simple zero-gradient

boundary condition for the electrochemical potential variables.

It is demonstrated that the equations involving μ± require a

lesser number of iterations in the Newton-Raphson method

than the equations involving C± [17]. In addition, using the

generalized minimal residual method [18,19], the discretized

linear equations in terms of electrochemical potential are

solved faster than that in terms of the primitive variables [17].

In the finite volume method, the NS equations can be

solved separately or simultaneously [12,14]. In the flow

developed near the permselective membrane, the body force

varying dramatically in the membrane’s EDL causes large

pressure gradient in the normal direction of the surface. In

order to guarantee coupling of the pressure and velocity, the

NS equations are solved in a coupled manner in which all

equations are solved simultaneously [17]. The Rhie-Chow

interpolation [20] is used to derive an explicit equation for the

pressure.

IV. RESULTS AND DISCUSSION

A. Current-voltage response of permselective membrane

By conducting simulations for different bias voltages, we

examine the development of electroconvection flow and its

effects on the distribution of ions and current passing through

the membrane.

1. Ohmic regime—Ion concentration near membrane reduces

with increasing bias voltage

We begin by applying a small bias voltage between the

bulk space and the membrane to establish an electric field

orthogonal to the membrane. Driven by the electric field,

counterions conduct through the membrane, leading to a

decrease in ion concentrations near the membrane as shown in

Fig. 3, where ion concentrations are plotted for bias voltages

V = 1,4.

Due to the wavy structure of the membrane surface,

the electric field is distorted near the membrane. Within a

wavelength, the electric field points towards the dip of the

wave from both x and opposite-x directions. Action of the

electric field upon the net space charge in the EDL generates

an electric body force pulling fluid towards the dip. The

resultant high pressure at the dip pushes fluid outwards from

the membrane. Due to the fluid flow continuity, a vortex pair

is formed above the wavy surface. These vortices are referred

to as seed vortices. An example of the seed vortices is given

in Fig. 4, where three vortex pairs (corresponding to three

waves) at bias voltage V = 4 are displayed. Several features

of the seed vortices are observed: (i) vortex width is defined

FIG. 3. Ion concentrations at bias voltages in Ohmic regime

(V = 1,4). The electric field drives cations through the membrane,

leading to decreases of ion concentrations near the membrane surface.
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FIG. 4. Seed vortices in Ohmic regime (V = 4). The vortices

are defined by the membrane structure (a,l). Due to the smallness of

the surface perturbation, the flow velocity in the vortices is very low

(0.0015U0).

by the membrane structure, and is small compared to the

system size; (ii) each vortex rotates in the opposite direction

to its two neighbors as a result of the periodic wavy surfaces;

(iii) maximum magnitude of flow velocity in the seed vortices

is ∼0.0015U0, which is small due to the weak lateral electric

field (determined by the bias voltage and the membrane

structure) and small net charge in the EDL.

Due to the low flow velocity, the seed vortices contribute

insignificantly into the overall transport of ions [through

the convection term presented in Eq. (2)]. Ion transport in

the system is dominated by diffusion, as shown in Fig. 3,

where ion concentrations vary linearly with the distance

from the membrane surface. When the bias voltage increases,

the solution is more polarized at the membrane surface, as

represented through the lowering ion concentrations near

the membrane (Fig. 3). As a result, the gradient of ion

concentration increases accordingly, producing an increasing

diffusive flux which is proportional to the external electric

field. The current therefore increases with the bias voltage

manifesting the characteristic of the Ohmic regime (Fig. 14).

2. Limiting-current regime—Development of extended

space charge layer

When bias voltage exceeds a critical value (Vcr1 = 7.5), the

concentration of ions near the membrane surface approaches

zero. Beyond this critical value, a further increase in voltage

insignificantly reduces the concentration near the membrane,

but develops an extended space charge layer next to the EDL

of the membrane. The extended space charge layer was first

studied by Rubinstein and Shtilman [21], from the solution

of a drift-diffusion equation under high electric field. It was

demonstrated that, under such a condition, the equilibrium

EDL becomes distorted, generating an extended space charge

layer relating to the EDL but not part of it. Rather, it is a

separate entity with minimal counterion concentration and

near-zero co-ion concentration [22]. As shown in Fig. 5, the

FIG. 5. Ion concentration at bias voltages in limiting regime

V = 14,19. In this regime, ion concentration near the membrane

approaches zero; a depletion zone develops near the membrane, and

extends with increasing bias voltage.

thickness of the concentration polarization layer is ∼0.05

(corresponding to bias voltage V = 19), which is much thicker

than the original EDL (0.001). The extended space charge

layers corresponding to bias voltages 4, 14, and 19 can also

be inferred from plots of the space charge (ρe = C+ − C−)

in Fig. 6. As can be seen, in the Ohmic regime (V = 4), the

thickness of the space charge layer is only ∼0.005 (in the order

of the EDL thickness). In the limiting regime, the space charge

layer is much thicker and can be extended up to 0.1 (V = 19).

Driven by electrical body force, fluid flow is determined by

the electric field and the space charge. From Fig. 6, it shows

that the space charge within the EDL in the limiting regime is

higher than that in the Ohmic regime. The combined effect of

a larger space charge and a stronger electric field generates a

faster rotation of fluid in the seed vortices. Consequently, the

vortices expand towards the bulk space as shown in Fig. 8(a),

where each seed vortex at V = 14 has a height of 0.15, which is

about two times higher than the seed vortex at V = 4 (Fig. 4).

Lateral velocities (Ux) in the Ohmic and limiting regimes

are shown in Fig. 7. The lateral velocity in the limiting regime

is approximately two times (V = 19) or three times (V = 14)

larger than that in the Ohmic regime. However, the fluid flow is

not strong enough to significantly alter the ion concentration,

FIG. 6. Profile of space charge near the membrane in the Ohmic

(V = 4) and limiting regimes (V = 14 and 19). Due to the development

of an extended space charge layer, the space charge in the limiting

regime is much greater than that in the Ohmic regime.
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FIG. 7. Tangential velocity across a seed vortex at different bias

voltages in the Ohmic (V = 4) and limiting regimes (V = 14 and 19).

Action of an electric field on the extended space charge layer causes

a deformation of seed vortices. The deformation is only significant at

high bias voltages in the limiting-current regime (e.g., V = 19).

and its impact is still confined by the scale of membrane

roughness. The ion concentrations are still uniform in the

lateral direction. Due to the vanishing ion concentrations near

the membrane, current passing through the membrane is only

slightly increased for increasing voltages, corresponding to the

limiting regime in the I -V curve (Fig. 14).

Action of the tangential electric field upon the extended

space charge layer developing near a permselective surface

was studied by Dukhin and co-workers [9]. They suggested a

new kind of electro-osmosis flow, namely, electro-osmosis of

the second kind, for a curved membrane surface. Subsequently,

Rubinstein and Zaltzman advanced a theory of second kind

electro-osmosis on a flat membrane surface [4]. It was shown

that the second kind electro-osmosis can result in an instability

of quiescent concentration polarization [3,4]. These studies

represent the action of the tangential electric field upon the

net charges in the extended space charge layer through the

second kind electro-osmotic slip boundary conditions. In the

present study, by solving the full set of governing equations,

we are able to investigate the dynamics of the extended space

charge layer and the effect of this dynamics on the fluid flow,

as discussed in the following section.

3. Effect of extended space charge layer on the fluid flow

Due to the decrease in ion concentrations in the

polarization layer, net space charge inside the EDL reduces at

V = 19 compared to V = 14. The electrical body force inside

the EDL at V = 19 is weakened accordingly. Consequently,

the flow velocity at V = 19 is lower than that at V = 14, as

shown in Fig. 7.

Although space charge in the EDL is lower, the extended

space charge layer at V = 19 is thicker with the appearance of

a space charge hump at position y = 0.06, as shown in Fig. 6.

Action of the electric field on the extended space charge layer

produces an effect on the flow in the layer. As seen from

Fig. 8(a), this effect seems to be insignificant at V = 14.

However, the effect becomes significant at V = 19, as shown

in Fig. 8(b) where the vortices are deformed at a distance of

∼0.006 from the membrane. Compared with Fig. 6, we can see

that the vortices are distorted at the position of the space charge

hump in the extended space charge layer. Therefore, it can be

stated that the development of extended space charge layers in

the limiting-current regime tends to deform the seed vortices.

The strength of this effect is determined by the space charge

hump and the lateral electric field caused by the roughness of

membrane surface.

A further increase in bias voltage generates a higher space

charge hump and stronger lateral electric field; consequently,

the deformation of the vortices is larger. When the voltage is

significantly high, the seed vortices are broken; the vortices

become unstable, leading to instability of the fluid flow.

FIG. 8. Seed vortices in the limiting regime at V = 14 (a) and V = 19 (b). Due to the higher electric field, the seed vortices in the limiting

regime are longer than those in the Ohmic regime (a). At high bias voltage in the limiting regime (V = 19), action of an electric field upon the

extended space charge layer deforms the seed vortices at the location of space charge hump in the extended space charge layer (Fig. 6).

046310-5



PHAM, LI, LIM, WHITE, AND HAN PHYSICAL REVIEW E 86, 046310 (2012)

FIG. 9. Electroconvective instability at bias voltage V = 22. The action of an electric field on the extended space charge layer starts breaking

the seed vortices from the top at t = 0.011 (a). Adjacent vortices merge to form a larger vortex; at t = 0.013, four large vortices are formed

from the original 40 seed vortices (b).

4. Overlimiting current regime—Electroconvective instability

When the bias voltage exceeds a critical value (Vcr2 = 21),

the seed vortices are broken up by the deformation effect

caused by the action of the electric field on the space charge in

the extended space charge layer. In Fig. 9(a), the seed vortices

start breaking up from their top at t = 0.011. At a time step

later (t = 0.013), the original 40 seed vortices merge into four

large vortices, which extend up to the position of y = 0.4 as

FIG. 10. The development in time of cation concentration (a) and lateral electric field (b) between I and O. The vortex causes an enhancement

of ion concentration at I, where fluid is driven towards the membrane, and a depletion of ion concentration at O, where fluid is driven outwards

from the membrane. Due to the concentration gradient between I and O, the lateral electric field is amplified in time.
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shown in Fig. 9(b). Like the seed vortices, each large vortex

rotates in a direction opposite to its adjacent vortices.

Due to the appearance of the large vortices, the fluid

outside the depletion zone, which has high ion concentrations,

is transported to the membrane surface. We investigate this

transport process by considering the evolution in time of a

single vortex determined by points O and I at coordinates

xO = 0.225 and xI = 0.475 in Fig. 9(b). From the rotation

direction (clockwise) of the vortex, we can see that the fluid,

which has high ion concentrations, is driven to the membrane

surface at the right side of the vortices (indicated by I). As a

result, the ion concentrations are locally enhanced around I.

The vortex, at the same time, returns the low ion concentration

fluid on the membrane surface to the bulk space at the left side

(indicated by O). It therefore expands the local depletion zone

at O. The enhancement and depletion are shown in Fig. 10(a),

where the cation concentration along the line connecting I and

O at time steps 0.4 and 0.45 is plotted.

The concentration gradient between I and O produces

an amplification to electric field [23], which strengthens the

electric body force at the middle of I and O. The amplification

is illustrated in Fig. 10, where the cation concentration and

electric field at two time steps (t = 0.04 and t = 0.045) are

plotted. As can be seen, the higher concentration gradient

develops in time, and the stronger electric field is induced.

This strong electric field tends to accelerate the flow velocity

in the vortex.

In addition, the enhancement compresses the extended

space charge layer at I; consequently, the space charge density

in this layer is increased. The action of the vertical electric field

on this high density space charge generates a high pressure at

I. On the other hand, the depletion at O yields a decompression

on the extended space charge layer resulting in a decrease in

space charge density and related decrease in pressure. The

compression and decompression on the extended space charge

layer are depicted in Fig. 11(a), where the space charge layer at

I is about a half narrower than that at O, and the space charge

density at I is about two times higher. The related increase

(at I) and decrease (at O) in pressure are shown in Fig. 11(b),

where the pressure at I is about two times higher than that at

O. The pressure drop between I and O also tends to accelerate

the flow velocity in the vortex.

The combined effect of electric field amplification and pres-

sure drop accelerating the rotation in the vortex is essentially a

positive feedback and promotes electroconvective instability in

the system. At steady state, the instability generates vortices in

which fluid flow is accelerated to the speed of 130U0. This fast

vortical flow transports ions to the membrane surface as can be

seen in the contour plot of cation concentration in Fig. 12(b),

where the ion concentration is the two-dimensional variation

as opposed to the one-dimensional variation observed in the

Ohmic and limiting regimes.

In order to understand the effect of the vortical flow on

the ion transport, we compare the ion flux obtained with the

vortical flow to the ion flux obtained without vortices (fluid

flow is not considered in the system). A general form of ion

flux is given by the Nernst-Planck equation (2):

J̃y+ = −D̃+

(

∂C̃+

∂ỹ
+ Z+C̃+

∂�̃

∂ỹ

)

+ Pe ŨyC̃+. (9)

In the above equation, the first term is flux attributed to the

ion diffusion, the second term is flux attributed to the field

driven, and the last term is flux attributed to ion convection. In

the no-vortices case, the last term in Eq. (9) is zero.

The comparison is presented in Fig. 13, where the compo-

nents of cation flux passing though a cross section, which is

0.02 above the membrane surface, at V = 22 are plotted. Due

to the impermeability to anions of the membrane, the anion

flux is not shown. It is noted that the ion transport attributed to

convection (crossed markers) is negligible because the cross

section is very close to the membrane, which is impermeable

to the fluid flow.

For the case without vortices, the ion flux components are

uniform along the membrane surface manifesting the linear

variation of ion concentrations and electric potential in the

system. In addition, since the section is taken across the

depletion layer, where cation concentration is low and flat

FIG. 11. Extended space charge layer (a) and pressure (b) at I and O. The coming in flow at I compresses the local extended space charge

layer at I. In contrast, the coming out flow at O decompresses the local extended space charge layer at O. Action of a normal electric field on

the unequal space charge densities at I and O causes a pressure gradient in the lateral direction which tends to speed up the vortex.
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FIG. 12. The steady state streamlines (a) and contour lines of cation concentration (b) at V = 22. The vortices extend to the bulk space (a);

the maximum flow velocity in the vortices is 130U0, which is much faster than that before the instability occurs. The vortices drive more ions

to the membrane surface from one side and expand the depletion zone from the other side (b).

(Fig. 5), the flux component attributed to ion diffusion is

negligible.

For the case with vortices in the region of enhanced ion

concentration (x = [0.0, 0.6]), the flux components attributed

FIG. 13. Flux components in the vortices case is compared

with the no-vortices case. In the region x = [0,0.6], where ion

concentrations are enhanced by the coming in flow, flux components

attributed to the diffusion and field driven are much higher than those

in the no-vortices case. In contrast, in the region x = [0.6,0.95], where

coming out flow expands the depletion zone, the flux components are

lower than those in the no-vortices case. Because the enhanced fluxes

are larger than the reduced fluxes, the total current passing through

the membrane increases over the limiting-current value.

to diffusion and field driven are much higher than those in

the no-vortices case. On the other hand, the expansion of the

depletion zone reduces the local conductivity. As a result,

the flux components in the depletion zone (x = 0.6–0.95)

decrease to lower than those in the no-vortices case. However,

due to the larger amount of enhanced current, the overall

current in the vortices case is higher than that (the limiting

current) in the no-vortices case.

Due to the instability, higher bias voltage results in a faster

flow velocity in the vortices. The faster flow carries more ions

FIG. 14. Current-voltage (I -V ) curve for the permselective mem-

brane obtained by increasing bias voltages (solid line) and by de-

creasing bias voltages (dashed line). In the I -V curves, three regimes

are identified: Ohmic, limiting, and overlimiting. The nonoverlap-

ping I -V curves at the transition between limiting and overlim-

iting current regimes exhibit a hysteretic behavior of the electric

current.
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to the membrane surface to enhance the solution conductivity.

Therefore, beyond the limiting-current regime, the current

increases again with the increasing bias voltage, creating the

overlimiting current regime in the I -V curve (Fig. 14).

As discussed above, the instability is caused by the action of

the lateral field upon the extended space charge layer. Since the

lateral field increases with roughness of the membrane surface,

larger wave amplitude (a) will induce stronger lateral field.

Hence, an increase in the wave amplitude of the membrane

surface leads to an earlier onset of the instability, and so

the overlimiting current regime. This is consistent with the

conclusions of Rubinstein and Zaltzman [4] and Balster et al.
[24] on the influence of membrane surface heterogeneity on

the length of the limiting-current region.

Currents passing through the membrane at different bias

voltages are collected to form the voltage-current (I -V )

curve shown in Fig. 14. In the I -V curve, three regimes

are identified. First, the Ohmic regime, where the convection

flow is negligible, an increase in applied voltage results in

a reduction of ion concentration near the membrane and an

increase in current. Secondly, the limiting-current regime,

which is characterized by the almost constant current with

increasing bias voltage, the saturated current is due to the

vanishing of ions at the membrane-solution interface. The

last regime is the overlimiting current regime occurring at

high bias voltages. In this regime, solution conductivity is

increased significantly due to strong vortical flow caused by

electroconvective instability.

FIG. 15. Steady state streamlines and contour lines of cation concentration at B [(a), (b)] and B′ [(c), (d)]. Due to the initial vortices and

depletion zone, at the same bias voltage the fluid flow and ion concentration at B′ are different from those at B. The large vortices at B′ transport

more ions to the membrane surface, thus enhancing current passing through the membrane.
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B. Hysteretic behavior

As described in the previous section, when the bias voltage

increases, there is a critical voltage which acts as a threshold

between the limiting and overlimiting current regimes. At the

critical voltage, the seed vortices are broken up to form large

vortices. The process of merging vortices involves a large scale

change in the flow field, and modifies the mode of ion transport.

It is interesting to study the reversibility of this process, i.e.,

whether the system exhibits the same behavior when the bias

voltage is decreased passing the critical region.

For this purpose, the system is solved for decreasing bias

voltages starting from a voltage in the overlimiting current

regime. Ionic currents obtained are plotted in Fig. 14 along

with the I -V curve obtained with increasing voltages. It is

obvious that the I -V curves do not coincide with each other

at the transition between limiting and overlimiting current

regimes indicating a hysteretic behavior of the current at the

transition.

In order to investigate the mechanism behind the hysteretic

behavior, we consider flow fields at increasing and decreasing

bias voltage V = 20 denoted by points B and B′ in Fig. 14.

The flow field at B, shown in Fig. 15(a), features a limiting

conductance regime with a series of small vortices defined by

the membrane surface structure. In contrast, the flow field at

B′, shown in Fig. 15(c), consists of two large vortices. It is

shown from Figs. 12(a) and 15(c) that the flow pattern at B′ is

similar to that at the overlimiting current regime; the flows are

different only in flow velocity magnitude.

The maintenance of overlimiting current flow pattern at a

voltage below the critical value can be explained by the existing

vortical flow and depletion zone. The bias voltage (V = 20)

induces a large pressure in the extended space charge layer of

the membrane. Due to the lateral balance in the system at B,

the pressure pushes fluid perpendicularly onto the membrane

surface instead of driving a lateral fluid flow. In contrast, at B′,

the vortical flow resulting from electroconvective instability

compresses the extended space charge region of membrane

from one side (coming in flow), and decompresses it from

the other side (coming out flow). Consequently, it raises

a lateral difference of pressure on the membrane surface.

Therefore, the high pressure in the extended space charge

layer is invoked to retain the vortical flow. Furthermore, the

slight lateral electric field caused by the surface perturbation

is not able to drive a macroscopic flow in the system at B. In

contrast, at B′, the existing depletion zone produces a lateral

concentration gradient which generates a high lateral electric

field. Consequently, it produces an additional lateral body

force to retain the vortical flow. A comparison between lateral

electric fields at B and B′ is shown in Fig. 16. As can be seen

from the figure, the electric field at B is defined by structure

of the membrane surface manifested by the short wavelength

curve. The electric field profile at B′ is a combination of two

components: a short wavelength component defined by the

membrane structure and a long wavelength component caused

by the lateral concentration gradient across the depletion zone.

When voltage decreases further, the rotation velocity

reduces accordingly; the factors retaining the large vortices

flow (including the lateral pressure gradient and the lateral

concentration gradient) are weakened accordingly. Eventually,

FIG. 16. Lateral electric fields near the membrane surface at B

(solid line) and B′ (dashed line). Due to the nonuniform depletion

zone, the lateral electric field at B′ is much larger than that at B. The

lateral body force caused by the large electric field helps to maintain

the overlimiting current flow pattern at B′.

the system returns to the state with seed vortices, and the ion

transport is dominated again by ion diffusion (Fig. 14).

The hysteretic behavior indicates an important role of

vortical flow in the overlimiting current regime. This flow

mixes the diffusion layer to bring high concentration fluid

to the membrane and form depletion zones. Thus, lateral

electric field and pressure gradient are generated to maintain

the vortical flow at a voltage below the critical value.

V. CONCLUSION

By solving the coupled Poisson-Nernst-Planck-Navier-

Stokes equations, we obtain direct numerical solution for

the nonlinear electrokinetic flow near the permselective

membrane. The solution demonstrates the occurrence of

electroconvective instability at a significantly high voltage as

a result of the action of an electric field on the extended space

charge layer. We clarify the mechanism behind the change of

conductivity in an I -V curve. The vortical flow resulting from

the instability transports more ions to the membrane to promote

an overlimiting current passing through it. More importantly,

we observe a hysteretic behavior of current in the transition

between a limiting and an overlimiting regime. The hysteretic

behavior is characterized by the significant difference between

flow pattern and ion distribution in limiting and overlimiting

regimes. The role of electroconvective instability is exhibited

through the hysteresis: Once the ion concentrations are

redistributed by the vortical flow, the resultant macroscopic

lateral electric field and pressure gradient are able to maintain

the overlimiting current regime at a voltage below the critical

value.
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