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Abstract

Rigid particles suspended in viscoelastic fluids under shear can align in string-like struc-

tures in the flow direction. Although this phenomenon was first reported almost four decades

ago by Michele et al. [1], the exact mechanism of particle alignment is not completely un-

derstood. Initially, it was believed that normal stress differences are responsible for the

alignment of particles, but recent experimental work by van Loon et al. [2] showed particle

alignment in a shear-thinning fluid without significant normal stress differences.

To unravel the phenomenon of particle alignment, we present for the first time 3D direct

numerical simulations of the alignment of two and three rigid, non-Brownian particles in

a viscoelastic shear flow, with the shear rate denoted by γ̇. The equations are solved on

moving, boundary-fitted meshes, which are locally refined to accurately describe the polymer

stresses around and in between the particles. A small minimal gap size between the particles

is introduced. The Giesekus model, with a relaxation time λ, is used for the viscoelastic

fluid, and the effect of the Weissenberg number Wi = λγ̇, shear thinning parameter α and

ratio between the solvent viscosity and zero-shear viscosity β is investigated.

The numerical method allows for the detailed investigation of particles interacting in

viscoelastic flows. Alignment of two and three particles is observed in the simulations. Mor-

phology plots were created for various values of α, β and Wi. Alignment is mainly governed
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by the value of the elasticity parameter S, defined as half of the ratio between the first nor-

mal stress difference and shear stress of the suspending fluid. Alignment appears to occur

above a critical value of S, which decreases with increasing α, thus shear thinning promotes

alignment. Furthermore, three particles align at lower S than two particles. Finally, simula-

tions were performed in a shear-thinning Carreau fluid, where we never observed alignment

of the particles. These results lead us to the conclusion that the presence of normal stress

differences is essential for particle alignment to occur, although it is strongly promoted by

shear thinning.

1 Introduction

The dynamics of non-Brownian particles in creeping flow has received a great deal of attention

over the last century, starting with the classical work of Einstein on the rheology of dilute

suspensions of rigid spheres [3, 4]. The majority of the theoretical, experimental, and numerical

research has been on particles suspended in Newtonian fluids, e.g. see the reviews [5] and [6].

Recent work in this area is focused on the departure from Newtonian behavior of the suspension

at high volume fractions, e.g. by including friction between particles [7–9].

Driven by the increasing use of polymer composites (e.g. a polymer matrix filled with rigid

particles [10]), the investigation of the dynamics of rigid particles in viscoelastic fluids has

recently seen an upsurge. See [11] and references therein for a recent review on this topic.

Particles in viscoelastic fluids under creeping flow conditions have the tendency to migrate

across streamlines [12, 13], which does not occur if the suspending fluid is Newtonian. It is

believed that the migration is driven by gradients in normal stresses, and particles tend to

migrate toward regions where normal stresses are lower, e.g. the outer cylinder in a wide-gap

Couette device [14]. Another clear difference with Newtonian fluids is the tendency of spherical

particles to align in string-like structures in flow direction, as was first reported in [1] for particles

located between two flat plates that oscillate back and forth. Further work on the alignment

of particles in viscoelastic shear flow was done both experimentally [2, 15, 16], analytically [17]

and numerically in 2D [18–21] or in 3D using a mesoscopic approach, where the polymers are

represented by discrete particles [22, 23]. Although several groups have been working on the

simulation of 3D viscoelastic suspensions [24–27], to the best of the authors’ knowledge, particle

alignment has not been observed in 3D direct numerical simulations of rigid, spherical particles
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in shear flow.

An interesting discrepancy exists between the experimental and numerical results: alignment

is not observed in experiments using Boger fluids [2, 28, 29]. However, particle chains are

observed in 2D simulations using Oldroyd-B fluids, which have a constant viscosity [18, 20, 21].

The lack of chaining in Boger fluids, combined with the observation of particle strings in shear-

thinning fluids without significant normal stress differences, led van Loon et al. [2] to the

conclusion that shear-thinning plays an essential role in the formation of particle strings. In this

paper, 3D direct numerical simulations are presented of non-Brownian, rigid, spherical particles

in viscoelastic fluids under shear. The finite element method is used on moving, boundary

fitted meshes, which is an effective approach due to the availability of mesh generators that can

efficiently mesh complicated 3D geometries [30]. We will systematically study the effect of the

rheology of the suspending fluid on the alignment of two and three particles.

2 Problem statement

We consider non-Brownian, inertialess, mono-disperse particles of radius a in a shear flow, as

depicted in Fig. 1. Due to the movement of the rigid top and bottom walls, a shear flow with an

average shear rate of γ̇ = 2Uw/H is imposed, where Uw denotes the magnitude of the velocity of

the walls. The fluids will be described as either Newtonian, viscoelastic or non-elastic but shear-

thinning (Carreau), and the alignment of the particles will be investigated. It is assumed that

the problem is symmetric in the xy-planes at z = 0 and z = W/2, and rotationally symmetric

around the z-axis. Using these symmetries, it suffices to consider a quarter of the domain when

three particles are simulated, whereas half of the domain is considered when two particles are

simulated. This will explained in more detail in Section 4.
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Fig. 1: The problem consists of rigid spheres in a shear flow. The domain is bounded in y-direction by
rigid walls and periodicity is assumed in x-direction. For the z-direction, symmetry is assumed in the
xy-planes at z = 0 and z = W/2 (the origin is located at the centroid of the rectangular box).

3 Governing equations

Assuming incompressible, inertialess flow, the balance of momentum and balance of mass are

written as

−∇ · σ = 0, (1)

∇ · u = 0, (2)

where σ is the Cauchy stress tensor and u is the fluid velocity. The Cauchy stress can be

decomposed in a pressure part, a Newtonian (solvent) part and a viscoelastic part:

σ = −pI + 2ηsD + τ , (3)

where p is the pressure, I is the unit tensor, ηs is the Newtonian solvent viscosity, D = (∇u+

(∇u)T )/2 is the rate of deformation tensor, and τ is the viscoelastic stress tensor. To model the
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viscoelastic fluid, the Giesekus constitutive model will be used, which shows qualitatively correct

rheological properties of a polymeric fluid (i.e. shear thinning viscosity, first and second normal

stress differences, bounded extensional viscosity). Using the Giesekus constitutive model, the

evolution of the viscoelastic stress is described by [31]:

λ
∇
τ + τ +

λα

ηp
τ 2 = 2ηpD, (4)

where λ is the relaxation time, ηp is the polymer viscosity and α is the mobility, which controls

the shear-thinning behavior of the fluid. The zero-shear viscosity of the fluid is given by η0 =

ηs + ηp. Furthermore, the upper convected derivative is defined as

∇

( ) =
D( )

Dt
− (∇u)T · ( )− ( ) · ∇u, (5)

where D()/Dt denotes the material derivative. The evolution of the polymer stress, described

by Eq. (4), can be rewritten to the equivalent

τ = G(c− I), (6)

λ
∇
c + c− I + α(c− I)2 = 0, (7)

where c is the conformation tensor and G = ηp/λ is the polymer modulus. When supplemented

with the proper boundary conditions, Eqs. (1), (2), (6) and (7) form a well-posed problem for

the unknowns u, p and c.

Simulations will also be performed using a shear-thinning, viscous fluid which is modeled

by the Carreau model with the viscosity at infinite shear rate set to zero, for which the Cauchy

stress tensor is written as

σ = −pI + 2η(γ̇e)D, (8)

with

η(γ̇e) =
η0

(1 + (λcγ̇e)2)(1−n)/2
, (9)

where λc is a characteristic time, n is the power-law index and γ̇e =
√
2D : D is an “effective

shear rate” (for simple shear: γ̇e = γ̇). Despite the presence of a characteristic time λc, there is

no fluid memory in the Carreau model.
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It is assumed that inertia of the particles can be neglected. Assuming no external forces and

torques are imposed on the particles, this means that the particles are force- and torque-free:

∫

∂Pi

σ · n dS = 0, (10)

∫

∂Pi

(x−Xi)× (σ · n) dS = 0, (11)

where n is the outwardly directed unit normal vector on the particle boundary ∂Pi and Xi =

[Xi, Yi, 0] denotes the location of the center point of the i-th particle. As will become clear in

Section 3.1, initially an additional force is applied on the particle which is gradually removed

in a short amount of time. In that case the force balance (Eq. (10)) becomes:

∫

∂Pi

σ · n dS = F i, (12)

where F i = [Fx,i, Fy,i, 0] is the external force on the i-th particle. The z-component of the force

and the position are set to zero due to symmetry considerations, as will be explained in Section

4.

The relationship between the position and velocity is described through a kinematic equa-

tion:

dXi

dt
= U i, (13)

where U i = [Ux,i, Uy,i, 0] is the i-th particle translational velocity, where the z-component is

zero due to symmetry. The orientation of the particles does not need updating due to the

particles being spherical.

3.1 Boundary and initial conditions

In this section, the boundary and initial conditions are defined. In the numerical implementation

only part of the box depicted in Fig. 1 is simulated. This approach greatly improves numerical

efficiency, as was shown in [32] for a single rotating sphere.
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3.1.1 Boundary conditions for two particles

For the problem of two particles, it is assumed that the particles move in the xy-plane, i.e. Xi =

[Xi, Yi, 0] for i = 1 . . . N . Periodicity is assumed in x-direction and symmetry is assumed in the

xy-planes at z = 0 and z = W/2. In this case, only half of the domain has to be meshed, an

example of which is shown in Fig. 2. Assuming no-slip on the rigid boundaries yields for the

velocity

u = [Uw, 0, 0] on Γ6, (14)

u = [−Uw, 0, 0] on Γ5, (15)

u = U i + ωi × (x−Xi) on ∂Pi, (16)

where the particle velocity U i and angular velocity ωi are such that the force balance (Eq. (10))

and torque balance (Eq. (11)) for the i-th particle are fulfilled. The plane symmetry in the xy-

planes yields:

(tx)Γ2
= 0 (ty)Γ2

= 0 (uz)Γ2
= 0

(tx)Γ4
= 0 (ty)Γ4

= 0 (uz)Γ4
= 0, (17)

where tx and ty are the x- and y-component of the traction vector t = σ ·m, where m is the

outwardly directed unit normal vector on the boundary. Periodicity in x-direction yields the

boundary conditions

(ux)Γ1
= (ux)Γ3

(uy)Γ1
= (uy)Γ3

(uz)Γ1
= (uz)Γ3

(tx)Γ1
= −(tx)Γ3

(ty)Γ1
= −(ty)Γ3

(tz)Γ1
= −(tz)Γ3

(cxx)Γ1
= (cxx)Γ3

(cxy)Γ1
= (cxy)Γ3

(cyy)Γ1
= (cyy)Γ3

(czz)Γ1
= (czz)Γ3

(cxz)Γ1
= (cxz)Γ3

(cyz)Γ1
= (cyz)Γ3

. (18)

In all simulations presented for two particles in Section 5, the problem is rotationally symmetric

around the z-axis (with a rotation angle of 180◦). In principle, this would allow for the simulation

of only a quarter of the domain. For practical reasons, we chose not to do that here.
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Γ1 = ABCD

Γ2 = BEFC

Γ3 = EGHF

Γ4 = GHDA

Γ5 = ABEG

Γ6 = CFHD

Fig. 2: Two views of a mesh used for two particles. Plane Γ1 can be identified with Γ3. These planes
will be connected node-by-node using a collocation method, and are therefore meshed periodically. Note,
that this mesh is for illustrative purposes and the meshes used in Section 5 are much more refined.

Γ1 = ABCDE

Γ2 = DFGHE

Γ3 = BIJKGFC

Γ4 = ILMJ

Γ5 = NKJM

Γ6 = ALMNHE

Γ7 = GKNH

Γ8 = ABIL

Fig. 3: Two views of a mesh used for three particles. Plane Γ1 can be identified with Γ2, and Γ4 can be
identified with Γ5. These planes will be connected node-by-node using a collocation method, and the mesh
is therefore generated such that Γ1 and Γ2 are symmetric in the line ED, and Γ4 and Γ5 are symmetric
in the line JM. Note, that this mesh is for illustrative purposes and the meshes used in Section 5 are
much more refined.

3.1.2 Boundary conditions for three particles

For the problem of three particles, it is assumed that the particles move in the xy-plane,

i.e. Xi = [Xi, Yi, 0] for i = 1 . . . N . Periodicity is assumed in x-direction and symmetry is

assumed in the xy-planes at z = 0 and z = W/2. Furthermore, the problem is assumed to

be rotationally symmetric around the z-axis (with a rotation angle of 180◦): for the particle

at [Xi, Yi, 0] with Xi > 0, there is an opposite particle at −[Xi, Yi, 0]. The middle particle is

located at the origin and is only free to rotate. Using these symmetries, only a quarter of the

domain has to be meshed, an example of which is shown in Fig. 3. Assuming no-slip on the
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rigid boundaries yields for the velocity

u = [Uw, 0, 0] on Γ7, (19)

u = [−Uw, 0, 0] on Γ8, (20)

u = U i + ωi × (x−Xi) on ∂Pi. (21)

Since the middle particle is only free to rotate, U i = 0 in Eq. (21) for the middle particle. The

plane symmetry in the xy-planes yields:

(tx)Γ3
= 0 (ty)Γ3

= 0 (uz)Γ3
= 0

(tx)Γ6
= 0 (ty)Γ6

= 0 (uz)Γ6
= 0, (22)

The rotational symmetry around the z-axis implies that the plane Γ1 can be identified with plane

Γ2, after a rotation around the z-axis. Likewise, plane Γ4 can be identified with plane Γ5 after a

rotation around the z-axis. By performing subsequent rotations around the z-axis, the periodic

domain can be reconstructed. When performing this rotation on a local coordinate system,

it is obvious that the x- and y-components of a vector described in that coordinate system

reverse sign, whereas the z-component does not. When applying this to tensors, only the xz-

and yz-components reverse sign. This yields the following boundary conditions connecting the

planes Γ1 and Γ2:

(ux)Γ1
= −(ux)Γ2

(uy)Γ1
= −(uy)Γ2

(uz)Γ1
= (uz)Γ2

(tx)Γ1
= (tx)Γ2

(ty)Γ1
= (ty)Γ2

(tz)Γ1
= −(tz)Γ2

(cxx)Γ1
= (cxx)Γ2

(cxy)Γ1
= (cxy)Γ2

(cyy)Γ1
= (cyy)Γ2

(czz)Γ1
= (czz)Γ2

(cxz)Γ1
= −(cxz)Γ2

(cyz)Γ1
= −(cyz)Γ2

, (23)

and similarly for Γ4 and Γ5. Note, that on the lines DE and JM the only possible solution for

ux, uy, cxz and cyz is zero, which is thus prescribed as an essential boundary condition on these

lines.
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3.1.3 Initial conditions

Initial conditions are needed for the particle position and conformation tensor, which are denoted

by

Xi(t = 0) = Xi,0 (24)

c(t = 0) = c0. (25)

Since we are interested in the interaction between particles in a flow where viscoelastic stresses

have been “fully developed”, imposing a stress-free state for the conformation tensor would not

suffice. Instead, the initial conformation field is obtained by solving the full set of equations

with the stress-free state as initial condition, but for torque-free particles with fixed location

(i.e. U i = 0 in Eq. (16)). This problem is run for one relaxation time, which allows for the

build-up of viscoelastic stresses. The resulting conformation tensor field c0 is used as an initial

condition in the actual simulations. However, since c0 is determined with the particles being

torque-free, but not necessarily force-free, a force will act on the particles, which would yield

a sudden movement of the particles as they become freely-floating. This problem is tackled by

determining the force on the rotating particles and imposing this force in the initial stage of

the simulation, through F i in Eq. (12). The force is then gradually released in one strain unit

to let the particles become truly freely-floating.

4 Numerical method

4.1 Weak form

The boundary conditions on the particles given by Eq. (16) are implemented as constraints, with

the particle angular and translational velocities as additional unknowns [33]. This approach

introduces unknowns on the boundaries of the particles: the Lagrange multiplier λi. The weak

form of the momentum/mass balance (for the i-th particle that rotates and translates and is
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subject to an external force F i) is written as: find u, p, U i, ωi and λi such that

(Dv, 2ηsD + τ )− (∇ · v, p) + 〈v − (V i + χi × (x−Xi),λi〉∂Pi
= V · F i (26)

(

q,∇ · u
)

= 0 (27)

〈µi,ui − (U i + ωi × (x−Xi))〉∂Pi
= 0, (28)

for all admissable test functions v, q, χi, V i and µi. Furthermore, Dv =
(

∇v + (∇v)T
)

/2,

the notation (·, ·) denotes a proper inner product on the fluid domain and 〈·, ·〉∂Pi
is an inner

product on ∂Pi.

The momentum and mass balance are solved first within a time step, with the polymer stress

τ determined by using a semi-implicit scheme as proposed in [34]. Using the log-conformation

approach [35] and SUPG stabilization [36], the weak form of the evolution equation for confor-

mation tensor (Eq. (7)) reads: find s such that

(

d+ τ(u− um) · ∇d,
Ds

Dt
− g

(

(∇u)T , s
)

)

= 0, (29)

for all admissible test functions d and where s = log c, the parameter τ is due to the SUPG

stabilization and um denotes the mesh velocity, which will be introduced in Section 4.2. The

reader is referred to [35] for details about the log-conformation approach and the expression for

the function g.

4.2 Discretization

To solve the velocity-pressure-conformation system as was presented in Section 3, the finite

element method is used with tetrahedral P2P1P1 elements for the velocity-pressure-conformation

fields. Boundary fitted meshes are used, that move in time such that the mesh on the particle

boundary follows the motion of the particle, whereas the remaining boundaries are stationary.

Since the fluid is now described on a grid that moves with the material, but not in a Lagrangian

manner, the arbitrary Lagrange Euler (ALE) formulation [37] is used. The moving grid is

identified with the mesh, and the material derivative is rewritten to

D( )

Dt
=

∂( )

∂t

∣

∣

∣

∣

xm

+ (u− um) · ( ), (30)
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where the first term on the right hand side is the partial derivative at constant mesh coordinate

xm, i.e. the mesh derivative, and um is the mesh velocity. A smooth displacement field for the

entire mesh is found by solving a Laplace problem, similar to [37]. Once the mesh deformation

becomes too large, remeshing is performed based on the position of the particles. Variables

needed in the time integration, i.e. the conformation field at previous time steps, are projected

onto the new mesh [37]. To obtain the new mesh at the previous instances in time, which is

needed to find the mesh velocity, the mesh coordinates are projected as well [38]. Since the

elements are aligned to the particle boundary, the inner product 〈·, ·〉∂Pi
can be performed using

a collocation method [33]. Meshes are generated using Gmsh [30].

Second-order time integration schemes are used for all time derivatives, and the momen-

tum/mass balance and evolution equation for the conformation tensor are solved in two separate

systems. To stabilize the evolution equation for the conformation tensor, SUPG [36] is applied

and the log-conformation representation is used [35, 39]. Stabilization in the momentum bal-

ance is obtained by using an implicit-stress formulation, where a prediction of the conformation

tensor is used in the momentum balance [34]. This approach allows for the simulations of fluids

with a small or absent solvent contribution, and additional stabilization using DEVSS [40] is

found not to be necessary.

At several stages within a time step, a system of equations has to be solved with a constant

matrix but varying right-hand-side (e.g. the components of the conformation tensor). For these

systems, a direct solver from the HSL library [41] is employed, which allows for the re-use of

the LU-decomposition. The momentum balance is solved using a GMRES iterative solver with

an ILUT preconditioner from the Sparskit library [42]. The mesh is moved in time, but the

connectivity of the nodes remains unchanged. Therefore, the structure of the system matrix

for the momentum balance is constant until a remeshing is performed, which allows for the

re-use of the ILUT preconditioner. In most cases, the preconditioner could be used for a large

number of timesteps, and only had to be rebuilt after a remeshing, significantly decreasing the

computational time. To reduce fill-in when building the preconditioner, the nodes of the mesh

are renumbered using MeTiS [43].
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4.3 Minimal gap size between particles

As the particles come in close proximity, the fluid film in the gap between the particles becomes

more difficult to describe. However, accurately resolving the stresses in this fluid film is essential

to capture the complete interaction between particles. The approach taken here, is to locally

refine the mesh in between the particles in an adaptive manner, ensuring there are always a

minimum number of elements (nmin) between the particle boundaries. For the velocity, which

is interpolated using quadratic elements, this yields a minimum number of 2nmin + 1 nodes

between particle boundaries. An example of such a locally refined mesh is shown in Fig. 4.

Fig. 4: Adaptive refinement ensures that there are always nmin elements in between the particles (here
nmin = 4).

In the 2D simulations presented in [18, 21], it was shown that a fluid film of finite thickness

remains in the gap between the particles. Accurately describing this fluid film using local

mesh refinement was thus enough to keep the particles from coming into close proximity. In

3D, however, the simulations showed that the fluid films become much thinner for interacting

spheres, yielding very large deformation rates in the gaps between the particles. As a result,

large polymer stresses are generated, leading to a breakdown of the numerical scheme. As

suggested in [37], a repulsive force, which can be interpreted as a consequence of the particle

roughness, can help in keeping the particles apart. One option is to a-priori define a force as

a function of the distance between the particles [33]. Another option is to determine this force

iteratively in an optimization problem [44]. Our approach is different, and avoids an iterative

procedure to find the repulsive force: the repulsive force is implicitly solved for, as an additional

unknown in the system of equations. This is done by defining a minimal gap size between the

particles, which will be denoted by dmin. Once particles “step” into this region, their motion
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is constrained such that the distance between the particles does not decrease further. We will

explain this approach for two particles, but an arbitrary number of particles that are within a

distance dmin could be constrained in this manner.

Fr

Fr

w12

1

2dmin

Fig. 5: Two particles are constrained such that the distance between the particle does not decrease. The
angular velocity of the rotating rigid rod between the particle centers is denoted by w12. The force Fr

does not have to be specified a-priori, but follows from the constrained particle movement.

As the gap size between the particle boundaries becomes smaller than dmin, which is typi-

cally chosen much smaller than the particle radius, the translational motion of the particles is

constrained such that the distance between the particles does not decrease (one can imagine

this as the particle centers being connected by rotating rigid rods). The translational velocity

of one of the particles is removed as an unknown, but the angular velocity of the rigid rod

connecting the particles, denoted by w12 in Fig. 5, is included as an unknown. Instead of using

Eq. (16) for each particle, the velocity on the particle boundaries is now given by

u = U1 + ω1 × (x−X1) on ∂P1 (31)

u = U1 +w12 × (X2 −X1) + ω2 × (x−X2) on ∂P2, (32)

where it can be seen that the velocity on ∂P2 depends onU1, which should be properly accounted

for in the weak form given by Eqs. (26) and (28). The translational velocity of the second particle

is given by U2 = U1 +w12 × (X2 −X1). Note, that the component of w12 × (X2 −X1) in

the direction X2 − X1 disappears, effectively reducing the number of unknowns by one. We

want to emphasize that the magnitude of the force between the particles, denoted by Fr, follows

from the constrained movement of the particles and can be evaluated by summing the Lagrange

multipliers on the particle boundary, and thus does not have to be specified a-priori. The

repulsive force is directed along the vector connecting the particles, and from the sign of Fr it

can be deduced if the particles want to move toward or away from each other. In the latter
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case the constraint can be released and the normal weak form as given by Eqs. (26) to (28) is

solved in the next time step. The influence of the size of dmin on the particle alignment will be

investigated in Section 5.2.

The procedure can be extended to an arbitrary number of particles by including the transla-

tion velocity of one of the particles (denoted by U1, but the choice is arbitrary) and the angular

velocities of the rotating rigid rods between the particles in the constraint. The translational

velocities of all particles included in the constraint (those particles that are “connected” by a

fluid layer of less than dmin) now depend on U1 and the angular velocities of the rigid rods in

between them, which should be properly accounted for when building the constraint equation.

For a full 3D problem where the particles can move out-of-plane, many particles can be within

dmin, and geometrical constraints can yield dependencies between the rotations of the rigid

rods, this is not a trivial task. For the simulation of three particles, the translational velocity

of the middle particle is zero, thus U1 = 0 in Eqs. (31) and (32). Furthermore, Eq. (32) is

implemented by rewriting w12 × (X2 −X1) = U2ν, where ν is the unit vector perpendicular

to X2 −X1, in the xy-plane.

5 Results

Simulations have been performed to investigate the string formation of two and three particles

(with the symmetry assumptions as outlined in Section 4). In dimensionless form, the viscoelas-

tic problem is described by the Weissenberg number, defined by Wi = λγ̇, the mobility α which

controls the shear-thinning behavior of the fluid, and the ratio between the solvent viscosity and

the zero-shear viscosity, denoted by β = ηs/η0. Many of the results will be presented in terms

of the angle between the line connecting the center points of the particles and the x-axis, which

is denoted by θ and is defined in Fig. 6. For the two-particle problem, the particles are initially

placed at an angle of θ = 10◦ with an initial distance between the center points of 3a, yielding

an initial distance a between the particle boundaries. Note, that in the very beginning of the

simulations, a force is applied to the particles which is gradually removed in one strain unit, as

explained in Section 3.1.3. The distance between the particle boundaries after one strain unit

depends on the fluid parameters, but is around a/2. For the three-particle problem, the middle

particle is initially placed at the origin, and will remain there during the entire simulation. The
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outer particles are placed at an angle of θ = 10◦, with an initial distance between the center

points of the middle and outer particles of 3a. The size of the periodic domain as defined in

Fig. 1 is set to L = 80a, H = 40a and W = 20a, to ensure minimal wall and periodicity effects.

θ

y

xθ

(a)

θ

y

xθ

(b)

Fig. 6: The angle θ is defined as the angle between the x-axis and the line connecting the center points
of the particles for the two-particle problem (a) and the three-particle problem (b).

5.1 Mesh and time convergence

We commence by investigating the mesh and time convergence, which will be done for the

three-particle problem. Convergence was more difficult to obtain for high values of Wi and low

values of α, β and dmin. We study convergence for Wi = 3, α = 0.01, β = 0.1 and dmin = 0.02 in

this section. Note, that dmin is normalized with the particle diameter 2a throughout this paper.

The meshes are characterized by the number of elements on the equator of the particle (npart)

and the number of elements in between the particles (nmin) as defined in Section 4.3. The base

element size on and near the particles is thus hpart = 2πa/npart, but smaller elements are used

in between the particles to ensure nmin is satisfied. Far away from the particles, larger elements

are used as shown in Fig. 3. Four different meshes, called M1 to M4, are used in the mesh

convergence study, with the mesh parameters and total number of elements (ntotal) summarized

in Table 1.

Simulations are performed using a time step ∆t = 0.08, of which the results are shown in

Fig. 7a, where the angle θ is plotted as a function of strain, and in Fig. 7b, where the angular

velocity of the outer particles ωz is plotted as a function of strain. Note, that the peaks in

angular velocity are due to remeshing, specifically the projection of the old solutions needed

for time integration onto the new mesh, and the peaks become smaller on finer meshes. It
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Table 1: The meshes used in the convergence study. The total number of elements and nodes are approx-
imations, since the meshes change during the simulation.

npart nmin number of elements number of nodes

M1 32 1 ∼ 5000 ∼ 8000
M2 64 2 ∼ 20000 ∼ 31000
M3 96 3 ∼ 58000 ∼ 88000
M4 128 4 ∼ 188000 ∼ 272000

can be observed that the angle θ initially increases, an indication that the particles are moving

past each other. For mesh M1, θ indeed keeps growing and the particles pass each other.

However, for mesh M2, M3 and M4, the angle decreases after going through a maximum and

reaches a steady value around tγ̇ = 40. At this point, the particles have formed a stable

string, as will be further investigated in the next sections. Since the occurrence of particle

alignment is the main subject of this paper, mesh M1 is clearly too coarse (although alignment

was observed on meshes similar to M1, but this was very mesh dependent). Furthermore, the

angular velocity will be investigated in more detail in this paper, which appears to be accurate

on mesh M3. Simulations will thus be performed on mesh M3, which offers a good trade-off

between accuracy and efficiency. For the two-particle problem, the same meshing parameters

are used (i.e. npart = 96 and nmin = 3).

Time convergence is investigated using mesh M3 for three time steps: ∆t = 0.08, 0.04 and

0.02, the results of which are presented in Fig. 7c and Fig. 7d. The time step ∆t is normalized

by the inverse of the strain rate γ̇−1. The plots completely overlap for the three values of

∆t, indicating that accurate results can be obtained with ∆t = 0.08, which will be the time

step used in all subsequent simulations for both the two-particle problem and the three-particle

problem.

5.2 Influence of the minimal gap size

As was explained in Section 4.3, a minimal distance between the particle boundaries is intro-

duced, which is denoted by dmin. Here, the influence of this parameter on the alignment of the

particles is investigated for the three-particle problem. In Fig. 8, results are presented of the

angle θ as a function of strain for α = 0.01, β = 0.1 and varying values of Wi. Several sets of

results are shown for dmin = 0.08, 0.04, 0.02 and 0.01. For dmin = 0.08, particle alignment takes
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Fig. 7: Mesh convergence of the angle θ (a) and the angular velocity ωz of the outer particles (b) and
time convergence of the angle θ (c) and the angular velocity ωz of the outer particles (d). Here Wi = 3,
α = 0.01, β = 0.1, dmin = 0.02 and three particles are simulated.

place for Wi ≥ 2. For dmin = 0.04, particle alignment is observed for Wi ≥ 2.5, which is similar

to dmin = 0.02. For dmin = 0.01, particle alignment takes place for Wi ≥ 3. These results indi-

cate that the exact value of Wi for alignment to take place depends on dmin, with the transition

to alignment being pushed to higher values of Wi when decreasing dmin. This raises the question

whether alignment will still occur for dmin = 0. However, setting dmin = 0 results in very large

deformation rates in the gaps between the particles. As a result, large polymer stresses are

generated, leading to a breakdown of the numerical scheme. For particles with a diameter of

2.7 µm (similar to the polystyrene spheres used in [29]), setting dmin = 0.01 corresponds to a
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Fig. 8: The angle θ as a function of strain for α = 0.01 and β = 0.1 and varying Wi for the three-
particle problem. The minimal distance is set to dmin = 0.08 (a), dmin = 0.04 (b), dmin = 0.02 (a), and
dmin = 0.01 (d).

particle roughness of about 27 nm. We will use dmin = 0.02 in all subsequent simulations, and

the detailed analysis of the influence of a minimal distance between the particles will be subject

of future research.

Having verified the accuracy of our numerical technique and the influence of the parameter

dmin, we will now continue with the analysis of particle alignment, paying specific attention to

the rheology of the suspending fluid.
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5.3 Alignment in viscoelastic fluids

In this section, we will investigate the alignment of two and three particles in a suspending fluid

with α = 0.1, β = 0.1 in more detail. With these fluid parameters, the alignment occurs at

similar Wi for two and three particles, which allows for comparison between the simulations of

two particles and three particles. In all subsequent simulations a minimal distance of dmin = 0.02

is used.

5.3.1 Two particles

Simulations of two particles in a suspending fluid with α = 0.1 and β = 0.1 are presented in

Fig. 9a, where the angle θ is shown at a function of strain. Alignment clearly takes place at

Wi ≥ 1.5, with a final value for θ that decreases with increasing Wi. Note, that alignment of

two isolated particles was not observed in the experiments by Snijkers et al. [45], but was later

observed in experiments at higher shear rate by van Loon et al. [2].

The magnitude of the repulsive force Fr (needed to maintain the minimal gap size) and

particle rotation ωz are shown in Fig. 9b and 9c, respectively. The angular velocities of the two

particles are equal (with very slight deviations due to the asymmetry of the mesh), thus only

one angular velocity is shown. Furthermore, the force Fr is scaled with FS = 6πa2γ̇η0, which

is the Stokes’ drag of a particle moving through a viscous fluid of viscosity η0 at a velocity aγ̇.

A positive value for Fr means that the force is repulsive. Furthermore, the angular velocity

is scaled with γ̇, which yields a value of 0.5 for an isolated spherical particle in a Newtonian

fluid [46]. As the particles align, the repulsive force goes to a constant value, which decreases

with increasing Wi, which might be attributed to the lower viscosity at higher Wi in the shear-

thinning Giesekus fluid. However, comparing Fr for different Wi is difficult, since the angle θ is

not the same for all Wi. For higher values of θ the particles is located in a region with higher

absolute values of the velocity due to the imposed shear, thus a larger repulsive force is needed

to keep the particles apart.

Also the angular velocity shows a decrease with increasingWi, similarly to what was observed

in simulations and experiment on an isolated sphere [47, 48]. As was mentioned by Hwang and

Hulsen [20], the angular velocity plays a large role in string formation, and a reduction of about

60% with respect to the angular velocity of a particle suspended in a Newtonian fluid was
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observed. Michele et al. [1] observed an almost vanishing angular velocity of particles in strings.

Van Loon et al. [2] mention that the existence of a fluid film in between the particles is essential

due to the particles being able to rotate and thus satisfy the zero-torque condition individually,

instead of tumbling with the complete chain.
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Fig. 9: The angle θ (a), repulsive force Fr (b) and angular velocity ωz (c) as a function of strain. Two
particles are simulated in a suspending fluid with α = 0.1, β = 0.1 and varying Wi.

In Fig. 10 the trace of the polymer stress tensor is shown in the case of two aligning particles

(Wi = 3, α = 0.1 and β = 0.1). At tγ̇ = 0, polymer stresses are observed which are due to the

c0 used, as explained in Section 3.1. At tγ̇ = 8, the particles have moved close to each other and

the polymer stress field has changed significantly. Regions of high polymer stress are observed

in the gap between the particles, where there exist high local shear rates due to the rotation
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of the particles. Furthermore, an asymmetric distribution of stresses around the particles can

be observed, with regions of high stress above the right particle and below the left particle. At

tγ̇ = 16, a steady situation has been reached, and hardly any difference is observed with the

conformation field and orientation of the particles at tγ̇ = 48. The particles align with a slight

angle with respect to the x-axis.

0 40

tr(τ p)/G

max: 50

tγ̇ = 0 tγ̇ = 4

tγ̇ = 8 tγ̇ = 12

tγ̇ = 16 tγ̇ = 48

Fig. 10: Snapshots of the polymer stress during alignment of two particles (Wi = 3, α = 0.1 and β = 0.1).
A close-up of the polymer stress at tγ̇ = 48 is shown in Fig. 13a.

5.3.2 Three particles

Simulations of three particles in a suspending fluid with α = 0.1 and β = 0.1 are presented in

Fig. 11a, where the angle θ is shown as a function of strain. Similar to two particles, alignment

takes place at Wi ≥ 1.5, but the final values of θ are smaller than for the two-particle simulations.

This is an indication that the alignment of three particles occurs more readily (at lower Wi)

22



than the alignment of two particles, which will be shown to be indeed the case in Section 5.4.

The magnitude of the repulsive force is shown in Fig. 11b, which is about a factor two

smaller than for the case of two particles. However, a direct comparison is again difficult due

to the different values of θ. The angular velocity of the middle and outer particles are shown in

Fig. 11c and 11d, respectively. For all Wi, an initial decrease of the angular velocity is observed

as the particles move toward each other. For particles that do not align (Wi ≤ 1), the angular

velocity goes through a minimum and increases again as the particles move around each other.

For particles that do align (Wi ≥ 1.5), the particle angular velocity decreases and reaches a

steady value around tγ̇ = 10. The final value of the angular velocity depends on Wi: higher

values of Wi lead to lower values of the angular velocity. The trends are equal for the inner

and outer particles, but the middle particle rotates significantly slower. This can be explained

by the middle particle experiencing resistance from the two outer particles, whereas the outer

particles only experience resistance from the single middle particle. Interestingly, the angular

velocity in the two-particle problem is similar to the angular velocity of the outer particles in

the three-particle problems. Due to the slower rotation of the middle particle (and the gap

between the particles being equal) the deformation rates in between the particles are lower for

three particles than for two particles. Therefore, the normal stresses in the gap between the

particles are lower, which might explain why three particles align more readily.

In Fig. 12 the trace of the polymer stress tensor is shown in the case of three aligning

particles (Wi = 3, α = 0.1 and β = 0.1). Initially, larger polymer stresses are observed when

compared to the two aligning particles shown in Fig. 10. Furthermore, regions of large polymer

stresses are observed around the middle particle, which appear to contribute to the stresses

around the outer particles. This contribution of the middle particle to the stresses around the

outer particles offers another explanation as to why three particles align at lower Wi for the

same α and β (as will be shown in Section 5.4). Close to steady state, the string retains an

angle with respect to the x-axis, as can be seen at tγ̇ = 48. Finally, we present a comparison of

the polymer stress in the gap between the particles for the two- and three-particle problems in

Fig. 13. Indeed, the stresses in the gap are lower for the three-particle problem, which can be

attributed to the angular velocity of the middle particle being lower, as was shown in Fig. 11.
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Fig. 11: The angle θ (a), repulsive force Fr (b) and angular velocities ωz of the middle (c) and outer
(d) particles as a function of strain. Three particles are simulated in a suspending fluid with α = 0.1,
β = 0.1 and varying Wi.

5.4 Morphology diagrams

Next, the influence of the rheology of the suspending fluid is investigated. As was shown by

Hwang and Hulsen [20], it is more appropriate to analyze alignment in terms of the elasticity

parameter S of the suspending fluid, which is defined by

S =
1

2

N1

σxy
, (33)
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Fig. 12: Snapshots of the polymer stress during alignment of three particles (Wi = 3, α = 0.1 and
β = 0.1). A close-up of the polymer stress at tγ̇ = 48 is shown in Fig. 13b.

where N1 is the steady first normal stress difference and σxy is the shear stress of the pure

fluid in simple shear. The relationship between S and Wi is shown in Fig. 14 for several values

of α and β. The curve goes through a maximum which depends on both α and β: above a

certain value of Wi, increasing Wi further leads to a decrease of the elasticity parameter. To

investigate the influence of the Weissenberg number, shear thinning and solvent viscosity, many

simulations were performed for varying Wi, α and β for both the two-particle and the three-

particle problem. By evaluating curves such as the angle θ versus tγ̇, it can be deduced if the

particles are aligning in a string or passing each other. If the angle θ is constant or decreasing

at tγ̇ = 50, we will assume that the particles have aligned in a stable string.

In this manner, morphology plots can be created as is shown in Fig. 15 for two particles

and in Fig. 16 for three particles. For constant α and β, three particles align at lower Wi
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Fig. 13: Close-up of the polymer stress in the gap between the particles at tγ̇ = 48 for two particles (a)
and three particles (b) (Wi = 3, α = 0.1 and β = 0.1).

than two particles. Possible explanations given in Section 5.3 were that the middle particle

rotates more slowly in the three particles problem (yielding lower normal stresses in the fluid

film between the particles), or the middle particle contributing to the stresses around the outer

particles. The morphology plots indicate that S indeed plays a large role in particle alignment.

Alignment appears to occur above a certain critical value of S, which varies with α: for lower

values of alpha, a higher S is needed for alignment. As can be seen in Fig. 14, the value of

S goes through a maximum for increasing Wi. From this, one would expect that when Wi is

increased, alignment would stop occurring at some point. The simulations of two particles at

α = 0.2 and β = 0.2 presented in Fig. 15c and three particles at α = 0.2 and β = 0.3 presented

in Fig. 16c show this is indeed the case. For the two-particle problem, no alignment is observed

for β ≥ 0.3, whereas for the three particle problem, no alignment is observed for β ≥ 0.4.

These results are in agreement with the literature, where shear-thinning was observed to play

a crucial role in alignment [2]. Extrapolating the results to large values of β, typical for Boger

fluids (e.g. a two-mode Giesekus fit to the rheological data of a Boger fluid yielded β = 0.56

in [49]), yields large values of Wi needed for alignment, which might explain why alignment

is not observed in Boger fluids. Moreover, the results indicate that the critical value for S for

alignment to occur increases for decreasing α. This critical value of S might not be reached
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Fig. 14: The elasticity parameter S as a function of Wi for the pure fluid for α = 0.01 (a), α = 0.1 (b)
and α = 0.2 (c) (simple shear).

in experiments or might not even be reachable at all (i.e. for values of α that are not zero, S

has a maximum as shown in Fig. 14). A similar observation was done by Hwang and Hulsen,

although their problem was 2D, with biperiodic boundary conditions [20].

The simulations we have presented up until now are in agreement with the literature: align-

ment occurs in fluids that are both elastic and shear thinning. Although alignment was observed

for a weakly shear-thinning fluid (α = 0.01), an interesting case is α = 0, thus a constant vis-

cosity, elastic Oldroyd-B fluid. Simulations of three particles were performed for α = 0 and

β = 0.1, but mesh-convergence and stability were much more difficult to obtain. Preliminary

results (not shown here) indicate that for Wi ≥ 6, the particles align. A value of Wi = 6

27



0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S = 2
S = 2.5
S = 3Wi

β

align
pass

(a) α = 0.01

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S = 0.5

S = 1

S = 1.5

Wi

β

align
pass

(b) α = 0.1

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S = 0.5

S = 1

S
=
1.
5

Wi

β

align
pass

(c) α = 0.2

Fig. 15: Morphology plots describing the alignment or passing of two particles for α = 0.01 (a), α = 0.1
(b) and α = 0.2 (c) for varying combinations of Wi and β. Isolines for constant values of the elasticity
parameter S are plotted as well.

corresponds to S = 5.4 (for an Oldroyd-B fluid S = (1 − β)Wi). These results indicate that

shear-thinning is not needed for particle alignment, although it was shown to have a strong

alignment-promoting effect. This is in contrast with the experimental results presented in [2].

In the next section, we will study particles suspended in non-elastic shear-thinning fluids.

5.5 Non-elastic shear-thinning fluids

For generalized Newtonian fluids, alignment is not to be expected. This follows from a simple

argument given by Phillips [50]: the momentum balance Eq. (1), together with the Cauchy
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Fig. 16: Morphology plots describing the alignment or passing of three particles for α = 0.01 (a), α = 0.1
(b) and α = 0.2 (c) for varying combinations of Wi and β. Isolines for constant values of the elasticity
parameter S are plotted as well.

stress given by Eq. (8), is non-linear but reversible in time (i.e. upon flow reversal, the velocities,

pressures and viscous stresses change signs). If the flow is reversed, the particles would thus

trace back their paths, and any structure that was formed during flow would be lost. This leads

to a paradox: for a generalized Newtonian fluid, reversing the flow does not alter the physical

picture since the viscosity is an instantaneous function of the strain rate and does not depend

on the direction of the velocity. The only conclusion is thus that alignment cannot take place

in generalized Newtonian fluids. We should emphasize that in the simulations presented in this

paper, irreversibility is introduced by enforcing a minimal distance between the particles (see
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Section 4.3), which yields a repulsive force that does not change sign upon flow reversal. To

investigate the effect of the shear-thinning on the interaction between the particles, we will now

move on to non-elastic shear-thinning fluids, described by the Carreau model (Eq. (9)). The

dimensionless groups describing the problem are λcγ̇ and the power-law index n. In Fig. 17 the

shear viscosity of the pure fluid is shown for a strongly thinning fluid (n = 0.1), weakly thinning

fluid (n = 0.7) and two intermediate cases (n = 0.3 and n = 0.57). The fluid with n = 0.57

is chosen such that the power-law index is equal to the power-law index of the shear-thinning

fluid used by van Loon et al. [2], where particle strings were observed. The initial force on the

particles, which is released in one strain unit (see Section 3.1), is not necessary in this case.
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Fig. 17: Shear rate dependent viscosity of the Carreau fluid for varying values of n (simple shear).

5.5.1 Three particles

Simulations are performed at λcγ̇ = 1, 10 and 100 for the three-particle problem. The results

of the angle θ as a function of strain are shown in Fig. 18. In none of the simulations in purely

shear-thinning fluids, the particles reach a steady location with respect to each other, i.e. no

alignment is observed. For λcγ̇ = 10 and λcγ̇ = 100, the results are similar: which is most likely

due to the imposed shear rate already being in the shear-thinning part of the viscosity curve as

shown in Fig. 17. For λcγ̇ = 1, the results are different, with the particles passing each other

more rapidly. In this case, the imposed shear rate is close to the Newtonian plateau, whereas

the shear rate in between the particles is further down the shear-thinning part of the curve.

For all values of λcγ̇, the particle trajectories are affected by the amount of shear-thinning in

30



the suspending fluid: when decreasing the power-law index n, it takes longer for the particles

to move around each other.

To conclude, we present the angular velocity and magnitude of the repulsive force (scaled by

FS = 6πa2γ̇η0, see Section 5.3) in Fig. 19. For both the middle particle and the outer particles,

the angular velocity is larger for smaller values of n in the initial part of the simulation. Around

tγ̇ = 3, the particle movement is constrained and a discontinuity in the angular velocities for

the Carreau fluids can be observed. This can be explained by a sudden decrease in effective

shear-rate (and thus an increase in viscosity) as the particles stop moving toward each other.

The Newtonian curve shows a kink, but it is continuous. In the second part of the simulation,

where the particle movement is constrained, the angular velocity is smaller for smaller values

of n, which is opposite to the initial part of the simulation. The trends of the angular velocity

are similar for the middle particle and the outer particles, but the angular velocity for the

middle particle is slightly lower, due to the middle particle experiencing resistance from the two

outer particles. The repulsive force is shown in Fig. 19c, where a decrease of Fr is observed

with increased shear-thinning. We attribute this effect to an effective decrease of the viscosity

around and between the particles, yielding lower viscous stresses and thus a smaller repulsive

force.

5.5.2 Two particles

We have performed simulations for two particles in the same non-elastic shear-thinning Carreau

fluids as used in the previous section. No alignment was observed, and the results are comparable

to the three-particle problem and will thus not be reproduced here.
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Fig. 18: The angle θ as a function of strain in a Carreau fluid for λcγ̇ = 1 (a), λcγ̇ = 10 (b) and
λcγ̇ = 100 (c).
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6 Discussion and conclusion

We have presented the first 3D direct numerical simulations of particle alignment in viscoelastic

fluids. The influence of the rheology of the suspending fluid, specifically its shear-thinning

behavior, the Weissenberg number and the solvent viscosity ratio, was investigated for the

alignment of two and three particles. Accurately describing the polymer stress in the fluid was

found to be essential for the formation of particle strings, and mesh-dependent results were

obtained on coarse meshes. Due to the use of adaptive meshing, the resolution around the

particles can be locally increased to obtain mesh-independent results.

A fluid film in between the particles is essential such that they can satisfy the zero-torque

condition individually, instead of tumbling as a whole [2]. As opposed to the 2D simulations

presented in [18, 20], the particles come into close proximity to each other in the 3D case,

yielding very large deformation rates in the gaps between the particles. As a result, large

polymer stresses are generated, leading to a breakdown of the numerical scheme. This problem

was solved by introducing a small minimal gap size. This minimal gap size is implemented as

a constraint, thus the repulsive force follows from the Lagrange multipliers and does not have

to be specified a-priori. Alignment was observed for a minimal gap size of 1% of the particle

diameter. However, increasing the minimal gap size appears to promote alignment. This raises

the question whether alignment will still occur if the minimal gap size goes to zero since no

evidence was found that a fluid film of constant thickness develops between the particles. This is

consistent with experiments presented by van Loon et al. [2], where the use of a depletion force

(effectively lowering dmin) was shown to hinder particle alignment. In the simulations, however,

this film might be much thinner than in the 2D case, due to the interaction between spheres

occurring over smaller surfaces. A possible explanation for the existence of a repulsive force

is particle roughness [37]. For particles with a diameter of 2.7 µm (similar to the polystyrene

spheres used in [29]), a value for dmin of 1% of the particle diameter corresponds to roughness

of about 27 nm.

The alignment of particles appears to be strongly dependent on the ratio between the first

normal stress difference and the shear stress of the suspending fluid, expressed in the “elasticity

parameter” S. For fluids where S = 0, i.e. non-elastic shear-thinning fluids, no alignment is

observed. For viscoelastic fluids, alignment occurs above a certain value of S, which is lower for
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a more shear thinning fluid, whereas the presence of a solvent viscosity makes it more difficult

for particles to align. The use of S to describe alignment is supported by simulations that

indicate that alignment stops occurring above a certain value of Wi, which can be explained by

S going through a maximum for increasing Wi (for α > 0). Extrapolating the results to large

values of the solvent viscosity, typical for Boger fluids, might explain why particles do not align

in Boger fluids: the value of S for alignment to occur is very high and might not be reached

in experiments or might not even be reachable at all (i.e. for values of α that are not zero, S

has a maximum as shown in Fig. 14). This does, however, not explain why alignment occurs

in shear-thinning fluids without significant normal stress differences [2]. A possible explanation

might be that the (small) normal stress differences present in this fluid are responsible for the

alignment. Also, the presence of other particles might promote alignment, as was observed in

the 2D simulations presented in [21].

Supported by the lack of alignment in non-elastic shear-thinning fluids and the results of

particle alignment in weakly shear-thinning fluids, we conclude that normal stress differences are

essential for particle alignment to occur, whereas shear-thinning can have a strong alignment-

promoting effect. However, an elaborate comparison of experimental and numerical results,

especially with respect to the existence of a fluid film in between the particles, is necessary to

validate the numerical model presented in this paper. This will be topic of future research.
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