
Direct numerical simulation of flow around a surface-mounted finite square cylinder

at low Reynolds numbers

Di Zhang, Liang Cheng, Hongwei An, and Ming Zhao

Citation: Physics of Fluids 29, 045101 (2017); doi: 10.1063/1.4979479

View online: https://doi.org/10.1063/1.4979479

View Table of Contents: http://aip.scitation.org/toc/phf/29/4

Published by the American Institute of Physics

Articles you may be interested in

 Free locomotion of a flexible plate near the ground
Physics of Fluids 29, 041903 (2017); 10.1063/1.4981778

 Streamwise vortex breakdown in supersonic flows
Physics of Fluids 29, 054102 (2017); 10.1063/1.4982901

 From two-dimensional to three-dimensional turbulence through two-dimensional three-component flows
Physics of Fluids 29, 111101 (2017); 10.1063/1.4990082

The lowest Reynolds number of vortex-induced vibrations
Physics of Fluids 29, 041701 (2017); 10.1063/1.4979966

 Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction
Physics of Fluids 29, 053301 (2017); 10.1063/1.4982233

Hairpin vortex organization in wall turbulence
Physics of Fluids 19, 041301 (2007); 10.1063/1.2717527

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/522021942/x01/AIP-PT/PoF_ArticleDL_051717/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Zhang%2C+Di
http://aip.scitation.org/author/Cheng%2C+Liang
http://aip.scitation.org/author/An%2C+Hongwei
http://aip.scitation.org/author/Zhao%2C+Ming
/loi/phf
https://doi.org/10.1063/1.4979479
http://aip.scitation.org/toc/phf/29/4
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4981778
http://aip.scitation.org/doi/abs/10.1063/1.4982901
http://aip.scitation.org/doi/abs/10.1063/1.4990082
http://aip.scitation.org/doi/abs/10.1063/1.4979966
http://aip.scitation.org/doi/abs/10.1063/1.4982233
http://aip.scitation.org/doi/abs/10.1063/1.2717527


PHYSICS OF FLUIDS 29, 045101 (2017)

Direct numerical simulation of flow around a surface-mounted
finite square cylinder at low Reynolds numbers

Di Zhang,1,a) Liang Cheng,1,2,a) Hongwei An,1 and Ming Zhao3

1School of Civil, Environmental and Mining Engineering, The University of Western Australia,
35 Stirling Highway, Crawley, WA 6009, Australia
2DUT-UWA Joint Research Centre, State Key Laboratory of Coastal and Offshore Engineering,
Dalian University of Technology, Dalian 116024, China
3School of Computing, Engineering and Mathematics, Western Sydney University, Locked Bay 1797,
Penrith, NSW 2751, Australia

(Received 2 October 2016; accepted 16 March 2017; published online 5 April 2017)

With the aid of direct numerical simulation, this paper presents a detailed investigation on the flow

around a finite square cylinder at a fixed aspect ratio (AR) of 4 and six Reynolds numbers (Re = 50,

100, 150, 250, 500, and 1000). It is found that the mean streamwise vortex structure is also affected

by Re, apart from the AR value. Three types of mean streamwise vortices have been identified and

analyzed in detail, namely, “Quadrupole Type” at Re = 50 and Re = 100, “Six-Vortices Type” at

Re = 150 and Re = 250, and “Dipole Type” at Re = 500 and Re = 1000. It is the first time that

the “Six-Vortices Type” mean streamwise vortices are reported, which is considered as a transitional

structure between the other two types. Besides, three kinds of spanwise vortex-shedding models have

been observed in this study, namely, “Hairpin Vortex Model” at Re = 150, “C and Reverse-C and

Hairpin Vortex Model (Symmetric Shedding)” at Re = 250, and “C and Reverse-C and Hairpin Vortex

Model (Symmetric/Antisymmetric Shedding)” at Re = 500 and Re = 1000. The newly proposed “C and

Reverse-C and Hairpin Vortex Model” shares some similarities with “Wang’s Model” [H. F. Wang

and Y. Zhou, “The finite-length square cylinder near wake,” J. Fluid Mech. 638, 453–490 (2009)] but

differs in aspects such as the absence of the connection line near the free-end and the “C-Shape” vortex

structure in the early stage of the formation of the spanwise vortex. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4979479]

I. INTRODUCTION

Three-dimensional flow structures around a bottom-

mounted cylinder have received considerable attention over the

past decades, mainly due to their relevance in nature and engi-

neering applications.1–6 Many earlier studies focused on the

analysis of the flow past infinite two-dimensional (2D) circular

or square cylinders.7–11 Recently, increasing attention has been

paid to unsteady flow around finite-height cylinders,1–6,12–17

with one end immersed in the free stream (viz., the free end)

and the other end mounted on a plane wall (viz., the base end).

Due to the combined influence of the downwash flow from the

free end, the horizontal streaming around the cylinder, and the

boundary layer near the bottom wall, the three-dimensional

flow structure around a finite-height cylinder placed on a non-

slip surface is usually more complicated than that around a

cylinder of infinite height.

It is understood from the literature that the following six

factors influence the flow structure around a finite-height cylin-

der:1–4,15–25 (1) the turbulence intensity of the approaching

flow; (2) the cross-sectional shape of the cylinder; (3) the Re

number defined as Re = UD/ν, where D is the characteris-

tic width of the cylinder, such as the diameter of a circular

cylinder or the side-length of a square cylinder, U is the free

a)Electronic addresses: di.zhang@uwa.edu.au and liang.cheng@uwa.edu.au.

stream velocity, and ν is the fluid’s kinematic viscosity; (4)

the boundary-layer thickness on the bottom wall relative to the

cylinder height (viz., δ/h); (5) the ratio of the cylinder height

to the characteristic width of the cylinder (viz., AR = h/D);

and (6) the blockage ratio of the channel (viz., β1 = h/H and

β2 = D/B, where H and B are the height and width of the

channel or the computational domain, respectively). The rela-

tive importance of the aforementioned factors may vary across

different scenarios.3,26–29 So far, most of the existing studies

address the influence of only one or two factors, and, there-

fore, the integrated effect of several parameters is still not fully

understood.2,3

Some interesting flow phenomena have been revealed

by previous studies, such as the U-shaped horseshoe vor-

tex system originating in front of a cylinder and extending

downstream from either side of the cylinder; the flow sep-

aration from the leading edge of the top and side faces of

the cylinder; the downward-directed flow from the top of the

cylinder (viz., the downwash) and the recirculation region in

the near-wake behind the cylinder. Many aspects of the horse-

shoe vortex, including the formation mechanism, the number

of vortex cores, the flow regime (i.e., steady, periodic, or irreg-

ular), and the circulation and position of the primary vortex,

have been extensively studied and well understood, as demon-

strated by Baker,30,31 Lin et al.,32 Pattenden et al.,33 Hwang

and Yang,18 Seal et al.,34 Thomas,35 Ballio et al.,36 and so

on. However, open questions still exist for the complex 3D
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wake flow, which involves interactions between various types

of vortices (i.e., tip vortices, spanwise vortices, base vortices,

and horseshoe vortex legs),2,3,20,21,27,37 as discussed in the

following paragraphs.

First of all, the streamwise vortex structure, as one of the

most remarkable properties of the wake topology, still needs to

be further explored. By conducting flow visualization exper-

iments for two finite circular cylinders (i.e., AR = 1.25 and

4.25) at two Reynolds numbers (i.e., Re = 5.92 × 103 and 1.48

× 105), Roh and Park38 reported the formation and evolution

of two pairs of counter-rotating “streamwise instantaneous tip

vortices,” namely, the tornado-like tip vortices (evolving from

two spiral nodes on the top face) and the trailing side tip vor-

tices (rooting from the circumferential edge of the free end).

There have been different opinions about the number and the

origin of tip vortices. For example, Kawamura et al.4 (AR

= 1–8, Re = 3.2 × 104), Park and Lee17,39 (AR = 6–13, Re

= 2 × 104), Krajnovic5 (AR = 6, Re = 2 × 104), Pattenden

et al.33 (AR = 1, Re = 2 × 105), Hain et al.40 (AR ≈ 2.17, Re

= 1 × 105), Leder41 (AR = 2, Re = 2 × 105), and Johnston and

Wilson42 found only one pair of “streamwise instantaneous tip

vortices” near the free end. Transverse instantaneous tip vor-

tex (being different from the streamwise tip vortex), caused by

the vortex-shedding from the leading edge of the free end, has

been observed by Saeedi et al.12 (AR = 4, Re = 1.2 × 104) and

Hwang and Yang18 (AR = 1, Re = 3500). Additionally, Sumner

and Heseltine2 and Sumner et al.21 studied the time-averaged

streamwise vortices in the wake of a finite circular cylinder (AR

= 3–9, Re = 6 × 104, δ/D = 2.6), and their research showed that

either a dipole type or a quadrupole type appears depending on

the aspect ratio (AR) value. At AR = 3 (i.e., a dipole type), only

a counter-rotating pair of mean streamwise tip vortices was

identified at various streamwise sections in the wake, which

was attributed to the downwash flow from the free end. For

AR ≥ 5 (i.e., a quadrupole type), besides the mean streamwise

tip vortices, a pair of mean streamwise base vortices (with

an opposite rotation direction to the tip ones) was observed

within the turbulent boundary layer, which can be explained

by the upwash flow near the bottom wall in the wake. Actually,

this phenomenon has also been observed by Wang and Zhou,1

Pattenden et al.,33 Porteous et al.,27 Sumner,43 Frederich

et al.,44 and Bourgeois et al.,3,45 who showed that the strength

of mean streamwise base vortices was enhanced with the

increase of thickness of the boundary layer (viz., δ/D).25

Although the influence of the AR value on the mean stream-

wise vortex structure has been thoroughly analyzed, the effect

of the Re number on the types of the mean streamwise vortices

and the transition process of vortices between the near and far

wakes have rarely been discussed previously, which is one of

the motivations of this study.

Furthermore, the variation of the vortex-shedding char-

acteristics along the cylinder span has not been completely

ascertained, mainly due to the 3D nature of the vortex struc-

ture and the diversity of the influencing factors. Okamoto and

Sunabashiri24 (AR = 0.5–7, Re = 2.5 × 104 to 4.7 × 104),

Taniguchi et al.46 (AR = 0.75–5, Re = 9 × 103 to 7.2 × 104),

and Sakamoto and Arie23 (AR = 0.5–5, Re = 270–920) showed

the existence of a critical aspect ratio at ARc = 2–5 which marks

the change of vortex-shedding form, and the value of ARc is

mainly affected by Re, δ/D and the cross-sectional shape of the

cylinder. For AR > ARc, the asymmetric Karman vortex street

was observed in the wake because the vortex-shedding is domi-

nated by the lateral free shear layers.2,47 For AR<ARc, the flow

near the free-end suppresses the Karman vortex and eventually

results in the symmetric arch-type vortex along the span in the

near wake. However, Kawamura et al.4 doubted the possibility

of the formation of an arch-shaped vortex for low AR values

because of the existence of the trailing vortices. In addition,

Wang et al.25 (AR = 5, Re = 1.15 × 104) and Wang and Zhou1

(AR = 3–7, Re = 9300) argued that, whether AR is larger or

smaller than the critical value, the anti-symmetric and symmet-

ric vortex-shedding occur intermittently in various horizontal

planes. The probability of occurrence of anti-symmetric and

symmetric vortex-shedding along the cylinder span is depen-

dent on the AR, Re, and δ/D values. Wang and Zhou1 proposed

an empirical 3D vortex-shedding model (combining the tip,

base, and spanwise vortices) around a finite square cylinder,

in which the vortex filaments near the tip and near the base are

bent upstream (caused by the downwash and upwash, respec-

tively). With the increase of the distance from the cylinder,

the bottom vortex filament becomes less inclined as a result

of the decrease of the base-vortex circulation. This makes it

possible that a quadrupole type in the near-wake transforms

into a dipole type in further downstream regions in terms of

mean streamwise vortices.1,47 In addition, Bourgeois et al.3,45

(AR = 4, Re = 1.2 × 104) and Hosseini et al.47 (AR = 8, Re

= 1.2 × 104) proposed two closely related overall models for

the 3D vortex structure, defined as “Bourgeois’s Model” here,

in which two looped or half-looped principle cores are alter-

natively shed from either side of a square cylinder and are

connected at both ends through the connector strands. The

Bourgeois’s model is a fully connected entity in the whole

wake and is relatively more complicated than the hairpin vor-

tex model put forward by Dousset and Pothérat,19 the Wang’s

model1 (which is constituted with two basic components, viz.,

the symmetrically or anti-symmetrically arranged spanwise

vortex rolls.), and several disconnected 3D vortex models (in

which tip vortices, base vortices, and spanwise vortices are

separate flow structures, as presented by Kawamura et al.,4

Sumner,43 Pattenden et al.,33 and Krajnovic5). The diversity

of types of vortex-shedding structures around a finite cylinder

is not totally unexpected due to the complexity of the flow

and the large number of influencing parameters (e.g., AR, Re,

and δ/D).

The purpose of this study is to analyze the influence of

the Re number on the time-averaged streamlines and pressure

contours, on the type of the mean streamwise vortex structure

and on the instantaneous spanwise vortex-shedding model in

the scenario of a finite square cylinder. Six relatively low Re

numbers (i.e., 50, 100, 150, 250, 500, and 1000) at a fixed AR

(i.e., 4) are considered in an effort to reduce the dimensions of

the influencing parameters.

II. CONFIGURATION AND NUMERICAL MODEL

A. Test configuration

A similar geometric configuration as that used by Saha16

is employed in the present study. As illustrated in Fig. 1, a
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FIG. 1. Schematic of the computa-

tional domain and the level-3 mesh.

finite square cylinder with a non-dimensional width of D = 1

and a non-dimensional height of h = 4 is vertically mounted

on a plane boundary, and the (streamwise) length, (transverse)

width, and (spanwise) height of the computational domain are,

respectively, L = 24, W = 16, and H = 10 (which gives an area

blockage ratio of 2.5%). Further, the junction section between

the cylinder and the bottom wall is centered at the origin of

the coordinate system, which means that the inlet boundary is

located at 6D upstream of the cylinder and the outlet boundary

is situated at 18D downstream of the cylinder (i.e., L1 = 6D,

L2 = 18D). It has been verified by Saha16 that the spanwise

domain size, which is equal to the sum of the cylinder height
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and six times that of the cylinder diameter (i.e., H = h + 6D),

is reasonable because even a significant increase of this size

will only lead to a percentage difference of about 0.2% in

terms of the drag coefficient and the dominant vortex-shedding

frequency.

B. Numerical model

The non-dimensional continuity equation and 3D incom-

pressible Navier-Stokes (N-S) equations employed in this

study can be described as follows:48–50

∂ui

∂xi

= 0, (1)

∂ui

∂t
+ ∇ · (uiuj) = −∇p +

1

Re
∇

2ui, (2)

where the subscripts i and j indicate the ith and jth components

of the Cartesian coordinate, respectively, u and p represent

the non-dimensional velocity and pressure, respectively, and

t is the non-dimensional time. The numerical results of six

Reynolds numbers will be presented in this study, namely, Re

= 50, 100, 150, 250, 500, and 1000. Four kinds of boundary

conditions are involved as follows:

1. Inlet: For the velocity field, a fixed uniform velocity is

prescribed (i.e., uI = 1, vI = wI = 0), and, for the pressure

field, the zero-gradient condition is imposed (i.e., ∂pI/∂n

= 0).

2. Outlet: For the velocity field, the convective outflow

boundary condition, as described by Krajnovic,5 Saha,16

and Hwang and Yang,18 has been adopted,

∂φ

∂t
+ ~uc

∂φ

∂n
= 0, (3)

where φ denotes all the three velocity components (viz.,

u, v, and w) and ~uc is the advective velocity at the out-

let boundary. For the pressure field, the homogeneous

Dirichlet condition is utilized at the outlet boundary,

namely, p = 0.

3. The bottom wall and the surface of the obstacle: No-slip

impermeable boundary condition is prescribed for the

velocity field (i.e., u = v = w = 0), and the zero-gradient

condition is employed for the pressure field.

4. Top and lateral boundaries of the computational domain:

Free-slip condition is prescribed, which means that the

velocity component normal to the boundary is zero (i.e.,

ub⊥ = 0) and the normal gradients of both the pressure

and the velocity component tangential to the boundary

are zero (i.e., ∂ub///∂n = ∂pb/∂n = 0, where ub// is the

tangential velocity component).

The numerical simulations were carried out by using the

Open Source Field Operation and Manipulation (OpenFOAM)

C++ libraries. Specifically, icoFoam, one of the standard

solvers provided by OpenFOAM, is selected to solve the non-

dimensional incompressible Navier-Stokes (N-S) equations.

The Pressure Implicit with Splitting of Operators (PISO)50

algorithm is employed to deal with the pressure-velocity cou-

pling on a collocated grid system in the context of the finite

volume method (FVM). The Gauss linear scheme is chosen

to discretize the convection term, the diffusion term, and the

pressure gradient term in the momentum equation, and the

Euler implicit scheme is adopted for the temporal discretiza-

tion. By employing the aforementioned numerical schemes,

the final form of the non-dimensional momentum equations

for an orthogonal mesh can be expressed by the following

formula:

(

~ut+∆t − ~ut

∆t

)

+
1

Vc

6
∑

f=1

Ff~u
t+∆t
f = −

1

Vc

6
∑

f=1

~Af pf +
1

Re
·

1

Vc

×

6
∑

f=1

~Af ·

(

∇ × ~ut+∆t
)

f
, (4)

where ∆t is the adopted time step, c is the center of the consid-

ered control volume, V c is the volume of the control cell, f = 1,

2, 3, 4, 5, and 6 is the centroid of the cell face, ~Af is the area

vector of the cell face, and Ff =
~Af · ~u

t
f

is the volumetric flux

at the cell face. Especially, the linear interpolation scheme is

utilized to acquire the values of ~ut+∆t
f

, pf , and
(

∇ × ~ut+∆t
)

f
in

Eq. (4). For further details of these numerical schemes, read-

ers can refer to the references corresponding to temporal and

spatial discretization schemes.49,51,52

III. VALIDATION AND GRID CONVERGENCE

The present numerical model was validated against the

results reported by Saha,16 where a case identical to one of the

test cases in this study (viz.,Re = 250, AR = 4) was presented.

For the other five test cases (i.e., Re = 50, 100, 150, 500,

and 1000), no published numerical or experimental results are

available; therefore, the grid-dependency study is performed

in order to guarantee sufficient grid resolution. As displayed

in Table I, four levels of non-uniform structured meshes, with

13.96, 8.24, 6.18, and 3.98 × 106 grid points, respectively,

are employed to check the grid-independency, and the num-

ber of grid points, Nx × Ny × N z, distributed on each side

of the cylinder varies with different grid configurations. Since

the accuracy of the boundary-layer simulation has an influ-

ence on the flow around a finite cylinder, the distance between

the first grid point and the bottom wall is also reported in

Table I (defined as near-wall grid size). Consequently, the

boundary-layer thickness at the location of the cylinder (in

the absence of the cylinder) is δ/D ≈ 1.16 at Re = 50, δ/D

≈ 0.86 at Re = 100, δ/D ≈ 0.72 at Re = 150, δ/D ≈ 0.58 at

Re = 250, δ/D ≈ 0.43 at Re = 500, and δ/D ≈ 0.31 at Re

= 1000. Besides, to improve both the temporal accuracy and

the numerical stability, different time steps are adopted for

different grid resolutions to ensure that the maximum Courant-

Friedricks-Lewey (CFL) number in all the cases is smaller than

0.25.

Table I also provides the computed mean drag coefficients

Cd and the Strouhal numbers St for all the seven grid levels

(at Re = 250), which are defined as

Cd = Fx/(ρU2Dh/2), St = fsD/U, (5)

where U is the free stream velocity, Fx is the drag force

in the x direction, obtained by integrating the pressure and

shear stress over all cylinder surfaces, and f s is the dominant

frequency of the transverse fluctuating velocity at the loca-

tion (x, y, z) = (16.0, 0.0, 2.0) in the far-wake. Overall, at
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TABLE I. Validation and grid convergence for a square cylinder of AR = 4.

Mesh Grid Number of Nx × Ny Near-wall Time Strouhal Mean drag

name resolutiona nodes (×106) × Nz
b grid size step (∆t) number (Re = 250)c coefficient (Re = 250)

Level-1 215× 148× 125 3.98 32× 32× 77 0.007 0.002 0.121 1.186

Level-2 244× 171× 148 6.18 39× 39× 93 0.004 0.001 0.123 1.208

Level-3d 262× 185× 170 8.24 42× 42× 104 0.001 0.0008 0.123 1.213

Level-4e 303× 228× 202 13.96 48× 48× 118 0.0006 0.0005 . . . . . .

Saha’s coarse level16 152× 112× 98 1.66 26× 26× 71 0.025 0.002 0.120 1.19

Saha’s middle level16 177× 136× 120 2.89 34× 34× 83 0.01 0.002 0.124 1.23

Saha’s fine level16 204× 150× 132 4.04 42× 42× 92 0.005 0.002 0.125 1.23

aIn these structured meshes, the grid points are clustered near the bottom wall and the cylinder surfaces (Figs. 1(b) and 1(c)).
bNx , Ny , and Nz , respectively, represent the number of grid points distributed on each side of the cylinder.
cThe Strouhal number (St ) is calculated at the location (x/D = 16, y/D = 0, and z/D = 2) for the transverse fluctuating velocity.
dLevel-3 is the adopted grid of case-1 (Re = 50), case-2 (Re = 100), case-3 (Re = 150), case-4 (Re = 250), and case-5 (Re = 500).
eLevel-4 is the employed grid of case-6 (viz., Re = 1000) in this study in order to enhance the accuracy as much as possible.

Re = 250, level-2 and level-3 almost result in the same mean

drag coefficient and Strouhal number (the corresponding per-

centage errors are, respectively, 0.42% and 0.00%.), which

are slightly different from that obtained by Saha,16 as shown

in Table I. However, this deviation is deemed as reasonable

in consideration of the large difference in mesh resolution.

It should be emphasized that, although the level-3 mesh is

fine enough to get the grid-independent solution for Re ≤ 500

(viz., from case-1 to case-5), when it comes to Re = 1000

(viz., case-6), the level-4 mesh is necessary in order to achieve

the grid-convergence, as displayed in the Appendix. In order

to reach the fully developed flow regime in the wake, all

the simulations were first run over approximate 42 flow-

through periods (viz., T0 ≈ 42 × (L1 + L2)/U ≈ 1000). Then,

the flow fields were averaged for another non-dimensional

time interval of 1000 to yield statistically independent

results.

Table II summarizes the variation of the mean drag coef-

ficients Cd , the Strouhal number St , the type of the mean

streamwise vortices, and the instantaneous spanwise vortex-

shedding model with the increase of Re. It is obvious that the

value of Cd first decreases, then increases during this pro-

cess, and reaches the minimum around Re = 250. Besides, the

critical Reynolds number between steady and unsteady flows

in this study lies in the range of 100 ≤ Recri < 150, which

is consistent with the results of Dousset and Potherat19 (AR

= 4, square cylinder; Recri ≈ 150, large δ value). This value

is relatively larger than its counterpart in the 2D scenario in

view of that Recri-2D = 30–60 (Breuer et al.10), Recri-2D < 70

(Okajima53), and Recri-2D = 54 (Klekar and Patankar54). The

value of St falls in St = [0.100, 0.123], being in accordance

with the numerical results of Wang and Zhou1 (AR = 7,

Re = 9300, and St = 0.110), Saeedi et al.12 (AR = 4, Re

= 12 000, and St = 0.106), and Bourgeois et al.3,45 (AR = 4,

Re = 12 000, and St = 0.100 ± 0.003). When it comes to the

types of mean streamwise vortices and the spanwise vortex-

shedding model (serving as the two main innovations of this

paper), various kinds of vortex structures exist in the range

of the Re considered in this study, which will be detailed in

Sec. IV.

IV. RESULTS AND DISCUSSION

A. Mean velocity and pressure fields

In this section, the mean velocity and pressure fields are

investigated by examining the time-averaged streamlines and

pressure contours in several characteristic planes.

1. Two characteristic planes

Figs. 2 and 3 show the time-averaged streamlines and

pressure contours on two characteristic sections, namely,

the symmetry plane (Y = 0) and the mid-height plane (Z

= 2). As expected, a higher Re number leads to a stronger

negative pressure behind the cylinder. The dashed purple

line depicts the separation line originating from the leading

TABLE II. Variation of the mean drag coefficient, Strouhal number, and vortex structure with the Re number.

Mean drag Strouhal Mean streamwise vortex Spanwise vortex-shedding

Re coefficient numbera structure model

50 1.675 . . . “Quadrupole Type” Steady flow

100 1.314 . . .

150 1.222 0.116

“Six-Vortices Type”

“Hairpin Vortex Model”

“C-Reverse-C-Hairpin Vortex Model”

250 1.213 0.123 (Symmetric Shedding)

500 1.298 0.113
“Dipole Type” “C-Reverse-C-Hairpin Vortex Model”

1000 1.404 0.106
(Symmetric/Anti-Symmetric Shedding)

aIn the literature, St = 0.110 for Wang and Zhou1 (AR = 7, Re = 9300), St = 0.106 for Saeedi et al.12 (AR = 4, Re = 12 000), and

St = 0.100 ± 0.003 for Bourgeois et al.3,45 (AR = 4, Re = 12 000).
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FIG. 2. Time-averaged streamlines and pressure fields on the symmetry plane (Y = 0) at different Re numbers: (a) Re = 50; (b) Re = 100; (c) Re = 150; (d) Re

= 250; (e) Re = 500; (f) Re = 1000; (g) the locations of R at various Re numbers.

corner of the cylinder, which is the dividing line between

the outer zone and the influence region of the backflow.

Actually, the separating line in the symmetry plane directly

reflects the strength of the downward flow from the tip (i.e.,

downwash1,2,21) and plays an important role in the formation

of flow structures.

As shown in Fig. 2, in contrast to case-5 (i.e., Re = 500) and

case-6 (i.e., Re = 1000), the other four cases have a different

streamline pattern in the mid-transverse plane because of the

relatively weak downwash and the relatively thick boundary-

layer, which can be deduced from the fact that the separation

line in Figs. 2(a)–2(d) fails to reach the bottom wall. This

results in the impingement point (denoted by the capital letter

R in Fig. 2) occurring above the base. Consequently, an obvious

upward flow (defined as the upwash by Wang et al.25 and Bour-

geois et al.3), which comes from the source point E and clashes

with the downwash along the X direction, can be observed in

Figs. 2(a)–2(d), and this upwash flow has a significant influ-

ence on several aspects of the flow field, such as the mean

streamwise vortices, which will be described later on in detail.

Besides, Fig. 2(g) presents the locations of the impingement

point R for all the six Re numbers. Moreover, Fig. 3 compares

the time-averaged streamlines on the mid-span plane for each

of the cases. It is clear that, except for case-2 (Re = 100), the

remaining five cases share the same streamline profile, includ-

ing two symmetrically distributed spiral nodes (i.e., A and B in
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FIG. 3. Time-averaged streamlines and pressure fields on the mid-span plane (Z = 2) at different Re numbers: (a) Re = 50; (b) Re = 100; (c) Re = 150; (d) Re

= 250; (e) Re = 500; (f) Re = 1000.

Figs. 3(a) and 3(c)–3(f)) and one saddle node (i.e., H in Figs.

3(a) and 3(c)–3(f)).

Especially, Figs. 2(a)–2(d) and 2(g) demonstrate that,

when Re ≤ 250, the spanwise size of the upwash flow near

the base will diminish with the increase of Re (considering

that R(z) = 1.88 in Fig. 2(a), R(z) = 1.36 in Fig. 2(b), R(z)

= 1.17 in Fig. 2(c), and R(z) = 0.87 in Fig. 2(d), where R(z)

is the Z-coordinate value of the impingement point R.), but

the streamwise range of the upwash flow will monotonically

increase during this process (considering that R(x) = 3.38 in

Fig. 2(a), R(x) = 5.31 in Fig. 2(b), R(x) = 5.62 in Fig. 2(c),

and R(x) = 6.24 in Fig. 2(d), where R(x) is the X-coordinate

value of the impingement point R). However, when Re ≥ 500,

the X-position of the impingement point R will decrease with

the increase of the Re number, and, consequently, the reattach-

ment point at Re = 500 (viz., R(x) = 7.68 in Fig. 2(e)) is farther

from the cylinder than its counterpart at Re = 1000 (viz., R(x)

= 6.00 in Fig. 2(f)). Overall, on the symmetry plane, the size

of the downwash recirculation region (its center is denoted by

D in Fig. 2) will first increase then decrease with the growing

of the Reynolds number and reaches the maximum around Re

= 500 (Fig. 2(e)). On the contrary, the vertical dimension of

the upwash recirculation region (its possible center is indicated

by C in Fig. 2) will monotonically decrease with the increase

of Re.

Additionally, at Re = 50 and Re = 100, the flow is

steady and no spiral node A (representing the time-averaged

horseshoe vortex) can be observed in front of the cylinder, but,

at Re = 150, 250, and 500, there is one horseshoe-vortex spiral

point on the symmetry plane, marked by A in Figs. 2(c)–2(e),

and the number of the horseshoe vortices increases up to 2 at

Re = 1000 (Fig. 2(f)).

2. Flow patterns on the cylinder surfaces

Fig. 4 provides the topology of the mean flow in planes

at a non-dimensional distance of 0.0001 from the cylinder

surfaces (i.e., dn = 0.0001) for all the six Reynolds num-

bers. On the top surface, no backflow region (no separation)

can be observed at Re = 50, but, with the increase of Re,

the recirculation region (separated flow) appears, whose area

becomes larger and larger. As shown in Figs. 4(b)–4(f), two

spiral-flow centers (i.e., A and B) are symmetrically distributed

within the backflow region, and their locations shift away from

the Y = 0 plane as Re increases, namely, YA&B = ±0.277,

±0.407, ±0.455, ±0.496, and ±0.541 at the five Re values

with an increasing sequence. It should be noted that A and

B are actually located outside the top surface at Re = 1000, as

confirmed by the coordinate value. There is a separation line

connected between the points A and B near the front edge of the

top surface, and this separation line moves towards the front

edge with the increase of Re in the range of Re = 100–1000.

Fig. 4(f) also reveals that at Re = 1000 a source node S exists

near the trailing edge of the tip, which is actually originated

from the source point S in the symmetry plane (as shown in

Fig. 2(f)). However, at Re = 150, 250, and 500, the backflow

above the top surface in the Y = 0 plane is initiated from the
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FIG. 4. Time-averaged streamlines on cylinder surfaces. (a) Re = 50; (b) Re = 100; (c) Re = 150; (d) Re = 250; (e) Re = 500; (f) Re = 1000.

downwash recirculation region behind the cylinder (i.e., D in

Fig. 2(c)–2(e)).

On the front face, a vertical separation line lies in the cen-

ter along the spanwise direction, and the streamlines along

most of the span show the two-dimensional feature (at least

in the neighbor-hood of the obstacle). However, near the two

ends of the cylinder, the two-dimensionality of the stream-

lines vanishes because of the effect of the tip and the boundary

layer. Furthermore, with the increase of Re, the thickness of

the boundary layer becomes smaller, and consequently, the



045101-9 Zhang et al. Phys. Fluids 29, 045101 (2017)

two-dimensional flow region on the front face will extend

toward the bottom wall, as shown in Fig. 4.

On the rear face, except for Re = 50 (viz., Fig. 4(a)),

the flow comes from a source point, denoted by F in Figs.

4(b)–4(f). With the increase of Re, the height of the source

point will continuously decrease (namely, ZF = 2.10, 1.92,

1.23, 0.78, and 0.60 for the five Re values with an increasing

sequence), and the curvature of the mean streamlines pene-

trating through the top edge will increase. Consequently, a

pair of counter-rotating spiral flows is formed near the tip

at Re = 1000, expressed by C and D in. Fig. 4(f). Actu-

ally, the two spiral-flow centers are slightly higher than the

top edge (i.e., ZC&D ≈ 4.11), but they are still marked out

in the figure. In addition, the point F is situated at the

center line of the rear face in the present study, which is

different from an asymmetric location reported in Ref. 16.

The present result (in terms of the location of the point

F) appears to be reasonable, considering the time-averaged

property and the geometrical symmetry of the computational

domain.

As shown in Figs. 4(c)–4(f), for all the four unsteady

cases, on the lateral face of the cylinder, a (partly) quasi-

horizontal dividing line (i.e., the dashed purple line) can be

identified, above/below which the mean streamlines turn to the

upside/downside. Especially, at Re = 1000, the partly quasi-

horizontal dividing line, passing through the lower right corner

(i.e., X = 0.5, Z = 0), essentially stems from the spiral center

on the lateral plane, being similar to the point C in Fig. 2(f).

B. Mean streamwise vortices

The appearance of mean streamwise vortices is one of

the most remarkable properties of the finite-cylinder wake,

and previous studies showed that either a dipole type or a

quadrupole type of the mean streamwise vortex structure can

be observed in the wake depending on the aspect ratio with

a critical value of ARc = 3–5, as presented by Wang and

Zhou,1 Sumner and Heseltine,2 Bourgeois et al.,3,45 Sumner

et al.,21 Porteous et al.,27 Pattenden et al.,33 and Frederich

et al.44 Although the influence of AR on the mean stream-

wise vortex structure has been extensively discussed,1–3,21 a

systematic study on the effect of the Re number on the types

of the mean streamwise vortices is absent in the existing lit-

erature, which actually serves as the main content of this

section.

The λ2 criterion, put forward by Jeong and Hussain,55 is

selected to display the mean streamwise vortex structure in

the wake because this criterion not only captures the pressure

minimum in a plane perpendicular to the vortex axis at high

Re numbers but also accurately defines vortex cores at low Re

numbers,3,45,55

Sij =
1

2

(

Ui,j + Uj,i

)

, Ωij =
1

2

(

Ui,j − Uj,i

)

,

Mij = S2 +Ω2
= SikSkj +ΩikΩkj, (6)

λ2 = the second eigenvalue of Mij,

where the subscript comma denotes partial differentiation and

the summation convention is used for the indices i, j, and

FIG. 5. “Quadrupole Type” mean streamwise vortex structure in the wake at

Re = 50 (λ2 = ☞0.024) and Re = 100 (λ2 = ☞0.024) coloured by the magnitude

of the mean velocity in the X-direction (i.e., umean).

k (which, respectively, indicate the three components of the

Cartesian coordinates). Sij and Ωij are the symmetric and

antisymmetric parts of the velocity gradient tensor ∇Uij. If the

second eigenvalue of the M ij tensor is locally negative (viz.,

λ2 < 0), a vortex core can then be detected at this location.

FIG. 6. “Six-Vortices Type” mean streamwise vortex structure in the wake at

Re = 150 (λ2 = ☞0.024) and Re = 250 (λ2 = ☞0.024) coloured by the magnitude

of umean.
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FIG. 7. Mean streamwise vortex structure will be transformed from “Six-

Vortices Type” into “Quadrupole Type” at Re = 250 (λ2 = ☞0.002) in the

far-wake region.

Figs. 5–8 show the 3D vortex cores of the mean flow field

identified by utilizing the λ2 criterion for all the six cases. It

should be emphasized that, at least two distinct conclusions

can be drawn from these figures, which are different from the

previous observations and actually serve as one of the main

innovation points of this study, as discussed in the following

paragraphs.

First, with the increase of Re, three types of mean stream-

wise vortex structures are identified, namely, the “Quadrupole

Type” at Re = 50 and Re = 100, the “Six-Vortices Type” at Re

= 150 and Re = 250, and the “Dipole Type” at Re = 500 and

Re = 1000. As illustrated in Fig. 5, the “Quadrupole Type” is

comprised of mean streamwise base vortices (i.e., “G0-H0,”

caused by the upwash flow) and mean streamwise tip vor-

tices (i.e., “G1-H1,” caused by the downwash flow). Fig. 6

shows that the “Six-Vortices Type” is constituted by “G1-H1,”

descending mean tip vortices (i.e., “G2-H2”), and one pair of

counter-rotating vortices caused by the bending of the mean

streamlines induced by the upward flow (i.e., “C-D”). In fact,

Fig. 6(b) suggests that two pairs of counter-rotating vortices

(i.e., “C-D” and “E-F”) are generated from the bending of the

mean streamlines near the base caused by the upward flow at

Re = 250. Considering that the extent and strength of “E-F”

are relatively small when compared with that of “C-D,” “E-

F” vortices are not deemed as one part of the main structures

of mean streamwise vortices. As demonstrated in Fig. 8, the

“Dipole Type” only consists of one pair of mean streamwise tip

vortices “G1-H1”. As far as we know, only the “Dipole Type”

and the “Quadrupole Type” have been presented in the exist-

ing literature by varying the AR value; therefore, it is the first

time that the “Six-Vortices Type” mean streamwise vortices

are reported, which can be treated as the transitional structure

between the other two types. Special attention should be paid

to Figs. 6(b) and 7, which indicate that the mean streamwise

vortex structure transforms from “Six-Vortices Type” in the

middle-wake region into “Quadrupole Type” in the far-wake

region at Re = 250, where “G2-H2” and “C-D” vanish and

the extent of “E-F” is relatively small when compared with

that of “G1-H1” and mean streamwise base vortices-farwake

(i.e., “I-J”). The transition process between the “Six-Vortices

Type” in the middle-wake (i.e., Fig. 6(b)) and the “Quadrupole

Type” in the far-wake (i.e., Fig. 7) will be detailed later on

for the purpose of ascertaining the formation mechanism of

the newly proposed “Six-Vortices Type” mean streamwise

vortices.

Second, serving as an extension of the conclusions drawn

from previous research, it is put forward that the type of

the mean streamwise vortices in the wake is determined by

whether or not the downward flow from the cylinder tip can

reach the bottom wall, namely, whether or not the down-

wash in the upper part and the upwash in the lower part

coexist in the symmetry plane, depending on the combined

influence of Re, AR, and δ/D. For example, Figs. 2(e), 2(f),

FIG. 8. “Dipole Type” mean streamwise vortex structure

in the wake at Re = 500 (λ2 = ☞0.024) and Re = 1000 (λ2

= ☞0.028) coloured by the magnitude of umean.
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FIG. 9. The “Quadrupole Type” evolu-

tion of the mean streamwise vortices

between the near and far wakes at Re

= 100. (a) X = 3.0; (b) X = 4.0; (c) X

= 5.0; (d) X = 6.0.

and 8 indicate that, when the downwash can reach the base

(viz., the impingement point R lies on the bottom wall in the

symmetry plane), only a pair of counter-rotating mean stream-

wise tip vortices (viz., “Dipole Type”) is observed in the wake

at Re = 500 and Re = 1000, but Figs. 2(a)–2(d), 5, and 6 show

that, when the downwash fails to reach the bottom wall (viz.,

the impingement point R occurs above the base in the symme-

try plane), either “Quadrupole Type” or “Six-Vortices Type”

mean vortex structure is formed in the wake, in spite of the

same AR value for all the six cases. In other words, Figs. 5–8

clearly illustrate that, even for a fixed AR value, all the three

types of profiles are possible. However, in the existing litera-

ture,1–3,21,33,45 it was believed that the mean streamwise vortex

pattern is determined by the AR value, namely, the dipole type

when AR ≤ ARc and the quadrupole type when AR > ARc. We

underline the fact that, on one hand, for a prescribed Re (with

the same δ/D value), the AR value does play a critical role on

the relative strength of the downwash, and this leads to previous

findings that the type of mean streamwise vortices in the wake

is dependent on the AR value. On the other hand, for a given AR

value, the occurrence of the upwash flow (being the root cause

of the mean streamwise base vortices) near the base hinges on

both Re and δ/D. The results shown in Figs. 2(a), 2(b), and 5

suggest that the combination of low Re and large δ/D values is

conductive to the coexistence of the downwash and upwash in

the symmetry plane, namely, the formation of the quadrupole

type.

Considering that the transition process from the

complex streamwise vortex system in the near-wake to the

simple streamwise vortex pattern in the far-wake has not been

satisfactorily explained until now,3,20 the remaining part of this

section will focus on the evolution of mean streamwise vortices

between the near and far wakes with the aid of mean stream-

lines and mean vorticity contours. In view of the definition of

vorticity (viz., Ω = ∇ × U, namely, the strength and profile

of the vorticity field is determined by the velocity gradient),

the vortex cores identified by the mean streamlines may not be

completely consistent with that observed from the mean vor-

ticity contours. As confirmed in Figs. 6 and 23 in Ref. 1, Fig. 3

in Ref. 2, Figs. 7 and 8 in Ref. 21, Figs. 12 and 13 in Ref. 33,

and Figs. 9–16 in this article, the locations of the vortex cores

identified by the mean streamlines sometimes deviate from

those obtained by the vorticity contours to a certain degree.

It is possible that, some vortex cores are visible by means of

the vorticity contours, but no corresponding spiral flow can

be observed by the streamlines and vice versa. Therefore, it

is necessary to combine the mean streamlines with the mean

vorticity contours in order to effectively explain the evolution

of mean streamwise vortices.

Figs. 9 and 10 present the quadrupole-type evolution of

mean streamwise vortices in the wake for case-2 (i.e., Re

= 100), being in accordance with the results of Fig. 5(b).

Actually, case-1 (i.e., Re = 50) shares almost the same

transition process, which is omitted here for simplicity. It

FIG. 10. The evolution of the time-

averaged streamlines between the near

and far wakes at Re = 100. (a) X = 3.0;

(b) X = 4.0; (c) X = 5.0; (d) X = 6.0.
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FIG. 11. The “Dipole Type” evolu-

tion of the mean streamwise vortices

between the near and far wakes at Re

= 1000. (a) X = 0.60; (b) X = 2.00; (c) X

= 3.00; (d) X = 5.00; (e) X = 8.00; (f) X

= 10.0.

is obvious that, with the increasing distance from the cylin-

der, the strength of G1-H1 (mean streamwise tip vortices,

caused by the downwash flow from the cylinder tip) first

increases then decreases (reaching the maximum value around

X = 5 (i.e., |Ωx | = 0.57)), but the strength of G0-H0 (mean

streamwise base vortices, caused by the upwash flow near

the base) monotonically decreases during this process. Other

conclusions include that the height of G1-H1 continuously

decreases when moving along the downstream direction, and

two pairs of mean streamwise vortices (viz., G0-H0 and C-D)

are formed due to the bending of the mean streamlines

caused by the upward flow from the base at the X = 3.0

section.

Figs. 11 and 12 depict the dipole-type evolution of mean

streamwise vortices in the wake for Re = 1000, being in accor-

dance with the results of Fig. 8(b). In fact, Re = 500 shares

almost the same transition process, which is omitted here for

simplicity. At least three evolution stages can be identified in

the wake for the dipole-type evolution. Stage-I refers to the

front part of the region between the rear surface of the cylin-

der and the center of the downwash recirculation zone in the

symmetry plane (i.e., the point D in Figs. 2(e) and 2(f)), such

as X = 0.60 at Re = 1000. As displayed by Figs. 11 and 12(a),

the upward flow dominates the streamwise planes situated

within this region, and two pairs of counter-rotating time-

averaged tip vortices are formed near the free-end, namely,

FIG. 12. The evolution of the time-

averaged streamlines between the near

and far wakes at Re = 1000. (a) X = 0.60;

(b) X = 2.00; (c) X = 3.00; (d) X = 5.00;

(e) X = 8.00; (f) X = 10.0.
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FIG. 13. The “Six-Vortices Type” evo-

lution of the mean streamwise vortices

between the near and far wakes at Re

= 250: Part-1. (a) X = 1.00; (b) X = 2.00;

(c) X = 4.00; (d) X = 6.00; (e) X = 8.00;

(f) X = 10.0.

tornado-like tip vortices T1-T1′ and trailing side tip vortices

T2-T2′. Similar to the conclusions reached in Ref. 38, T1-T1′

evolves from two centers of the spiral flow on the top sur-

face, namely, A and B in Fig. 4(f), which can be verified by

showing the vorticity contours in the plane traversing A and B

(but omitted here for simplicity). Besides, T2-T2′ originates

from two leading corners of the tip; however, for circular cylin-

ders, the corresponding vortex pair is actually produced by the

periphery of the free-end.38 During the stage-I, the strength

of T1-T1′, T2-T2′, and two pairs of horseshoe vortices

(A1-A1′ and A2-A2′) continuously decreases with the increase

of distance from the obstacle. Stage-II is characterized by the

emergence of the descending mean tip vortices G2-H2 and the

coexistence of G1-H1 and G2-H2, such as X = 2–8 at Re

= 1000 (viz., Figs. 11(b)–11(e)). When the downwash is

formed in the upper part, G2-H2 is observed, as shown in Figs.

11 and 12(b). When moving further downstream, the strength

of the downwash in the upper region of the streamwise plane

increases continuously, and consequently the mean streamwise

tip vortices G1-H1 are formed in the vorticity contours figure,

but no corresponding spiral flow is observed from the mean

streamline representation, as confirmed by Figs. 11, 12(c), and

12(d). At further downstream locations, when the strength of

the downwash in the upper zone is large enough, a pair of spiral

flow corresponding to G1-H1 eventually appears in the mean

streamline figure, as presented in Fig. 12(e). As for G2-H2,

FIG. 14. The evolution of the time-

averaged streamlines between the near

and far wakes at Re = 250: Part-1. (a) X

= 1.00; (b) X = 2.00; (c) X = 4.00; (d) X

= 6.00; (e) X = 8.00; (f) X = 10.0.
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FIG. 15. The “Six-Vortices Type” evo-

lution of the mean streamwise vortices

between the near and far wakes at Re

= 250: Part-2. (a) X = 11.0; (b) X = 12.0;

(c) X = 14.0; (d) X = 16.0.

it is found that this pair of vortices, being originated from the

downward flow in the upper region, will be transported down-

wards with the increase of the X value till the height of the

impingement point R. After that, G2-H2 will move laterally

away from the centreline, its strength continuously decreases,

and finally it disappears in both of the streamline and vorticity

representations. Additionally, when G2-H2 approaches (not

arriving at) the bottom, the bending of the mean streamlines

(in Fig. 12(c)) caused by the upward flow from the base leads

to the generation of the vortex pair C and D in Fig. 11(c),

the strength of which monotonically reduces with the increase

of distance from the obstacle and finally completely vanishes.

Stage-III is distinguished by the stabilization of the profile

of the mean streamwise vortices, as depicted in Figs. 11

and 12(f). In this stage, G2-H2 and C-D have disappeared

and the mean streamwise tip vortices G1-H1 dominate the

plane.

Figs. 13–16 demonstrate the six-vortices type evolution

of mean streamwise vortices in the wake for case-4 (i.e., Re

= 250), being in accordance with the results of Figs. 6 and 7. In

fact, case-3 (i.e., Re = 150) shares almost the same transition

process, which is omitted here for simplicity. The six-vortices

type evolution has some similarities with the dipole-type evo-

lution, but differences do exist between them, as discussed in

the following. In the first place, for stage-II, Figs. 13 and 14(b)

show that G2-H2 initially emerges near the middle height

of the cylinder with the occurrence of the downwash, rather

than near the tip region (e.g., Figs. 11 and 12(b)). With the

increase of X, the strength of G2-H2 is first enhanced (i.e., in

the range of 2 ≤ X ≤ 6, Figs. 13(b)–13(d)) and then weakened

(i.e., in the range of 6 ≤ X ≤ 10, Figs. 13(d)–13(f)), being

in accordance with the variation trend of G2-H2 shown in

Figs. 11(c)–11(f). In the second place, as the distance from the

obstacle increases, the height of G2-H2 is reduced to that of

the impingement point R in Fig. 2(d), as confirmed by Figs. 13,

14(e), and 14(f), which is consistent with the aforementioned

conclusion that this pair of vortices is eventually convected to

the height of the impingement point in the symmetry plane.

It is obvious that G2-H2 completely disappears in stage-III

because of its rapidly decreasing intensity along the X axis.

In the third place, Figs. 13(d)–13(f) also indicate that, during

the transition process of G2-H2, two pairs of counter-rotating

vortices (i.e., C-D and E-F) are generated due to the bend-

ing of the mean streamlines in the lower part induced by the

upward flow from the base, while only one pair of such vor-

tices (i.e., C-D in Figs. 9(a), 9(b), and 11(c)–11(e)) is observed

for the quadrupole-type evolution and the dipole-type evo-

lution. Further, with the increase of X, C-D and E-F move

laterally away from the centerline and their strength monoton-

ically decreases. In the fourth place, for stage-III at Re = 250,

both mean streamwise tip vortices (i.e., G1-H1) and mean

streamwise base vortices-farwake (i.e., I-J) can be observed

in the far-wake region, which suggests that the mean stream-

wise vortex structure transforms from “six-vortices type” into

FIG. 16. The evolution of the time-

averaged streamlines between the near

and far wakes at Re = 250: Part-2. (a) X

= 11.0; (b) X = 12.0; (c) X = 14.0; (d) X

= 16.0.
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FIG. 17. “Hairpin Vortex Model” instantaneous span-

wise vortices at Re = 150 (λ2 = ☞0.03, indicating that the

spanwise vortex-shedding phenomenon is very weak): (a)

time-01; (b) time-02; (c) time-03.

“quadrupole type” as the distance from the cylinder increases

at Re = 250, as presented in Figs. 7, 15, 16(c), and 16(d).

So far, three types of mean streamwise vortex structures

have been defined and detailed, namely, the “Quadrupole

Type” at Re = 50 and 100, the “Six-Vortices Type” at

Re = 150 and 250, and the “Dipole Type” at Re = 500

and 1000. Correspondingly, three kinds of evolution pro-

cesses of mean streamwise vortices along the streamwise

(i.e., X) direction have also been explained in detail, which

is beneficial to the understanding of the finite-cylinder

wake.

C. Instantaneous spanwise vortices

This section aims to investigate the three-dimensional

spanwise vortex structure behind the cylinder in terms of

the 3D physical model of the vortex-shedding and the 2D

FIG. 18. “C and Reverse-C and Hair-

pin Vortex Model (Symmetric Shed-

ding)” instantaneous spanwise vortices

at Re = 250 (λ2 = ☞0.48): ((a) and (b))

time-01; ((c) and (d)) time-02; ((e) and

(f)) time-03.
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FIG. 19. “C and Reverse-C and

Hairpin Vortex Model (Symmet-

ric/Antisymmetric Shedding)” instant-

aneous spanwise vortices at Re = 500

(λ2 = ☞1.42): ((a), (c), and (e)) sym-

metric and anti-symmetric; ((b), (d),

and (f)) anti-symmetric.

vorticity contours in various horizontal planes at some char-

acteristic moments.

1. Physical model of vortex-shedding

When it comes to the identification of vortex cores, the

aforementioned λ2 criterion55 has proved to be more effec-

tive than other common indicators of vortices (e.g., pres-

sure minimum, closed or spiraling streamlines and pathlines,

and iso-vorticity surfaces) and is therefore widely used in

the literature.3,16,19,44,45 As described in Table II, the wake

flow is steady and no vortex-shedding can be detected at

Re = 50 and Re = 100. Besides, Figs. 17–20 manifest that

three kinds of vortex-shedding models can be observed with

the increase of Re, namely, “Hairpin Vortex Model” at Re

= 150 (λ2 = ☞0.03, indicating that the vortex-shedding phe-

nomenon is very weak at this Re), “C and Reverse-C and

Hairpin Vortex Model (Symmetric Shedding)” at Re = 250

(λ2 = ☞0.48), and “C and Reverse-C and Hairpin Vortex

Model (Symmetric/Antisymmetric Shedding)” at Re = 500 (λ2

= ☞1.42) and Re = 1000 (λ2 =☞2.48). Considering that the

“Hairpin Vortex Model” has already been analyzed in detail

by Dousset and Potherat19 (AR = 4, Re = 200) and Saha16

(AR = 3, Re = 250), the remaining part of this section will

focus on the analysis of the two newly proposed models,

namely, “C and Reverse-C and Hairpin Vortex Model (Sym-

metric Shedding)” and “C and Reverse-C and Hairpin Vortex

Model (Symmetric/Antisymmetric Shedding),” together with

their comparison with several existing models presented in the

literature.

First, as confirmed in Figs. 18–20, the “C and Reverse-

C and Hairpin Vortex Model” does not contain the trans-

verse instantaneous tip vortex, the streamwise instantaneous

tip vortices, the mean streamwise tip vortices, and the mean

streamwise base vortices. The reasons will be given in the

FIG. 20. “C and Reverse-C and

Hairpin Vortex Model (Symmet-

ric/Antisymmetric Shedding)” instant-

aneous spanwise vortices at Re = 1000

(λ2 = ☞2.48): ((a) and (e)) symmetric;

(c) symmetric and anti-symmetric; ((b),

(d), and (f)) anti-symmetric.
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following. The transverse instantaneous tip vortex has been

observed by Saeedi et al.12 and Hwang and Yang;18 however,

no such kind of vortex-shedding is observed in this study,

which may be attributed to the much lower Re values con-

sidered here. The streamwise instantaneous tip vortices are

identified by investigating the vorticity field, being consistent

with the observations of Roh and Park,38 Hain et al.,40 Kra-

jnovic,5 and Park and Lee,17,39 but, this type of vortex quickly

vanishes along the streamwise direction (being visible only

when X/D≈ 1–3 in Figs. 11 and 13) and its strength is relatively

very low when compared with that of the laterally shed span-

wise vortices. Consequently, no independent vortex structure

corresponding to this kind of vortex is observed in Figs. 18–20,

which essentially depict large-scale vortex structures. Besides,

although the mean streamwise tip/base vortices, which are,

respectively, induced by the downwash from the cylinder

tip and the upwash near the bottom wall, serve as the con-

stituent parts of several existing vortex models, they can only

be observed at some distance from cylinder1,2,21,43 and are

meaningful only for the time-averaged flow field. Therefore,

the two types of mean streamwise vortices cannot be captured

as well in Figs. 18–20.

Second, in many previous studies,23,24,43,46 it is believed

that a critical AR value (i.e., ARc ≈ 2–5) exists when it comes

to the pattern of the spanwise vortex. In other words, for AR

> ARc, the antisymmetric Karman vortex-shedding occurs

along most of the span, but, for AR < ARc, the flow near the

free-end suppresses the Karman vortex and eventually leads to

a symmetric arch-type vortex along the span in the near-wake.

However, our numerical results manifest that the type of the

spanwise vortex is also significantly influenced by Re (at least

for the Re range considered here), and, further, even for pre-

scribed AR and Re values, both the symmetric and asymmetric

vortex-shedding types are possible, which agrees well with

the experimental observation of Wang and Zhou1 and Wang

et al.25 As indicated in Fig. 18, only the symmetric spanwise

vortex is observed at Re = 250. However, Figs. 19 and 20 illus-

trate that, for Re = 500 and Re = 1000, both the symmetric and

FIG. 21. The 2D vorticity contours in

various horizontal planes at an instanta-

neous time for Re = 250 (Z = 4.0–0.5).
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FIG. 22. The 2D vorticity contours in

various horizontal planes at an instanta-

neous time for Re = 500 (Z = 4.0–2.5).

antisymmetric vortex structures are present in the wake. Spe-

cial attentions are needed for Figs. 19(a), 19(c), 19(e), and

20(c), which reveal that, at some characteristic moments, the

symmetric and antisymmetric spanwise vortex cores coexist

in the wake because of the random occurrence of these two

types of vortex-shedding.

Third, it is very clear from Figs. 18–20 that, whether for

the symmetric or for the anti-symmetric arrangement, in the

early stage of the spanwise vortex development, its one/two

“legs” which are shed from the two sides of the cylinder exhibit

the “C” shape, which means that both the upper and the lower

parts of the vortex cores are inclined toward the downstream

direction. Nevertheless, with the increase of the distance from

the cylinder, the profile of the spanwise vortices will be trans-

formed into the “Reverse-C” shape, which is characterized by

the inclination of the two ends of the vortex rolls towards the

upstream direction and their bending towards the center plane.

Moreover, in the further downstream region, the “Reverse-C”

type of vortices transits to the “Hairpin” type of vortices with

the fragmentation of large pieces of vortex structure because of

FIG. 23. The 2D vorticity contours in

various horizontal planes at two charac-

teristic moments for Re = 1000 (Z = 3.5–

2.5): ((a), (c), and (e)) symmetric, time-

01; ((b), (d), and (f)) anti-symmetric,

time-06.
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the turbulence induced by the interactions between the down-

wash, the shear layer, and the boundary layer. It is apparent

that, with the increase of Re, the degree of the fragmenta-

tion is enhanced, and the location, at which the fragmentation

occurs, moves toward the cylinder (viz., with a smaller X

value). Besides, relative to Re = 9300 considered in “Wang’s

model,”1 the Re values (i.e., Re ≤ 1000) employed in this study

are much smaller. This leads to much weaker instantaneous

transverse tip vortices, and consequently the connection line

near the tip region (existing in “Wang’s Model,” as displayed by

Fig. 11 in Ref. 1) is absent in the present model. Additionally,

Figs. 18–20 also confirm that the length of the spanwise

vortices (in the vertical direction) monotonically increases

with the increase of Re because the free-end has a stronger

suppression effect on the spanwise vortex-shedding near

the tip region at low Re values, and at the same time the

increase of the thickness of the boundary layer leads to the

enhanced inhibition of the spanwise vortices near the base

region.

2. Two-dimensional vorticity contours

In order to further validate the “C and Reverse-C and

Hairpin Vortex Model (Symmetric Shedding),” Fig. 21 quan-

titatively shows the instantaneous 2D vorticity contours in

various horizontal planes along the span at a typical moment

for case-4 (i.e., Re = 250). The same color scale is adopted,

and the centers associated with negative or positive vorticity

concentrations are marked with “+” in these figures. Being

consistent with the vortex structure presented in Fig. 18, only

symmetric spanwise vortices are observed in this scenario,

and the vortex-shedding phenomenon occurs within the extent

of Z/D ≤ 3.0. In other words because of the suppression of

the free-end, no vortex-shedding can be identified near the

tip region (e.g., Z/D = 4.0 and Z/D = 3.5), as confirmed by

Figs. 21(a) and 21(b). However, the spanwise vortex-shedding

becomes possible at the height of Z/D ≈ 3.0, and its strength

continuously increases with the increase of the distance from

the tip and reaches the maximum value at about Z/D ≈ 1.5.

In order to further demonstrate the “C and Reverse-C and

Hairpin Vortex Model (Symmetric/Antisymmetric Shedding),”

Figs. 22–24 show the instantaneous 2D vorticity contours of

spanwise vortices in various horizontal planes at some typi-

cal moments for case-5 (Re = 500) and case-6 (Re = 1000).

Especially, the moment depicted by Fig. 22 actually corre-

sponds to that illustrated in Fig. 19(c), in which one pair

of symmetric “C-Shape” spanwise vortices and another pair

of anti-symmetric “Reverse-C Shape” vortices coexist in the

wake. Figs. 23(a), 23(c), 23(e), 24(a), 24(c), and 24(e), where

several pairs of symmetric vortex cores on different sections

along the span are observed, share the same moment as that

of Fig. 20(a) (i.e., instantaneous time-01 in Fig. 20). How-

ever, Figs. 23(b), 23(d), 23(f), 24(b), 24(d), and 24(f), where

the anti-symmetric vortices in various horizontal planes are

observed, present the contours of ωz at the same moment

as that of Fig. 20(f) (i.e., instantaneous time-06 in Fig. 20).

From these figures, it can be concluded that, with the increase

of Re, the distance from the cylinder at which the vortex-

shedding structure appears is reduced. This is attributed to

the enhanced shear layers from the leading edges of the

cylinder at large Re values. In addition, Figs. 21(b), 22(b),

23(a), and 23(b), respectively, show that, on the Z/D = 3.5

plane, no vortex-shedding is observed at Re = 250, relatively

FIG. 24. The 2D vorticity contours in

various horizontal planes at two charac-

teristic moments for Re = 1000 (Z = 2.0–

1.0): ((a), (c), and (e)) symmetric, time-

01; ((b), (d), and (f)) anti-symmetric,

time-06.
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weak symmetric/anti-symmetric vortex-shedding appears at

Re = 500, and relatively strong symmetric/anti-symmetric

spanwise vortices are observed at Re = 1000, which sup-

ports the conclusion once again that the length of the span-

wise vortex in the vertical direction is increased with the

increase of Re because of the relatively weak suppression of

the free-end at large Re values, as discussed in Subsection

IV C 1.

V. CONCLUSIONS

Flow past a finite square cylinder (AR = 4) is studied at

six Re values (Re = 50, 100, 150, 250, 500, and 1000). The

focus is to examine the influence of Re on three aspects of the

flow, namely, the time-averaged velocity and pressure fields,

the mean streamwise vortices, and the vortex-shedding model

of instantaneous spanwise vortices. The main findings include

the following:

1. Although in the literature it was found that the mean

streamwise vortex pattern is influenced by the AR value,

this study indicates that the formation of mean streamwise

vortices is also affected by Re. For the fixed AR = 4, three

types of mean streamwise vortices have been observed

and analyzed in detail, namely, “Quadrupole Type” at Re

= 50 and Re = 100, “Six-Vortices Type” at Re = 150 and

Re = 250, and “Dipole Type” at Re = 500 and Re = 1000.

Especially, to the best of our knowledge, it is the first time

that the “Six-Vortices Type” mean streamwise vortices are

reported, which is considered as a transitional structure

between the other two types.

2. In terms of instantaneous spanwise vortices, three kinds

of vortex-shedding models are observed, namely, “Hair-

pin Vortex Model” at Re = 150, “C and Reverse-C and

Hairpin Vortex Model (Symmetric Shedding)” at Re

= 250, and “C and Reverse-C and Hairpin Vortex Model

(Symmetric/Antisymmetric Shedding)” at Re = 500 and Re

= 1000. The newly defined “C and Reverse-C and Hair-

pin Vortex Model” shares some similarities with “Wang’s

Model.” However, the two models do differ in some

aspects, such as (in the present model) the connection

line near the tip region is absent, in the early stage of the

formation of the spanwise vortex the shape of the vortex

cores is actually “C Shape,” and in the further down-

stream region the “Reverse-C Shape” transforms into the

“Hairpin Vortex Shape” due to the fragmentation of large

pieces of vortex structure.

3. By visualizing the flow through the mean streamlines

and the mean vorticity contours in various streamwise

planes, this paper presents the detailed evolution pro-

cess of mean streamwise vortices between the near

and far wakes, which has not been reported in the

FIG. 25. Profiles of various mean

velocity components in the section of X

= 3.0 at Re = 250. (a) Umean, Z = 1.0;

(b) vmean, Z = 1.0; (c) umean, Z = 3.5;

(d) vmean, Z = 3.5; (e) umean, Y = 0;

(f) wmean, Y = 0.
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literature. Further, three kinds of transition processes

are defined and explained, namely, quadrupole-type

evolution, dipole-type evolution, and six-vortices type

evolution.

4. Serving as an extension of the conclusions of previ-

ous research, it is put forward that the mean stream-

wise vortex structure is dependent on if the downwash

from the cylinder tip can reach the bottom wall, namely,

whether or not the downwash in the upper part and the

upwash in the lower part coexist in the symmetry plane

(depending on the combined influence of Re, AR, and

δ/D). When the downwash can reach the bottom wall

in the symmetry plane, only a pair of counter-rotating

mean streamwise tip vortices (i.e., “Dipole Type”) is

observed in the wake, but, when the downwash fails to

reach the bottom wall, either “Quadrupole Type” or “Six-

Vortices Type” mean vortex structure is formed in the

wake.
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APPENDIX: THE GRID CONVERGENCE

This part presents a quantitative comparison of the pro-

files of three mean velocity components in different sections

achieved by making use of the four newly designed non-

uniform structured meshes (i.e., the level-1, level-2, level-3,

and level-4 grids detailed in Table I) with the purpose of

demonstrating the grid-independency of the numerical results.

Figs. 25 and 26 show the profiles of various velocity

components in two streamwise planes (i.e., X = 3.0 and X = 7.0)

at a Reynolds number of 250, together with the numerical

results extracted from Ref. 16. Obviously, the numerical results

obtained by using level-2 and level-3 agree very well with the

existing data, except for the umean profile along the junction

line of X = 7.0 and Z = 3.5 (viz., Fig. 26(c)), but even in this

circumstance the grid convergence is very well realized

through the newly designed three grid levels. Overall,

these figures have demonstrated that level-2 and level-3

are fine enough to obtain the grid-independent solution for

FIG. 26. Profiles of various mean

velocity components in the section of X

= 7.0 at Re = 250. (a) Umean, Z = 1.0;

(b) wmean, Z = 1.0; (c) umean, Z = 3.5;

(d) vmean, Z = 3.5; (e) umean, Y = 0;

(f) wmean, Y = 0.
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FIG. 27. Profiles of various mean velocity components in the section of X = 3.0 at Re = 1000. (a) Umean, Z = 1.0; (b) wmean, Z = 1.0; (c) umean, Z = 2.0; (d)

wmean, Z = 2.0; (e) umean, Z = 3.0; (f) wmean, Z = 3.0.

FIG. 28. Profiles of various mean velocity components in the section of X = 7.0 at Re = 1000. (a) Umean, Z = 2.0; (c) vmean, Z = 2.0; (e) wmean, Z = 2.0; (b)

umean, Z = 3.0; (d) vmean, Z = 3.0; (f) wmean, Z = 3.0.
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case-4 (i.e., Re = 250), and actually the level-3 mesh is

ultimately utilized to carry out the simulation of case-1 (i.e.,

Re = 50), case-2 (i.e., Re = 100), case-3 (i.e., Re = 150),

case-4 (i.e., Re = 250), and case-5 (i.e., Re = 500) in this

study in order to improve the spatial accuracy as much as

possible.

A further validation is still necessary for the purpose of

verifying the grid independency at the largest Re number of

this study (i.e., case-6 (Re = 1000)), which imposes higher

demands on the grid resolution. Figs. 27 and 28 show the

profiles of various velocity components in two streamwise sec-

tions (i.e., X = 3.0 and X = 7.0), and it can be concluded that,

by making use of level-3 and level-4, the grid convergence has

been well realized. It should be emphasized that, for case-6,

the finest mesh (i.e., level-4, 303 × 228 × 202 grid points in

X, Y, and Z directions, respectively), being approximately 5

times finer than Saha’s middle level (i.e., 177 × 136 × 120),

is selected to carry out the simulation in order to improve the

spatial accuracy as much as possible.
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